1
|
Randolph L, Joshi J, Rodriguez Sanchez AL, Pratap UP, Gopalam R, Chen Y, Lai Z, Santhamma B, Kost ER, Nair HB, Vadlamudi RK, Subbarayalu P, Viswanadhapalli S. Significance of LIF/LIFR Signaling in the Progression of Obesity-Driven Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:3630. [PMID: 39518071 PMCID: PMC11545110 DOI: 10.3390/cancers16213630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/20/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
American women with obesity have an increased incidence of triple-negative breast cancer (TNBC). The impact of obesity conditions on the tumor microenvironment is suspected to accelerate TNBC progression; however, the specific mechanism(s) remains elusive. This study explores the hypothesis that obesity upregulates leukemia inhibitory factor receptor (LIFR) oncogenic signaling in TNBC and assesses the efficacy of LIFR inhibition with EC359 in blocking TNBC progression. TNBC cell lines were co-cultured with human primary adipocytes, or adipocyte-conditioned medium, and treated with EC359. The effects of adiposity were measured using cell viability, colony formation, and invasion assays. Mechanistic studies utilized RNA-Seq, Western blotting, RT-qPCR, and reporter gene assays. The therapeutic potential of EC359 was tested using xenograft and patient-derived organoid (PDO) models. The results showed that adipose conditions increased TNBC cell proliferation and invasion, and these effects correlated with enhanced LIFR signaling. Accordingly, EC359 treatment reduced cell viability, colony formation, and invasion under adipose conditions and blocked adipose-mediated organoid growth and TNBC xenograft tumor growth. RNA-Seq analysis identified critical pathways modulated by LIF/LIFR signaling in diet-induced obesity mouse models. These findings suggest that adiposity contributes to TNBC progression via the activation of the LIF/LIFR pathway, and LIFR inhibition with EC359 represents a promising therapeutic approach for obesity-associated TNBC.
Collapse
Affiliation(s)
- Lois Randolph
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (L.R.); (A.L.R.S.); (U.P.P.); (R.G.); (E.R.K.); (R.K.V.)
| | - Jaitri Joshi
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Alondra Lee Rodriguez Sanchez
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (L.R.); (A.L.R.S.); (U.P.P.); (R.G.); (E.R.K.); (R.K.V.)
| | - Uday P. Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (L.R.); (A.L.R.S.); (U.P.P.); (R.G.); (E.R.K.); (R.K.V.)
| | - Rahul Gopalam
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (L.R.); (A.L.R.S.); (U.P.P.); (R.G.); (E.R.K.); (R.K.V.)
| | - Yidong Chen
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.C.); (Z.L.)
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.C.); (Z.L.)
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | | | - Edward R. Kost
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (L.R.); (A.L.R.S.); (U.P.P.); (R.G.); (E.R.K.); (R.K.V.)
| | | | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (L.R.); (A.L.R.S.); (U.P.P.); (R.G.); (E.R.K.); (R.K.V.)
- Mays Cancer Canter, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Panneerdoss Subbarayalu
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.C.); (Z.L.)
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (L.R.); (A.L.R.S.); (U.P.P.); (R.G.); (E.R.K.); (R.K.V.)
- Mays Cancer Canter, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
2
|
Rapacciuolo P, Finamore C, Giorgio CD, Fiorillo B, Massa C, Urbani G, Marchianò S, Bordoni M, Cassiano C, Morretta E, Spinelli L, Lupia A, Moraca F, Biagioli M, Sepe V, Monti MC, Catalanotti B, Fiorucci S, Zampella A. Design, Synthesis, and Pharmacological Evaluation of Dual FXR-LIFR Modulators for the Treatment of Liver Fibrosis. J Med Chem 2024; 67:18334-18355. [PMID: 39382988 DOI: 10.1021/acs.jmedchem.4c01651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Although multiple approaches have been suggested, treating mild-to-severe fibrosis in the context of metabolic dysfunction associated with liver disease (MASLD) remains a challenging area in drug discovery. Pathogenesis of liver fibrosis is multifactorial, and pathogenic mechanisms are deeply intertwined; thus, it is well accepted that future treatment requires the development of multitarget modulators. Harnessing the 3,4,5-trisubstituted isoxazole scaffold, previously described as a key moiety in Farnesoid X receptor (FXR) agonism, herein we report the discovery of a novel class of hybrid molecules endowed with dual activity toward FXR and the leukemia inhibitory factor receptor (LIFR). Up to 27 new derivatives were designed and synthesized. The pharmacological characterization of this series resulted in the identification of 3a as a potent FXR agonist and LIFR antagonist with excellent ADME properties. In vitro and in vivo characterization identified compound 3a as the first-in-class hybrid LIFR inhibitor and FXR agonist that protects against the development of acute liver fibrosis and inflammation.
