1
|
Zhang Y, Li H, Chen Y, Li C, Ye H, Qiu J, Liu X, Sun W, Zhang X, Tian N, Zhou Y. Nordihydroguaiaretic acid suppresses ferroptosis and mitigates intervertebral disc degeneration through the NRF2/GPX4 axis. Int Immunopharmacol 2024; 143:113590. [PMID: 39541847 DOI: 10.1016/j.intimp.2024.113590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/13/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a major contributor to low back pain (LBP), while LBP is the leading cause of disability. However, the effective pharmacological interventions for IVDD are still lacking. Studies have elucidated that ferroptosis plays a crucial role in the pathogenesis of IVDD. This study aimed to evaluate the effects of various natural products, specifically screening for those that suppress ferroptosis induced in nucleus pulposus cells (NPCs) via RSL3. Previously, we have identified that a list of natural products in the library may suppress oxidative stress damage in NPCs, while oxidative stress is a major contributor to ferroptosis. The current study sought to verify the ferroptosis inhibitory effect of these products in NPCs. Through screening of the top 20 natural products in the list, we found that Nordihydroguaiaretic acid (NDGA) was the most effective compound to inhibit ferroptosis in NPCs. Mechanism study demonstrated that NDGA may promote the nuclear expression of the key transcriptional factor nuclear factor erythroid 2-related factor 2 (Nrf2), which subsequently increase the expression of the ferroptosis suppressor gene GPX4, and reduce the degradation of the extracellular matrix (ECM) and suppress the progression of inflammation. In the rat puncture induced IVDD model, intraperitoneal injection of NDGA delayed the progression of IVDD. In conclusion, our study indicates that NDGA is a potential drug for the treatment of IVDD.
Collapse
Affiliation(s)
- Yekai Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325088 Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035 Zhejiang Province, China
| | - Hualin Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325088 Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035 Zhejiang Province, China
| | - Yiji Chen
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035 Zhejiang Province, China; School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Chenchao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325088 Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035 Zhejiang Province, China
| | - Haobo Ye
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325088 Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035 Zhejiang Province, China
| | - Jiawei Qiu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325088 Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035 Zhejiang Province, China
| | - Xiaopeng Liu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325088 Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035 Zhejiang Province, China
| | - Weiqian Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325088 Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035 Zhejiang Province, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325088 Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035 Zhejiang Province, China; Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, 310000 Zhejiang Province, China.
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325088 Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035 Zhejiang Province, China; Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, 310000 Zhejiang Province, China.
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325088 Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035 Zhejiang Province, China; Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, 310000 Zhejiang Province, China.
| |
Collapse
|
2
|
Yang X, Li Q, Wang L, Chen J, Quan Z. MUC1 and CREB3 are Hub Ferroptosis Suppressors for Nucleus Pulposus and Annulus Fibrosus Degeneration by Integrated Bioinformatics and Experimental Verification. J Inflamm Res 2024; 17:8965-8984. [PMID: 39583856 PMCID: PMC11584408 DOI: 10.2147/jir.s489052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose Ferroptosis is an underlying mechanism for various degenerative diseases, but its role in intervertebral disc degeneration remains elusive. This study aims to explore the key ferroptosis-related genes and its role in nucleus pulposus (NP) and annulus fibrosus (AF) degeneration. Methods We analyzed the gene expression profiles of NP and AF from the Gene Expression Omnibus database. The ferroptosis-related differentially expressed genes (FRDEGs) in degenerated NP and AF were filtered, followed by GO and KEGG analysis. Feature FRDEGs were identified by the LASSO and SVM-RFE algorithms, and then Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) were conducted. Immune infiltration analysis was conducted by CIBERSORT algorithm. We established drug networks via the Drug-Gene Interaction Database and