1
|
Stiller HL, Perumal N, Manicam C, Trzeciak ER, Todt J, Jurk K, Tuettenberg A, Schumann S, Schiegnitz E, Blatt S. First- vs. Second-Generation Autologous Platelet Concentrates and Their Implications for Wound Healing: Differences in Proteome and Secretome. Bioengineering (Basel) 2024; 11:1171. [PMID: 39593831 PMCID: PMC11591784 DOI: 10.3390/bioengineering11111171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/03/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Differences in cell count and growth factor expression between first- and second-generation autologous platelet concentrates (APCs) have been well described. The debate over which formula best supports wound healing in various surgical procedures is still ongoing. This study aims to assess the whole proteome assembly, cell content, immunological potential and pro-angiogenic potential of second-generation APC, Platelet-Rich Fibrin (PRF) vs. first-generation APC, Platelet-Rich Plasma (PRP). The global proteome of the APCs was analyzed using nano-liquid chromatography mass spectrometry. Blood cell concentrations were determined by an automated cell counter. The effect of APCs on macrophage polarization was analyzed by flow cytometry. A yolk sac membrane (YSM) assay was used to monitor the neo-vessel formation and capillary branching in vivo. Cell count analysis revealed a higher number/concentration of leukocytes in PRF vs. PRP. Incubation of macrophages with PRP or platelet-free plasma (PFP) did not induce a significant pro-inflammatory state but led to a shift to the M0/M2 phenotype as seen in wound healing for all tested formulas. Label-free proteomics analysis identified a total of 387 proteins from three biological replicates of the respective designated groups. PRF induced increased formation of neo-vessels and branching points in vivo in comparison to PRP and PFP (each p < 0.001), indicating the enhanced pro-angiogenic potential of PRF. Overall, PRF seems superior to PRP, an important representative of first-generation formulas. Inclusion of leucocytes in PRF compared to PRP suggested rather an anti-inflammatory effect on macrophages. These results are important to support the versatile clinical applications in regenerative medicine for second-generation autologous platelet concentrates to optimize wound healing.
Collapse
Affiliation(s)
- Hanna L. Stiller
- Department of Oral and Maxillofacial Surgery, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (H.L.S.); (J.T.); (E.S.)
| | - Natarajan Perumal
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany (C.M.)
| | - Caroline Manicam
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany (C.M.)
| | - Emily R. Trzeciak
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (E.R.T.); (A.T.)
| | - Julia Todt
- Department of Oral and Maxillofacial Surgery, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (H.L.S.); (J.T.); (E.S.)
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
| | - Andrea Tuettenberg
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (E.R.T.); (A.T.)
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Sven Schumann
- Institute of Anatomy, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany;
| | - Eik Schiegnitz
- Department of Oral and Maxillofacial Surgery, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (H.L.S.); (J.T.); (E.S.)
| | - Sebastian Blatt
- Department of Oral and Maxillofacial Surgery, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (H.L.S.); (J.T.); (E.S.)
- Platform for Biomaterial Research, BiomaTiCS Group, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| |
Collapse
|
2
|
Matías-Pérez D, Varapizuela-Sánchez CF, Pérez-Campos EL, González-González S, Sánchez-Medina MA, García-Montalvo IA. Dietary sources of antioxidants and oxidative stress in age-related macular degeneration. Front Pharmacol 2024; 15:1442548. [PMID: 39380913 PMCID: PMC11458392 DOI: 10.3389/fphar.2024.1442548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Affiliation(s)
- Diana Matías-Pérez
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca, Oaxaca, Mexico
| | | | - Eduardo Lorenzo Pérez-Campos
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca, Oaxaca, Mexico
| | | | - Marco Antonio Sánchez-Medina
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca, Oaxaca, Mexico
| | - Iván Antonio García-Montalvo
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca, Oaxaca, Mexico
| |
Collapse
|
3
|