Collapse
Affiliation(s)
- Pasquale Rapacciuolo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Claudia Finamore
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Cristina Di Giorgio
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Bianca Fiorillo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Carmen Massa
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Ginevra Urbani
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Martina Bordoni
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Chiara Cassiano
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Elva Morretta
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Lucio Spinelli
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Antonio Lupia
- Department of Life and Environmental Sciences, University of Cagliari, Via Università, 40, Cagliari 09124, Italy
| | - Federica Moraca
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Maria Chiara Monti
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Bruno Catalanotti
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi, 1, Perugia 06132, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| |
Collapse
|
3
|
Fiorucci S, Marchianò S, Urbani G, Di Giorgio C, Distrutti E, Zampella A, Biagioli M. Immunology of bile acids regulated receptors. Prog Lipid Res 2024; 95:101291. [PMID: 39122016 DOI: 10.1016/j.plipres.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Bile acids are steroids formed at the interface of host metabolism and intestinal microbiota. While primary bile acids are generated in the liver from cholesterol metabolism, secondary bile acids represent the products of microbial enzymes. Close to 100 different enzymatic modifications of bile acids structures occur in the human intestine and clinically guided metagenomic and metabolomic analyses have led to the identification of an extraordinary number of novel metabolites. These chemical mediators make an essential contribution to the composition and function of the postbiota, participating to the bidirectional communications of the intestinal microbiota with the host and contributing to the architecture of intestinal-liver and -brain and -endocrine axes. Bile acids exert their function by binding to a group of cell membrane and nuclear receptors collectively known as bile acid-regulated receptors (BARRs), expressed in monocytes, tissue-resident macrophages, CD4+ T effector cells, including Th17, T regulatory cells, dendritic cells and type 3 of intestinal lymphoid cells and NKT cells, highlighting their role in immune regulation. In this review we report on how bile acids and their metabolitesmodulate the immune system in inflammations and cancers and could be exploiting for developing novel therapeutic approaches in these disorders.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Silvia Marchianò
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | | | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
4
|
Ebrahimi B, Viswanadhapalli S, Pratap UP, Rahul G, Yang X, Pitta Venkata P, Drel V, Santhamma B, Konda S, Li X, Sanchez ALR, Yan H, Sareddy GR, Xu Z, Singh BB, Valente PT, Chen Y, Lai Z, Rao M, Kost ER, Curiel T, Tekmal RR, Nair HB, Vadlamudi RK. Pharmacological inhibition of the LIF/LIFR autocrine loop reveals vulnerability of ovarian cancer cells to ferroptosis. NPJ Precis Oncol 2024; 8:118. [PMID: 38789520 PMCID: PMC11126619 DOI: 10.1038/s41698-024-00612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Of all gynecologic cancers, epithelial-ovarian cancer (OCa) stands out with the highest mortality rates. Despite all efforts, 90% of individuals who receive standard surgical and cytotoxic therapy experience disease recurrence. The precise mechanism by which leukemia inhibitory factor (LIF) and its receptor (LIFR) contribute to the progression of OCa remains unknown. Analysis of cancer databases revealed that elevated expression of LIF or LIFR was associated with poor progression-free survival of OCa patients and a predictor of poor response to chemotherapy. Using multiple primary and established OCa cell lines or tissues that represent five subtypes of epithelial-OCa, we demonstrated that LIF/LIFR autocrine signaling is active in OCa. Moreover, treatment with LIFR inhibitor, EC359 significantly reduced OCa cell viability and cell survival with an IC50 ranging from 5-50 nM. Furthermore, EC359 diminished the stemness of OCa cells. Mechanistic studies using RNA-seq and rescue experiments unveiled that EC359 primarily induced ferroptosis by suppressing the glutathione antioxidant defense system. Using multiple in vitro, ex vivo and in vivo models including cell-based xenografts, patient-derived explants, organoids, and xenograft tumors, we demonstrated that EC359 dramatically reduced the growth and progression of OCa. Additionally, EC359 therapy considerably improved tumor immunogenicity by robust CD45+ leukocyte tumor infiltration and polarizing tumor-associated macrophages (TAMs) toward M1 phenotype while showing no impact on normal T-, B-, and other immune cells. Collectively, our findings indicate that the LIF/LIFR autocrine loop plays an essential role in OCa progression and that EC359 could be a promising therapeutic agent for OCa.