competitive endogenous RNA (ceRNA) networks via miRanda, miRDB, and TargetScan database. The expression levels of the feature FRDEGs were assessed by the validation sets, single-cell RNA-seq, and experimental verification. Results A total of 15 and 18 FRDEGs were obtained for NP and AF, respectively. GO and KEGG analysis revealed their implication in oxidative stress. Four (AKR1C1, AKR1C3, MUC1, ENPP2) and five (SCP2, ABCC1, KLF2, IDO1, CREB3) feature genes were identified for NP and AF, respectively. The GSEA and GSVA analysis showed that these feature genes were enriched in lots of biological functions, including immune response. CREB3 in degenerated AF was negatively correlated with Eosinophils via CIBERSORT algorithm. The drugs and ceRNAs targeting CREB3 and MUC1 were identified. Experimental verification and single-cell RNA-seq analysis revealed that MUC1 and CREB3 were downregulated in degenerated NP and AF, respectively. Conclusion MUC1 and CREB3 were considered novel biomarkers for NP and AF ferroptosis, respectively. Drug and ceRNA networks were constructed for future drug development and investigation of new mechanisms of ferroptosis.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Qiaochu Li
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Linbang Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People’s Republic of China
| | - Jiaxing Chen
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Zhengxue Quan
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| |
Collapse
|
3
|
Gao K, Lv L, Li Z, Wang C, Zhang J, Qiu D, Xue H, Xu Z, Tan G. Natural Products in the Prevention of Degenerative Bone and Joint Diseases: Mechanisms Based on the Regulation of Ferroptosis. Phytother Res 2024. [PMID: 39513459 DOI: 10.1002/ptr.8366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 11/15/2024]
Abstract
Degenerative bone and joint diseases (DBJDs), characterized by osteoporosis, osteoarthritis, and chronic inflammation of surrounding soft tissues, are systemic conditions primarily affecting the skeletal system. Ferroptosis, a programmed cell death pathway distinct from apoptosis, autophagy, and necroptosis. Accumulating evidence suggests that ferroptosis is intricately linked to the pathogenesis of DBJDs, and targeting its regulation could be beneficial in managing these conditions. Natural products, known for their anti-inflammatory and antioxidant properties, have shown unique advantages in preventing DBJDs, potentially through modulating ferroptosis. This article provides an overview of the latest research on ferroptosis, with a focus on its role in the pathogenesis of DBJDs and the therapeutic potential of natural products targeting this cell death pathway, offering novel insights for the prevention and treatment of DBJDs.
Collapse
Affiliation(s)
- Kuanhui Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Longlong Lv
- Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chenmoji Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiahao Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Daodi Qiu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haipeng Xue
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoqing Tan
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Mei Y, Wang L, Chen T, Song C, Cheng K, Cai W, Zhou D, Gao S, Jiang F, Liu S, Liu Z. Ferroptosis: A New Direction in the Treatment of Intervertebral Disc Degeneration. Cell Biochem Biophys 2024:10.1007/s12013-024-01468-6. [PMID: 39102089 DOI: 10.1007/s12013-024-01468-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Intervertebral disc degeneration (IVDD) is one of the most common musculoskeletal disorders in middle-aged and elderly people, and lower back pain (LBP) is the main clinical symptom [1, 2], which often causes significant pain and great economic burden to patients [3]. The current molecular mechanisms of IVDD include extracellular matrix degradation, cellular pyroptosis, apoptosis, necrotic apoptosis, senescence, and the newly discovered ferroptosis [4, 5], among which ferroptosis, as a new hot spot of research, has a non-negligible role in IVDD. Ferroptosis is an iron-dependent cell death caused by lipid peroxide accumulation [6]. Its main mechanism is cell death caused by lipid peroxidation by oxygen radicals due to iron overload and inhibition of pathways such as SLC7A11-GSH-GPX4. Currently, more and more studies have found a close relationship between IVDD and ferroptosis [7]. In the process of ferroptosis, the most important factors are abnormal iron metabolism, increased ROS, lipid peroxidation, and abnormal proteins such as GSH, GPX4, and system XC-. Our group has previously elucidated the pathogenesis of IVDD in terms of extracellular matrix degradation, myeloid cell senescence and pyroptosis, apoptosis, and inflammatory immunity. Therefore, this time, we will use ferroptosis as an entry point to discover the new mechanism of IVDD and provide guidance for clinical treatment.