Patel MY, Yang R, Chakraborty N, Miller SA, DeMar JC, Batuure A, Wilder D, Long J, Hammamieh R, Gautam A. Impact of dietary changes on retinal neuronal plasticity in rodent models of physical and psychological trauma. Front Genet 2024; 15:1373447. [PMID: 39346777 PMCID: PMC11427283 DOI: 10.3389/fgene.2024.1373447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction Blast injury has been implicated as the major cause of traumatic brain injury (TBI) and ocular system injury, in military operations in Iraq and Afghanistan. Soldiers exposed to traumatic stress also have undiagnosed, chronic vision problems. Here we hypothesize that excessive intake of ω-6 fatty acid linoleic acid (LA) and insufficiency of dietary long chain ω-3 polyunsaturated fatty acids (PUFAs, e.g., docosahexaenoic acid; DHA) would dysregulate endocannabinoid-mediated neuronal plasticity and immune response. The study objective was to determine the effect of blast-TBI and traumatic stress on retinal gene expression and assess the role of dietary deficiency of long chain ω-3 PUFAs on the vulnerability to these injury models. Methods Linoleic acid was used as an independent variable to reflect the dietary increase in LA from 1 percent of energy (en%) to 8 en% present in the current western diets, and these custom LA diets were also devoid of long chain ω-3 PUFAs. Animals were exposed to a simulated blast overpressure wave followed by a weight drop head-concussion to induce TBI. A Separate group of rats were subjected to traumatic stress by a forced immersion underwater. Results Our findings showed that blast-TBI exposure, post 14 days, produced significant neuropathological changes such as axonal degeneration in the brain optic tracts from all the three diet groups, especially in rats fed the DHA-deprived 1 en% LA diet. Transcriptomic analysis showed that presence of DHA in the house chow diet prevented blast-induced disruption of neuronal plasticity by activating molecular networks like SNARE signaling, endocannabinoid pathway, and synaptic long-term depression when compared to DHA-deprived 8 en% LA diet group. Under traumatic stress, retinal synaptic function, neurovascular coupling, and opioid signaling mechanisms were dysregulated in rodents fed DHA-deficient diets (i.e., 8 en% LA and 1 en% LA), where reducing the levels of ω-6 linoleic acid from 8 en% to 1 en% was associated with increased neuronal plasticity and suppressed immune signaling. Conclusion The findings of our study suggest that deprivation of long chain ω-3 PUFAs in the diet affects endocannabinoid-mediated neuronal plasticity, vascular function and inflammatory response that could influence the resistance of veterans to TBI and psychological trauma.
Collapse
Affiliation(s)
- Mital Y Patel
- TechWerks, Arlington, United States
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Ruoting Yang
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Nabarun Chakraborty
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Stacy-Ann Miller
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - James C DeMar
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Andrew Batuure
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Donna Wilder
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Joseph Long
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Rasha Hammamieh
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Aarti Gautam
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
4
|
Fomo KN, Perumal N, Manicam C, Pfeiffer N, Grus FH. Neuroretinal Cell Culture Model as a Tool for the Development of New Therapeutic Approaches for Oxidative Stress-Induced Ocular Diseases, with a Focus on Glaucoma. Cells 2024; 13:775. [PMID: 38727311 PMCID: PMC11083839 DOI: 10.3390/cells13090775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Glaucoma is a heterogeneous group of optic neuropathies characterized by a progressive degeneration of the retinal ganglion cells (RGCs), leading to irreversible vision loss. Nowadays, the traditional therapeutic approach to glaucoma consists of lowering the intraocular pressure (IOP), which does not address the neurodegenerative features of the disease. Besides animal models of glaucoma, there is a considerable need for in vitro experimental models to propose new therapeutic strategies for this ocular disease. In this study, we elucidated the pathological mechanisms leading to neuroretinal R28 cell death after exposure to glutamate and hydrogen peroxide (H2O2) in order to develop new therapeutic approaches for oxidative stress-induced retinal diseases, including glaucoma. We were able to show that glutamate and H2O2 can induce a decrease in R28 cell viability in a concentration-dependent manner. A cell viability of about 42% was found after exposure to 3 mM of glutamate and about 56% after exposure to 100 µM of H2O2 (n = 4). Label-free quantitative mass spectrometry analysis revealed differential alterations of 193 and 311 proteins in R28 cells exposed to 3 mM of glutamate and 100 µM of H2O2, respectively (FDR < 1%; p < 0.05). Bioinformatics analysis indicated that the protein changes were associated with the dysregulation of signaling pathways, which was similar to those observed in glaucoma. Thus, the proteomic alteration induced by glutamate was associated with the inhibition of the PI3K/AKT signaling pathway. On the other hand, H2O2-induced toxicity in R28 cells was linked to the activation of apoptosis signaling and the inhibition of the mTOR and ERK/MAPK signaling pathways. Furthermore, the data show a similarity in the inhibition of the EIF2 and AMPK signaling pathways and the activation of the sumoylation and WNT/β-catenin signaling pathways in both groups. Our findings suggest that the exposure of R28 cells to glutamate and H2O2 could induce glaucoma-like neurodegenerative features and potentially provide a suitable tool for the development of new therapeutic strategies for retinal diseases.