Collapse
Affiliation(s)
- Behnam Ebrahimi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Gopalam Rahul
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Xue Yang
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Prabhakar Pitta Venkata
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Viktor Drel
- Department of Periodontics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | | | | | - Xiaonan Li
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | | | - Hui Yan
- Department of microbiology and immunology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Zhenming Xu
- Department of microbiology and immunology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Brij B Singh
- Department of Periodontics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Philip T Valente
- Department of Pathology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Yidong Chen
- Department of Population Sciences, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Manjeet Rao
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Edward R Kost
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Tyler Curiel
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth, NH, 03755, USA
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | | | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
5
|
Di Giorgio C, Morretta E, Lupia A, Bellini R, Massa C, Urbani G, Bordoni M, Marchianò S, Lachi G, Rapacciuolo P, Finamore C, Sepe V, Chiara Monti M, Moraca F, Natalizi N, Graziosi L, Distrutti E, Biagioli M, Catalanotti B, Donini A, Zampella A, Fiorucci S. Bile acids serve as endogenous antagonists of the Leukemia inhibitory factor (LIF) receptor in oncogenesis. Biochem Pharmacol 2024; 223:116134. [PMID: 38494064 DOI: 10.1016/j.bcp.2024.116134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The leukemia inhibitory factor (LIF) is member of interleukin (IL)-6 family of cytokines involved immune regulation, morphogenesis and oncogenesis. In cancer tissues, LIF binds a heterodimeric receptor (LIFR), formed by a LIFRβ subunit and glycoprotein(gp)130, promoting epithelial mesenchymal transition and cell growth. Bile acids are cholesterol metabolites generated at the interface of host metabolism and the intestinal microbiota. Here we demonstrated that bile acids serve as endogenous antagonist to LIFR in oncogenesis. The tissue characterization of bile acids content in non-cancer and cancer biopsy pairs from gastric adenocarcinomas (GC) demonstrated that bile acids accumulate within cancer tissues, with glyco-deoxycholic acid (GDCA) functioning as negative regulator of LIFR expression. In patient-derived organoids (hPDOs) from GC patients, GDCA reverses LIF-induced stemness and proliferation. In summary, we have identified the secondary bile acids as the first endogenous antagonist to LIFR supporting a development of bile acid-based therapies in LIF-mediated oncogenesis.
Collapse
Affiliation(s)
| | - Elva Morretta
- University of Salerno, Department of Pharmacy, Salerno, Italy
| | - Antonio Lupia
- University of Cagliari, Department of Life and Environmental Sciences, Cagliari, Italy; Net4Science srl, University "Magna Græcia", Campus Salvatore Venuta, Viale Europa, Catanzaro 88100, Italy
| | - Rachele Bellini
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy
| | - Carmen Massa
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy
| | - Ginevra Urbani
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy
| | - Martina Bordoni
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy
| | - Silvia Marchianò
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy
| | - Ginevra Lachi
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy
| | | | - Claudia Finamore
- University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | - Valentina Sepe
- University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | | | - Federica Moraca
- Net4Science srl, University "Magna Græcia", Campus Salvatore Venuta, Viale Europa, Catanzaro 88100, Italy; University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | | | | | | | - Michele Biagioli
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy
| | - Bruno Catalanotti
- University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | - Annibale Donini
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy
| | - Angela Zampella
- University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | - Stefano Fiorucci
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy.