Collapse
Affiliation(s)
- Yongliang Mei
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Liquan Wang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ting Chen
- Department of Critical Care Medicine, Luzhou maternal's and Children's Health Hospital, Luzhou, 646000, Sichuan, China
| | - Chao Song
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Kang Cheng
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Weiye Cai
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Daqian Zhou
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Silong Gao
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Feng Jiang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Shigui Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zongchao Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- The Third People's Hospital of Luzhou, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
5
|
Chen J, Yang X, Li Q, Ma J, Li H, Wang L, Chen Z, Quan Z. Inhibiting DNA methyltransferase DNMT3B confers protection against ferroptosis in nucleus pulposus and ameliorates intervertebral disc degeneration via upregulating SLC40A1. Free Radic Biol Med 2024; 220:139-153. [PMID: 38705495 DOI: 10.1016/j.freeradbiomed.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Epigenetic changes are important considerations for degenerative diseases. DNA methylation regulates crucial genes by epigenetic mechanism, impacting cell function and fate. DNA presents hypermethylation in degenerated nucleus pulposus (NP) tissue, but its role in intervertebral disc degeneration (IVDD) remains elusive. This study aimed to demonstrate that methyltransferase mediated hypermethylation was responsible for IVDD by integrative bioinformatics and experimental verification. Methyltransferase DNMT3B was highly expressed in severely degenerated NP tissue (involving human and rats) and in-vitro degenerated human NP cells (NPCs). Bioinformatics elucidated that hypermethylated genes were enriched in oxidative stress and ferroptosis, and the ferroptosis suppressor gene SLC40A1 was identified with lower expression and higher methylation in severely degenerated human NP tissue. Cell culture using human NPCs showed that DNMT3B induced ferroptosis and oxidative stress in NPCs by downregulating SLC40A1, promoting a degenerative cell phenotype. An in-vivo rat IVDD model showed that DNA methyltransferase inhibitor 5-AZA alleviated puncture-induced IVDD. Taken together, DNA methyltransferase DNMT3B aggravates ferroptosis and oxidative stress in NPCs via regulating SLC40A1. Epigenetic mechanism within DNA methylation is a promising therapeutic biomarker for IVDD.
Collapse
Affiliation(s)
- Jiaxing Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Xinyu Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Qiaochu Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Jingjin Ma
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Huanhuan Li
- Department of Emergency, Chongqing University Three Gorges Hospital, Chongqing, 404000, China
| | - Linbang Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Zhiyu Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Zhengxue Quan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
6
|
Peng B, Li Q, Chen J, Wang Z. Research on the role and mechanism of IL-17 in intervertebral disc degeneration. Int Immunopharmacol 2024; 132:111992. [PMID: 38569428 DOI: 10.1016/j.intimp.2024.111992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Intervertebral disc degeneration (IDD) is one of the primary causes of low back pain (LBP), which seriously affects patients' quality of life. In recent years, interleukin (IL)-17 has been shown to be highly expressed in the intervertebral disc (IVD) tissues and serum of patients with IDD, and IL-17A has been shown to promote IDD through multiple pathways. We first searched databases such as PubMed, Cochrane, Embase, and Web of Science using the search terms "IL-17 or interleukin 17″ and "intervertebral discs". The search period ranged from the inception of the databases to December 2023. A total of 24 articles were selected after full-text screening. The main conclusion of the clinical studies was that IL-17A levels are significantly increased in the IVD tissues and serum of IDD patients. The results from the in vitro studies indicated that IL-17A can activate signaling pathways such as the NF-κB and MAPK pathways; promote inflammatory responses, extracellular matrix degradation, and angiogenesis; and inhibit autophagy in nucleus pulposus cells. The main finding of the in vivo experiments was that puncture of animal IVDs resulted in elevated levels of IL-17A within the IVD, thereby inducing IDD. Clinical studies, in vitro experiments, and in vivo experiments confirmed that IL-17A is closely related to IDD. Therefore, drugs that target IL-17A may be novel treatments for IDD, providing a new theoretical basis for IDD therapy.
Collapse
Affiliation(s)
- Bing Peng
- Liuyang Hospital of Traditional Chinese Medicine, Liuyang City, Hunan Province, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qian Li
- Liuyang Hospital of Traditional Chinese Medicine, Liuyang City, Hunan Province, China
| | - Jiangping Chen
- Liuyang Hospital of Traditional Chinese Medicine, Liuyang City, Hunan Province, China
| | - Zhexiang Wang
- Hunan Provincial Hospital of Integrative Traditional Chinese and Western Medicine, Changsha City, Hunan Province, China.