Collapse
Affiliation(s)
| | | | | | | | - Franz H. Grus
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.N.F.); (N.P.); (C.M.); (N.P.)
| |
Collapse
|
5
|
Grandjean T, Perumal N, Manicam C, Matthey B, Wu T, Thiem DGE, Stein S, Henrich D, Kämmerer PW, Al-Nawas B, Ritz U, Blatt S. Towards optimized tissue regeneration: a new 3D printable bioink of alginate/cellulose hydrogel loaded with thrombocyte concentrate. Front Bioeng Biotechnol 2024; 12:1363380. [PMID: 38595995 PMCID: PMC11002213 DOI: 10.3389/fbioe.2024.1363380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/06/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Autologous platelet concentrate (APC) are pro-angiogenic and can promote wound healing and tissue repair, also in combination with other biomaterials. However, challenging defect situations remain demanding. 3D bioprinting of an APC based bioink encapsulated in a hydrogel could overcome this limitation with enhanced physio-mechanical interface, growth factor retention/secretion and defect-personalized shape to ultimately enhance regeneration. Methods This study used extrusion-based bioprinting to create a novel bioink of alginate/cellulose hydrogel loaded with thrombocyte concentrate. Chemico-physical testing exhibited an amorphous structure characterized by high shape fidelity. Cytotoxicity assay and incubation of human osteogenic sarcoma cells (SaOs2) exposed excellent biocompatibility. enzyme-linked immunosorbent assay analysis confirmed pro-angiogenic growth factor release of the printed constructs, and co-incubation with HUVECS displayed proper cell viability and proliferation. Chorioallantoic membrane (CAM) assay explored the pro-angiogenic potential of the prints in vivo. Detailed proteome and secretome analysis revealed a substantial amount and homologous presence of pro-angiogenic proteins in the 3D construct. Results This study demonstrated a 3D bioprinting approach to fabricate a novel bioink of alginate/cellulose hydrogel loaded with thrombocyte concentrate with high shape fidelity, biocompatibility, and substantial pro-angiogenic properties. Conclusion This approach may be suitable for challenging physiological and anatomical defect situations when translated into clinical use.
Collapse
Affiliation(s)
- Till Grandjean
- Department of Orthopedics and Traumatology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Natarajan Perumal
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Caroline Manicam
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Björn Matthey
- Fraunhofer Institute for Ceramic Technologies and Systems (Fraunhofer IKTS), Dresden, Germany
| | - Tao Wu
- Fraunhofer Institute for Ceramic Technologies and Systems (Fraunhofer IKTS), Dresden, Germany
| | - Daniel G. E. Thiem
- Department of Oral and Maxillofacial Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Stein
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Dirk Henrich
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Peer W. Kämmerer
- Department of Oral and Maxillofacial Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Bilal Al-Nawas
- Department of Oral and Maxillofacial Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ulrike Ritz
- Department of Orthopedics and Traumatology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Platform for Biomaterial Research, BiomaTiCS Group, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sebastian Blatt
- Department of Oral and Maxillofacial Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Platform for Biomaterial Research, BiomaTiCS Group, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
6
|
Perumal N, Yurugi H, Dahm K, Rajalingam K, Grus FH, Pfeiffer N, Manicam C. Proteome landscape and interactome of voltage-gated potassium channel 1.6 (Kv1.6) of the murine ophthalmic artery and neuroretina. Int J Biol Macromol 2024; 257:128464. [PMID: 38043654 DOI: 10.1016/j.ijbiomac.2023.128464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/14/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
The voltage-gated potassium channel 1.6 (Kv1.6) plays a vital role in ocular neurovascular beds and exerts its modulatory functions via interaction with other proteins. However, the interactome and their potential roles remain unknown. Here, the global proteome landscape of the ophthalmic artery (OA) and neuroretina was mapped, followed by the determination of Kv1.6 interactome and validation of its functionality and cellular localization. Microfluorimetric analysis of intracellular [K+] and Western blot validated the native functionality and cellular expression of the recombinant Kv1.6 channel protein. A total of 54, 9 and 28 Kv1.6-interacting proteins were identified in the mouse OA and, retina of mouse and rat, respectively. The Kv1.6-protein partners in the OA, namely actin cytoplasmic 2, alpha-2-macroglobulin and apolipoprotein A-I, were implicated in the maintenance of blood vessel integrity by regulating integrin-mediated adhesion to extracellular matrix and Ca2+ flux. Many retinal protein interactors, particularly the ADP/ATP translocase 2 and cytoskeleton protein tubulin, were involved in endoplasmic reticulum stress response and cell viability. Three common interactors were found in all samples comprising heat shock cognate 71 kDa protein, Ig heavy constant gamma 1 and Kv1.6 channel. This foremost in-depth investigation enriched and identified the elusive Kv1.6 channel and, elucidated its complex interactome.