| |
Collapse
|
6
|
Di Giorgio C, Bellini R, Lupia A, Massa C, Urbani G, Bordoni M, Marchianò S, Rosselli R, De Gregorio R, Rapacciuolo P, Sepe V, Morretta E, Monti MC, Moraca F, Cari L, Ullah KRS, Natalizi N, Graziosi L, Distrutti E, Biagioli M, Catalanotti B, Donini A, Zampella A, Fiorucci S. The leukemia inhibitory factor regulates fibroblast growth factor receptor 4 transcription in gastric cancer. Cell Oncol (Dordr) 2024; 47:695-710. [PMID: 37945798 PMCID: PMC11090936 DOI: 10.1007/s13402-023-00893-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2023] [Indexed: 11/12/2023] Open
Abstract
PURPOSE The gastric adenocarcinoma (GC) represents the third cause of cancer-related mortality worldwide, and available therapeutic options remain sub-optimal. The Fibroblast growth factor receptors (FGFRs) are oncogenic transmembrane tyrosine kinase receptors. FGFR inhibitors have been approved for the treatment of various cancers and a STAT3-dependent regulation of FGFR4 has been documented in the H.pylori infected intestinal GC. Therefore, the modulation of FGFR4 might be useful for the treatment of GC. METHODS To investigate wich factors could modulate FGFR4 signalling in GC, we employed RNA-seq analysis on GC patients biopsies, human patients derived organoids (PDOs) and cancer cell lines. RESULTS We report that FGFR4 expression/function is regulated by the leukemia inhibitory factor (LIF) an IL-6 related oncogenic cytokine, in JAK1/STAT3 dependent manner. The transcriptomic analysis revealed a direct correlation between the expression of LIFR and FGFR4 in the tissue of an exploratory cohort of 31 GC and confirmed these findings by two external validation cohorts of GC. A LIFR inhibitor (LIR-201) abrogates STAT3 phosphorylation induced by LIF as well as recruitment of pSTAT3 to the promoter of FGFR4. Furthermore, inhibition of FGFR4 by roblitinib or siRNA abrogates STAT3 phosphorylation and oncogentic effects of LIF in GC cells, indicating that FGFR4 is a downstream target of LIF/LIFR complex. Treating cells with LIR-201 abrogates oncogenic potential of FGF19, the physiological ligand of FGFR4. CONCLUSIONS Together these data unreveal a previously unregnized regulatory mechanism of FGFR4 by LIF/LIFR and demonstrate that LIF and FGF19 converge on the regulation of oncogenic STAT3 in GC cells.
Collapse
Affiliation(s)
| | - Rachele Bellini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Antonio Lupia
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
- Net4Science Srl, University "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Carmen Massa
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ginevra Urbani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Martina Bordoni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Rosa De Gregorio
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Valentina Sepe
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Elva Morretta
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | | | - Federica Moraca
- Net4Science Srl, University "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Luigi Cari
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | | | | | | | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Bruno Catalanotti
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Annibale Donini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
- Department Surgical and Biomedical Sciences, University of Perugia Medical School, Perugia, Italy.