| |
Collapse
|
7
|
Mitchell BA, Chi JA, Driskill EK, Labaran LA, Wang JF, Shen FH, Li XJ. A Matched-Cohort Analysis of Outcomes in Patients with Hereditary Hemochromatosis After Anterior Cervical Discectomy and Fusion. World Neurosurg 2024; 184:e25-e31. [PMID: 37979684 DOI: 10.1016/j.wneu.2023.11.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Hereditary hemochromatosis (HH) is a common autosomal recessive disorder. This disease affects gut iron transport, leading to iron overload, which affects immune function, coagulation mechanics, and bone health. Within the spine, HH contributes to decreased bone mineral density and accelerated intervertebral disc degeneration. The purpose of this study was to discover the differences in the rates of common 90-day postoperative complications and 1-year and 2-year surgical outcomes in patients with and without HH after anterior cervical discectomy and fusion (ACDF). METHODS Using the PearlDiver database, patients with active diagnoses of HH before ACDF were matched to patients without HH using a 1:5 ratio on the basis of age, sex, body mass index, and comorbidities. Postoperative complications were assessed at 90 days, and 1-year and 2-year surgical outcomes were assessed. All outcomes and complications were analyzed using multivariate logistic regression with significance achieved at P < 0.05. RESULTS Patients with HH had significantly higher rates of 1-year and 2-year reoperation rates compared with patients without HH (29.19% vs. 3.94% and 37.1% vs. 5.93%, respectively; P < 0.001). The rates of 90-day postoperative complications significantly increased in patients with HH including dysphagia, pneumonia, cerebrovascular accident, deep vein thrombosis, acute kidney injury, urinary tract infection, hyponatremia, surgical site infection, iatrogenic deformity, emergency department visit, and hospital readmission. CONCLUSIONS Patients with HH undergoing ACDF showed increased 90-day postoperative complications and significantly increased rates of 1-year and 2-year reoperation compared with patients without HH. These findings suggest that iron overload may contribute to adverse outcomes in patients with HH undergoing 1-level and 2-level ACDF.
Collapse
Affiliation(s)
- Brook A Mitchell
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, USA; Department of Orthopaedic Surgery, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Jialun A Chi
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Elizabeth K Driskill
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Lawal A Labaran
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Jesse F Wang
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Francis H Shen
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Xudong J Li
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
8
|
Zhao X, Zhang J, Liu J, Yuan J, Wu T, Cheng X. Comprehensive analysis of gene expression profiles of annulus fibrosus subtypes and hub genes in intervertebral disc degeneration. Aging (Albany NY) 2024; 16:5370-5386. [PMID: 38484139 PMCID: PMC11006460 DOI: 10.18632/aging.205653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/05/2024] [Indexed: 04/06/2024]
Abstract
Intervertebral disc degeneration (IVDD) has been considered a major cause of low back pain. Therefore, further molecular subtypes of IVDD and identification of potential critical genes are urgently needed. First, consensus clustering was used to classify patients with IVDD into two subtypes and key module genes for subtyping were identified using weighted gene co-expression network analysis (WGCNA). Then, key module genes for the disease were identified by WGCNA. Subsequently, SVM and GLM were used to identify hub genes. Based on the above genes, a nomogram was constructed to predict the subtypes of IVDD. Finally, we find that ROM1 is lowered in IVDD and is linked to various cancer prognoses. The present work offers innovative diagnostic and therapeutic biomarkers for molecular subtypes of IVDD.
Collapse
Affiliation(s)
- Xiaokun Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jian Zhang
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jiahao Liu
- Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jinghong Yuan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tianlong Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xigao Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
9
|
Li S, Du J, Huang Y, Gao S, Zhao Z, Chang Z, Zhang X, He B. From hyperglycemia to intervertebral disc damage: exploring diabetic-induced disc degeneration. Front Immunol 2024; 15:1355503. [PMID: 38444852 PMCID: PMC10912372 DOI: 10.3389/fimmu.2024.1355503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
The incidence of lumbar disc herniation has gradually increased in recent years, and most patients have symptoms of low back pain and nerve compression, which brings a heavy burden to patients and society alike. Although the causes of disc herniation are complex, intervertebral disc degeneration (IDD) is considered to be the most common factor. The intervertebral disc (IVD) is composed of the upper and lower cartilage endplates, nucleus pulposus, and annulus fibrosus. Aging, abnormal mechanical stress load, and metabolic disorders can exacerbate the progression of IDD. Among them, high glucose and high-fat diets (HFD) can lead to fat accumulation, abnormal glucose metabolism, and inflammation, which are considered important factors affecting the homeostasis of IDD. Diabetes and advanced glycation end products (AGEs) accumulation- can lead to various adverse effects on the IVD, including cell senescence, apoptosis, pyroptosis, proliferation, and Extracellular matrix (ECM) degradation. While current research provides a fundamental basis for the treatment of high glucose-induced IDD patients. further exploration into the mechanisms of abnormal glucose metabolism affecting IDD and in the development of targeted drugs will provide the foundation for the effective treatment of these patients. We aimed to systematically review studies regarding the effects of hyperglycemia on the progress of IDD.
