1
|
Nguyen DL, Le MPT, Lee KW, Kim JH, Yoon HC, Pham HTM. Development of a Disease Modeling Framework for Glutamatergic Neurons Derived from Neuroblastoma Cells in 3D Microarrays. Sci Rep 2024; 14:29144. [PMID: 39587250 PMCID: PMC11589682 DOI: 10.1038/s41598-024-80369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
Neurodegenerative diseases (NDDs) present significant challenges due to limited treatment options, ethical concerns surrounding traditional animal models, and the time-consuming and costly process of using human-induced pluripotent stem cells (iPSCs). We addressed these issues by developing a 3D culture protocol for differentiating SH-SY5Y cells into glutamatergic neurons, enhancing physiological relevance with a 3D microarray culture plate. Our protocol optimized serum concentration and incorporated retinoic acid (RA) to improve differentiation. We analyzed the proportions of N-type and S-type cells, observing that RA in the maturation stage not only reduced cell proliferation but also enhanced the expression of MAP2 and VGLUT1, indicating effective neuronal differentiation. Our approach demonstrates the strong expression of glutamatergic neuron phenotypes in 3D SH-SY5Y neural spheroids, offering a promising tool for high-throughput NDD modeling and advancing drug discovery and therapeutic development. This method overcomes limitations associated with conventional 2D cultures and animal models, providing a more effective platform for NDD research.
Collapse
Affiliation(s)
- Duc Long Nguyen
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - My Phuong Thi Le
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Kyung Won Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
- Advanced College of Bio-convergence Engineering, Ajou University, Suwon, 16499, South Korea
| | - Jae-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
- ANK corporation, TheANK, Suwon, 16522, South Korea
| | - Hyun C Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea.
- Advanced College of Bio-convergence Engineering, Ajou University, Suwon, 16499, South Korea.
| | - Huyen T M Pham
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea.
| |
Collapse
|
2
|
Oruç KY, Ağtürk G, Oruç A, Yanar K, Seymen HO. Protective effect of Apelin-13 on D-glutamic acid-induced excitotoxicity in SH-SY5Y cell line: An in-vitro study. Neuropeptides 2024; 109:102483. [PMID: 39547009 DOI: 10.1016/j.npep.2024.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024]
Abstract
Excitotoxicity, resulting from excessive accumulation of glutamate in the extracellular space, leads to neuronal cell death. This study investigates the protective effects of Apelin-13 on D-Glutamic acid-induced excitotoxicity in SH-SY5Y human neuroblastoma cells, an in-vitro model for neurodegenerative diseases. Unlike the commonly studied L-glutamic acid, this research focuses on D-Glutamic acid to understand its specific impacts. SH-SY5Y cells were treated with varying concentrations of D-Glutamic acid and Apelin-13, followed by analyses at 12 and 24 h to evaluate cell viability, oxidative stress markers, and inflammatory cytokine levels. Cell viability assays revealed significant cytotoxic effects of D-Glutamic acid at doses of 10 mM and 20 mM, reducing viability by over 50 %. However, Apelin-13 treatment mitigated these effects, especially at 2 μg/ml, enhancing cell viability and reducing inflammatory cytokine levels (IL-1β and TNF-α). Apelin-13 also increased anti-inflammatory cytokine levels (IL-10 and TGF-β1) and brain-derived neurotrophic factor (BDNF), indicating its neuroprotective role. Oxidative stress markers, including ROS, AGE, AOPP, DT, T-SH, were significantly elevated by D-Glutamic acid but effectively reduced by Apelin-13. The neuroprotective mechanisms of Apelin-13 involve modulation of cAMP/PKA and MAPK signaling pathways, enhancing BDNF synthesis and suppressing oxidative stress and inflammatory responses. This study is the first to demonstrate the effects of D-Glutamic acid on SH-SY5Y cells. It highlights Apelin-13's potential as a therapeutic agent against excitotoxicity-induced neuronal damage, emphasizing its ability to modulate key molecular pathways involved in inflammation and oxidative stress. Further in-vivo studies are warranted to explore the long-term neuroprotective effects of Apelin-13 in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Kadriye Yağmur Oruç
- Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Physiology, Istanbul, Turkey; Istinye University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey.