| |
Collapse
|
7
|
Spencer N, Rodriguez Sanchez AL, Gopalam R, Subbarayalu P, Medina DM, Yang X, Ramirez P, Randolph L, Aller EJ, Santhamma B, Rao MK, Tekmal RR, Nair HB, Kost ER, Vadlamudi RK, Viswanadhapalli S. The LIFR Inhibitor EC359 Effectively Targets Type II Endometrial Cancer by Blocking LIF/LIFR Oncogenic Signaling. Int J Mol Sci 2023; 24:17426. [PMID: 38139260 PMCID: PMC10744027 DOI: 10.3390/ijms242417426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Endometrial cancer (ECa) is the most common female gynecologic cancer. When comparing the two histological subtypes of endometrial cancer, Type II tumors are biologically more aggressive and have a worse prognosis than Type I tumors. Current treatments for Type II tumors are ineffective, and new targeted therapies are urgently needed. LIFR and its ligand, LIF, have been shown to play a critical role in the progression of multiple solid cancers and therapy resistance. The role of LIF/LIFR in the progression of Type II ECa, on the other hand, is unknown. We investigated the role of LIF/LIFR signaling in Type II ECa and tested the efficacy of EC359, a novel small-molecule LIFR inhibitor, against Type II ECa. The analysis of tumor databases has uncovered a correlation between diminished survival rates and increased expression of leukemia inhibitory factor (LIF), suggesting a potential connection between altered LIF expression and unfavorable overall survival in Type II ECa. The results obtained from cell viability and colony formation assays demonstrated a significant decrease in the growth of Type II ECa LIFR knockdown cells in comparison to vector control cells. Furthermore, in both primary and established Type II ECa cells, pharmacological inhibition of the LIF/LIFR axis with EC359 markedly decreased cell viability, long-term cell survival, and invasion, and promoted apoptosis. Additionally, EC359 treatment reduced the activation of pathways driven by LIF/LIFR, such as AKT, mTOR, and STAT3. Tumor progression was markedly inhibited by EC359 treatment in two different patient-derived xenograft models in vivo and patient-derived organoids ex vivo. Collectively, these results suggest LIFR inhibitor EC359 as a possible new small-molecule therapeutics for the management of Type II ECa.
Collapse
Affiliation(s)
- Nicole Spencer
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
| | - Alondra Lee Rodriguez Sanchez
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
| | - Rahul Gopalam
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
| | - Panneerdoss Subbarayalu
- Department of Cell Systems & Anatomy, Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (P.S.); (D.M.M.); (M.K.R.)
| | - Daisy M. Medina
- Department of Cell Systems & Anatomy, Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (P.S.); (D.M.M.); (M.K.R.)
| | - Xue Yang
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
| | - Paulina Ramirez
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
| | - Lois Randolph
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
| | - Emily Jean Aller
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
| | | | - Manjeet K. Rao
- Department of Cell Systems & Anatomy, Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (P.S.); (D.M.M.); (M.K.R.)
| | - Rajeshwar Rao Tekmal
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
| | | | - Edward R. Kost
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
| | - Ratna K. Vadlamudi
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Suryavathi Viswanadhapalli
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (N.S.); (A.L.R.S.); (R.G.); (X.Y.); (P.R.); (L.R.); (E.J.A.); (R.R.T.); (E.R.K.); (R.K.V.)
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
8
|
Di Giorgio C, Bellini R, Lupia A, Massa C, Bordoni M, Marchianò S, Rosselli R, Sepe V, Rapacciuolo P, Moraca F, Morretta E, Ricci P, Urbani G, Monti MC, Biagioli M, Distrutti E, Catalanotti B, Zampella A, Fiorucci S. Discovery of BAR502, as potent steroidal antagonist of leukemia inhibitory factor receptor for the treatment of pancreatic adenocarcinoma. Front Oncol 2023; 13:1140730. [PMID: 36998446 PMCID: PMC10043345 DOI: 10.3389/fonc.2023.1140730] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/20/2023] [Indexed: 03/15/2023] Open
Abstract
IntroductionThe leukemia inhibitory factor (LIF), is a cytokine belonging to IL-6 family, whose overexpression correlate with poor prognosis in cancer patients, including pancreatic ductal adenocarcinoma (PDAC). LIF signaling is mediate by its binding to the heterodimeric LIF receptor (LIFR) complex formed by the LIFR receptor and Gp130, leading to JAK1/STAT3 activation. Bile acids are steroid that modulates the expression/activity of membrane and nuclear receptors, including the Farnesoid-X-Receptor (FXR) and G Protein Bile Acid Activated Receptor (GPBAR1).MethodsHerein we have investigated whether ligands to FXR and GPBAR1 modulate LIF/LIFR pathway in PDAC cells and whether these receptors are expressed in human neoplastic tissues. ResultsThe transcriptome analysis of a cohort of PDCA patients revealed that expression of LIF and LIFR is increased in the neoplastic tissue in comparison to paired non-neoplastic tissues. By in vitro assay we found that both primary and secondary bile acids exert a weak antagonistic effect on LIF/LIFR signaling. In contrast, BAR502 a non-bile acid steroidal dual FXR and GPBAR1 ligand, potently inhibits binding of LIF to LIFR with an IC50 of 3.8 µM.DiscussionBAR502 reverses the pattern LIF-induced in a FXR and GPBAR1 independent manner, suggesting a potential role for BAR502 in the treatment of LIFR overexpressing-PDAC.