Collapse
Affiliation(s)
- Shuai Li
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Medical College, Yan’an University, Yan’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Jinpeng Du
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Yunfei Huang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Shenglong Gao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Medical College, Yan’an University, Yan’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Zhigang Zhao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Zhen Chang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Xuefang Zhang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - BaoRong He
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| |
Collapse
|
10
|
Fan C, Chu G, Yu Z, Ji Z, Kong F, Yao L, Wang J, Geng D, Wu X, Mao H. The role of ferroptosis in intervertebral disc degeneration. Front Cell Dev Biol 2023; 11:1219840. [PMID: 37576601 PMCID: PMC10413580 DOI: 10.3389/fcell.2023.1219840] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Nucleus pulposus, annulus fibrosus, and cartilage endplate constitute an avascular intervertebral disc (IVD), which is crucial for spinal and intervertebral joint mobility. As one of the most widespread health issues worldwide, intervertebral disc degeneration (IVDD) is recognized as a key contributor to back and neck discomfort. A number of degenerative disorders have a strong correlation with ferroptosis, a recently identified novel regulated cell death (RCD) characterized by an iron-dependent mechanism and a buildup of lipid reactive oxygen species (ROS). There is growing interest in the part ferroptosis plays in IVDD pathophysiology. Inhibiting ferroptosis has been shown to control IVDD development. Several studies have demonstrated that in TBHP-induced oxidative stress models, changes in ferroptosis marker protein levels and increased lipid peroxidation lead to the degeneration of intervertebral disc cells, which subsequently aggravates IVDD. Similarly, IVDD is significantly relieved with the use of ferroptosis inhibitors. The purpose of this review was threefold: 1) to discuss the occurrence of ferroptosis in IVDD; 2) to understand the mechanism of ferroptosis and its role in IVDD pathophysiology; and 3) to investigate the feasibility and prospect of ferroptosis in IVDD treatment.
Collapse
Affiliation(s)
- Chunyang Fan
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zilin Yu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zhongwei Ji
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- Department of Pain Management, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fanchen Kong
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Lingye Yao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jiale Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Dechun Geng
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xiexing Wu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Haiqing Mao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
11
|
Hu BL, Yin YX, Li KZ, Li SQ, Li Z. SPINK4 promotes colorectal cancer cell proliferation and inhibits ferroptosis. BMC Gastroenterol 2023; 23:104. [PMID: 37013514 PMCID: PMC10071753 DOI: 10.1186/s12876-023-02734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Little is known about the role of serine peptidase inhibitor Kazal type 4 (SPINK4) in colorectal cancer (CRC) and ferroptosis. Therefore, this study aimed to determine the effect of SPINK4 on CRC pathogenesis and ferroptosis. METHODS SPINK4 expression was analyzed in public datasets and examined using immunohistochemistry. The biological function of SPINK4 in CRC cell lines and its effect on ferroptosis were tested. An immunofluorescence assay was performed to determine the location of SPINK4 in cells, and mouse models were established to determine the effects of SPINK4 in vivo. RESULTS CRC datasets and clinical samples analysis revealed that SPINK4 mRNA and protein levels were significantly reduced in CRC tissues compared to control tissues (P < 0.05). Two CRC cell lines (HCT116 and LoVo) were selected, and the in vitro and in vivo experiments showed that overexpression of SPINK4 greatly promotes the proliferation and metastasis of CRC cells and tumor growth (P < 0.05). The immunofluorescence assay indicated that SPINK4 is mainly located in the nucleoplasm and nucleus of CRC cells. Furthermore, SPINK4 expression was reduced after cell ferroptosis induced by Erastin, and overexpression of SPINK4 greatly inhibited ferroptosis in CRC cells. The results of mouse model further demonstrated that SPINK4 overexpression inhibited CRC cell ferroptosis and facilitated tumor growth. CONCLUSIONS SPINK4 was decreased in CRC tissues and promoted cell proliferation and metastasis; overexpression of SPINK4 inhibited CRC cell ferroptosis.