Collapse
Affiliation(s)
- Natarajan Perumal
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hajime Yurugi
- Cell Biology Unit, University Medical Centre of the Johannes Gutenberg University Mainz, Germany
| | - Katrin Dahm
- Cell Biology Unit, University Medical Centre of the Johannes Gutenberg University Mainz, Germany
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Centre of the Johannes Gutenberg University Mainz, Germany
| | - Franz H Grus
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Caroline Manicam
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
7
|
Schicht M, Farger J, Wedel S, Sisignano M, Scholich K, Geisslinger G, Perumal N, Grus FH, Singh S, Sahin A, Paulsen F, Lütjen-Drecoll E. Ocular surface changes in mice with streptozotocin-induced diabetes and diabetic polyneuropathy. Ocul Surf 2024; 31:43-55. [PMID: 38141818 DOI: 10.1016/j.jtos.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
PURPOSE Diabetes mellitus (DM) is a leading risk factor for corneal neuropathy and dry eye disease (DED). Another common consequence of DM is diabetic peripheral polyneuropathy (DPN). Both complications affect around 50 % of the DM patients but the relationship between DM, DED and DPN remains unclear. METHODS In this study, we examined mice with early onset of DM and PN after streptozotocin (STZ)-induced diabetes (DPN). We compared the early morphological changes of the sciatic nerve, dorsal root and trigeminal ganglia with the changes in the ocular surface, including tear proteomic and we also investigated respective changes in the gene expressions and morphological alterations in the eye tissues involved in tear production. RESULTS The lacrimal gland, conjunctival goblet cells and cornea showed morphological changes along with alterations in tear proteins without any obvious signs of ocular surface inflammation. The gene expression for respectively altered tear proteins i.e., of Clusterin in cornea, Car6, Adh3a1, and Eef1a1 in eyelids, and Pigr in the lacrimal gland also showed significant changes compared to control mice. In the trigeminal ganglia like in the dorsal root ganglia neuronal cells showed swollen mitochondria and, in the latter, there was a significant increase of NADPH oxidases and MMP9 suggestive of oxidative and neuronal stress. In the dorsal root ganglia and the sciatic nerve, there was an upregulation of a number of pro-inflammatory cytokines and pain-mediating chemokines. CONCLUSION The early ocular changes in DM Mice only affect the lacrimal gland. Which, is reflected in the tear film composition of DPN mice. Due to the high protein concentration in tear fluid in humans, proteomic analysis in addition to noninvasive investigation of goblet cells and cornea can serve as a tools for the early diagnosis of DPN, DED in clinical practice. Early treatment could delay or even prevent the ocular complications of DM such as DED and PN.