Collapse
Affiliation(s)
| | - Rachele Bellini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Antonio Lupia
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- Net4Science srl, University “Magna Græcia”, Catanzaro, Italy
| | - Carmen Massa
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Martina Bordoni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Valentina Sepe
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Federica Moraca
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- Net4Science srl, University “Magna Græcia”, Catanzaro, Italy
| | - Elva Morretta
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Patrizia Ricci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ginevra Urbani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Eleonora Distrutti
- Department of Gastroenterology, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Bruno Catalanotti
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- *Correspondence: Stefano Fiorucci,
| |
Collapse
|
9
|
Mandys V, Popov A, Gürlich R, Havránek J, Pfeiferová L, Kolář M, Vránová J, Smetana K, Lacina L, Szabo P. Expression of Selected miRNAs in Normal and Cancer-Associated Fibroblasts and in BxPc3 and MIA PaCa-2 Cell Lines of Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24043617. [PMID: 36835029 PMCID: PMC9961675 DOI: 10.3390/ijms24043617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Therapy for pancreatic ductal adenocarcinoma remains challenging, and the chances of a complete cure are very limited. As in other types of cancer, the expression and role of miRNAs in controlling the biological properties of this type of tumor have been extensively studied. A better insight into miRNA biology seems critical to refining diagnostics and improving their therapeutic potential. In this study, we focused on the expression of miR-21, -96, -196a, -210, and -217 in normal fibroblasts, cancer-associated fibroblasts prepared from a ductal adenocarcinoma of the pancreas, and pancreatic carcinoma cell lines. We compared these data with miRNAs in homogenates of paraffin-embedded sections from normal pancreatic tissues. In cancer-associated fibroblasts and cancer cell lines, miRNAs differed significantly from the normal tissue. In detail, miR-21 and -210 were significantly upregulated, while miR-217 was downregulated. Similar transcription profiles were earlier reported in cancer-associated fibroblasts exposed to hypoxia. However, the cells in our study were cultured under normoxic conditions. We also noted a relation to IL-6 production. In conclusion, cultured cancer-associated fibroblasts and carcinoma cells reflect miR-21 and -210 expression similarly to the cancer tissue samples harvested from the patients.
Collapse
Affiliation(s)
- Václav Mandys
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 00 Prague, Czech Republic
| | - Alexey Popov
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 00 Prague, Czech Republic
| | - Robert Gürlich
- Department of Surgery, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 00 Prague, Czech Republic
| | - Jan Havránek
- Institute of Molecular Genetics, Czech Academy of Sciences, 100 00 Prague, Czech Republic
- Laboratory of Informatics and Chemistry, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Lucie Pfeiferová
- Institute of Molecular Genetics, Czech Academy of Sciences, 100 00 Prague, Czech Republic
- Laboratory of Informatics and Chemistry, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Michal Kolář
- Institute of Molecular Genetics, Czech Academy of Sciences, 100 00 Prague, Czech Republic
- Laboratory of Informatics and Chemistry, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Jana Vránová
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Karel Smetana
- First Faculty of Medicine, BIOCEV, Charles University, 252 50 Vestec, Czech Republic
- First Faculty of Medicine, Institute of Anatomy, Charles University, 128 00 Prague, Czech Republic
| | - Lukáš Lacina
- First Faculty of Medicine, BIOCEV, Charles University, 252 50 Vestec, Czech Republic
- First Faculty of Medicine, Institute of Anatomy, Charles University, 128 00 Prague, Czech Republic
- Department Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 128 08 Prague, Czech Republic
| | - Pavol Szabo
- First Faculty of Medicine, BIOCEV, Charles University, 252 50 Vestec, Czech Republic
- First Faculty of Medicine, Institute of Anatomy, Charles University, 128 00 Prague, Czech Republic
- Correspondence:
| |
Collapse
|