Collapse
Affiliation(s)
- Bang-Li Hu
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, Guangxi, PR China.
| | - Yi-Xin Yin
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, Guangxi, PR China
| | - Ke-Zhi Li
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, Guangxi, PR China
| | - Si-Qi Li
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, Guangxi, PR China
| | - Zhao Li
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, Guangxi, PR China.
| |
Collapse
|
12
|
Yurube T, Takeoka Y, Kanda Y, Ryosuke K, Kakutani K. Intervertebral disc cell fate during aging and degeneration: apoptosis, senescence, and autophagy. NORTH AMERICAN SPINE SOCIETY JOURNAL (NASSJ) 2023; 14:100210. [PMID: 37090223 PMCID: PMC10113901 DOI: 10.1016/j.xnsj.2023.100210] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Background Degenerative disc disease, a major cause of low back pain and associated neurological symptoms, is a global health problem with the high morbidity, workforce loss, and socioeconomic burden. The present surgical strategy of disc resection and/or spinal fusion results in the functional loss of load, shock absorption, and movement; therefore, the development of new biological therapies is demanded. This achievement requires the understanding of intervertebral disc cell fate during aging and degeneration. Methods Literature review was performed to clarify the current concepts and future perspectives of disc cell fate, focused on apoptosis, senescence, and autophagy. Results The intervertebral disc has a complex structure with the nucleus pulposus (NP), annulus fibrosus (AF), and cartilage endplates. While the AF arises from the mesenchyme, the NP originates from the notochord. Human disc NP notochordal phenotype disappears in adolescence, accompanied with cell death induction and chondrocyte proliferation. Discs morphologically and biochemically degenerate from early childhood as well, thereby suggesting a possible involvement of cell fate including age-related phenotypic changes in the disease process. As the disc is the largest avascular organ in the body, nutrient deprivation is a suspected contributor to degeneration. During aging and degeneration, disc cells undergo senescence, irreversible growth arrest, producing proinflammatory cytokines and matrix-degradative enzymes. Excessive stress ultimately leads to programmed cell death including apoptosis, necroptosis, pyroptosis, and ferroptosis. Autophagy, the intracellular degradation and recycling system, plays a role in maintaining cell homeostasis. While the incidence of apoptosis and senescence increases with age and degeneration severity, autophagy can be activated earlier, in response to limited nutrition and inflammation, but impaired in aged, degenerated discs. The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) is a signal integrator to determine disc cell fate. Conclusions Cell fate and microenvironmental regulation by modulating PI3K/Akt/mTOR signaling is a potential biological treatment for degenerative disc disease.
Collapse
|
13
|
Zhang F, Yan Y, Cai Y, Liang Q, Liu Y, Peng B, Xu Z, Liu W. Current insights into the functional roles of ferroptosis in musculoskeletal diseases and therapeutic implications. Front Cell Dev Biol 2023; 11:1112751. [PMID: 36819098 PMCID: PMC9936329 DOI: 10.3389/fcell.2023.1112751] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Ferroptosis is a novel type of cell death associated with iron accumulation and excessive lipid peroxidation. Elucidating the underlying molecular mechanisms of ferroptosis is intensively related to the development and treatment of multiple diseases, including musculoskeletal disorders. Moreover, in vitro and in vivo studies have shown the importance of oxidative stress in musculoskeletal conditions such as osteoporosis, osteoarthritis, rheumatoid arthritis, and osteosarcoma. Ferroptosis-derived clinical management of musculoskeletal diseases offers tremendous and attractive opportunities. Notably, ferroptosis agonists have been proven to enhance the sensitivity of osteosarcoma cells to conventional therapeutic strategies. In this review, we have mainly focused on the implications of ferroptosis regulation in the pathophysiology and therapeutic response of musculoskeletal disorders. Understanding roles of ferroptosis for controlling musculoskeletal diseases might provide directions for ferroptosis-driven therapies, which could be promising for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cai
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China,Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Bi Peng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China,Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Zhijie Xu, ; Wei Liu,
| | - Wei Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China,Department of Orthopedic Surgery, The Second Hospital University of South China, Hengyang, China,*Correspondence: Zhijie Xu, ; Wei Liu,
| |
Collapse
|