Collapse
Affiliation(s)
- Martin Schicht
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | - Jessica Farger
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Saskia Wedel
- Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Department of Experimental and Translational Ophthalmology, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Department of Experimental and Translational Ophthalmology, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Department of Experimental and Translational Ophthalmology, Germany
| | - Natarajan Perumal
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Franz H Grus
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Swati Singh
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Afsun Sahin
- Department of Ophthalmology, Koc University Medical School, Istanbul, Turkey
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Elke Lütjen-Drecoll
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
8
|
Pham TNM, Perumal N, Manicam C, Basoglu M, Eimer S, Fuhrmann DC, Pietrzik CU, Clement AM, Körschgen H, Schepers J, Behl C. Adaptive responses of neuronal cells to chronic endoplasmic reticulum (ER) stress. Redox Biol 2023; 67:102943. [PMID: 37883843 PMCID: PMC10618786 DOI: 10.1016/j.redox.2023.102943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
Accumulation of misfolded proteins or perturbation of calcium homeostasis leads to endoplasmic reticulum (ER) stress and is linked to the pathogenesis of neurodegenerative diseases. Hence, understanding the ability of neuronal cells to cope with chronic ER stress is of fundamental interest. Interestingly, several brain areas uphold functions that enable them to resist challenges associated with neurodegeneration. Here, we established novel clonal mouse hippocampal (HT22) cell lines that are resistant to prolonged (chronic) ER stress induced by thapsigargin (TgR) or tunicamycin (TmR) as in vitro models to study the adaption to ER stress. Morphologically, we observed a significant increase in vesicular und autophagosomal structures in both resistant lines and 'giant lysosomes', especially striking in TgR cells. While autophagic activity increased under ER stress, lysosomal function appeared slightly impaired; in both cell lines, we observed enhanced ER-phagy. However, proteomic analyses revealed that various protein clusters and signaling pathways were differentially regulated in TgR versus TmR cells in response to chronic ER stress. Additionally, bioenergetic analyses in both resistant cell lines showed a shift toward aerobic glycolysis ('Warburg effect') and a defective complex I of the oxidative phosphorylation (OXPHOS) machinery. Furthermore, ER stress-resistant cells differentially activated the unfolded protein response (UPR) comprising IRE1α and ATF6 pathways. These findings display the wide portfolio of adaptive responses of neuronal cells to chronic ER stress. ER stress-resistant neuronal cells could be the basis to uncover molecular modulators of adaptation, resistance, and neuroprotection as potential pharmacological targets for preventing neurodegeneration.
Collapse
Affiliation(s)
- Thu Nguyen Minh Pham
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Natarajan Perumal
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Caroline Manicam
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marion Basoglu
- Department of Structural Cell Biology, Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Stefan Eimer
- Department of Structural Cell Biology, Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Dominik C Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Claus U Pietrzik
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Albrecht M Clement
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hagen Körschgen
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jana Schepers
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Christian Behl
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
9
|
Xu X, Hou X, Xing Y, Feng T, Chai L, Guo Y, Chen L, Shi Y, Qin X. Dibazol-induced relaxation of ophthalmic artery in C57BL/6J mice is correlated with the potency to inhibit voltage-gated Ca 2+ channels. Exp Eye Res 2023; 231:109468. [PMID: 37031875 DOI: 10.1016/j.exer.2023.109468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
We aimed to explore the effect of dibazol on the ophthalmic artery (OA) and ophthalmic artery smooth muscle cells (OASMCs) of C57BL/6J mice as well as the underlying mechanisms. The OA of C57BL/6J mice was isolated under a dissecting microscope for primary OASMCs culture and myogenic tests. OASMCs were identified through morphological and immunofluorescence analyses. Morphology changes in the OASMCs were examined by staining using rhodamine-phalloidin. We performed a collagen gel contraction assay to measure the contractile and relaxant activities of the OASMCs. The molecular probe Fluo-4 AM was used to examine intracellular free Ca2+ levels ([Ca2+]in). The myogenic effects of OA were examined using wire myography. Additionally, the whole-cell patch-clamp technique was used to investigate the mechanisms underlying the relaxant effect of dibazol on L-type voltage-gated Ca2+ channels (LVGC) in isolated cells. 10-5 M dibazol significantly inhibited the contraction of OASMCs and increased the [Ca2+]in response to 30 mM KCl in a concentration-dependent manner. Dizabol had a more significant relaxant effect than 10-5 M isosorbide dinitrate (ISDN). Similarly, dibazol showed a significant dose-dependent relaxant effect on OA contraction induced by 60 mM KCl or 0.3 μM 9,11-Dideoxy-9α,11α-methanoepoxy prostaglandin F2α (U46619). The current-voltage (I-V) curve revealed that dibazol decreased Ca2+ currents in a concentration-dependent manner. In conclusion, dibazol exerted relaxant effects on the OA and OASMCs, which may involve the inhibition of the Ca2+ influx through LVGC in the cells.
Collapse
Affiliation(s)
- Xinrong Xu
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi, 030001, China
| | - Xiaomin Hou
- Department of Pharmacology, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi, 030001, China; China Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Shanxi, 030001, China
| | - Ye Xing
- Sichuan Herbease Pharmaceutical Co., Ltd, Sichuan, 610000, China
| | | | - Lina Chai
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi, 030001, China
| | - Yunting Guo
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi, 030001, China
| | - Liangjing Chen
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi, 030001, China
| | - Yiwei Shi
- Shanxi Medical University Affiliated First Hospital, Taiyuan, Shanxi, 030001, China.
| | - Xiaojiang Qin
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi, 030001, China; China Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Shanxi, 030001, China.
| |
Collapse
|