| | - Gökhan Ağtürk
- Haliç University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey
| | - Aykut Oruç
- Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Physiology, Istanbul, Turkey
| | - Karolin Yanar
- Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| | - Hakkı Oktay Seymen
- Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Physiology, Istanbul, Turkey
| |
Collapse
|
3
|
Cimino M, Feligioni M. The selective disruption of the JNK2/Syntaxin-1A interaction by JGRi1 protects against NMDA-evoked toxicity in SH-SY5Y cells. Neurochem Int 2024; 179:105824. [PMID: 39098765 DOI: 10.1016/j.neuint.2024.105824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
N-methyl-D-aspartate (NMDA) receptors are calcium-permeable ion-channel receptors, specifically activated by glutamate, that permit the activation of specific intracellular calcium-dependent pathways. Aberrant NMDA receptor activation leads to a condition known as excitotoxicity, in which excessive calcium inflow induces apoptotic pathways. To date, memantine is the only NMDA receptor antagonist authorized in clinical practice, hence, a better understanding of the NMDA cascade represents a need to discover novel pharmacological targets. We previously reported non-conventional intracellular signaling triggered by which, upon activation, promotes the interaction between JNK2 and STX1A which enhances the rate of vesicular secretion. We developed a cell-permeable peptide, named JGRi1, able to disrupt such interaction, thus reducing vesicular secretion. In this work, to selectively study the effect of JGRi1 in a much simpler system, we employed neuroblastoma cells, SH-SY5Y. We found that SH-SY5Y cells express the components of the NMDA receptor-JNK2 axis and that the NMDA stimulus increases the rate of vesicle release. Both JGRi1 and memantine protected SH-SY5Y cells from NMDA toxicity, but only JGRi1 reduced the interaction between JNK2 and STX1A. Both drugs successfully reduced NMDA-induced vesicle release, although, unlike memantine, JGRi1 did not prevent calcium influx. NMDA treatment induced JNK2 expression, but not JNK1 or JNK3, which was prevented by both JGRi1 and memantine, suggesting that JNK2 may be specifically involved in the response to NMDA. In conclusion, being JGRi1 able to protect cells against NMDA toxicity by interfering with JNK2/STX1A interaction, it could be considered a novel pharmacological tool to counteract excitotoxicity.
Collapse
Affiliation(s)
- M Cimino
- EBRI Rita Levi-Montalcini Foundation, Rome, Italy
| | - M Feligioni
- EBRI Rita Levi-Montalcini Foundation, Rome, Italy; Department of Neuro-Rehabilitation Sciences, Casa di Cura Igea, Milan, Italy.
| |
Collapse
|
4
|
Yang C, Zhao M, Chen Y, Song J, Wang D, Zou M, Liu J, Wen W, Xu S. Dietary bitter ginger-derived zerumbone improved memory performance during aging through inhibition of the PERK/CHOP-dependent endoplasmic reticulum stress pathway. Food Funct 2024; 15:9070-9084. [PMID: 39078275 DOI: 10.1039/d4fo00402g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
PERK/CHOP pathway-mediated excessive endoplasmic reticulum (ER) stress is closely linked to aging-related cognitive impairment (ARCD). Zerumbone (ZB), a naturally occurring sesquiterpene molecule obtained from dietary bitter ginger, has garnered significant interest due to its diverse range of biological properties. It is unclear, though, if ZB can reduce ARCD by preventing ER stress that is dependent on the PERK/CHOP pathway. Here, the PERK-CHOP ER stress pathway was the main focus of an evaluation of the effects and mechanisms of ZB for attenuating ARCD in D-galactose (D-gal)-induced aging mice and SH-SY5Y cells. According to our findings, ZB not only greatly decreased neuronal impairment both in vitro and in vivo, but also significantly alleviated learning and memory failure in vivo. ZB significantly reduced the activation of the PERK/CHOP pathway and neuronal apoptosis in vitro and in vivo, exhibiting the down-regulation of GRP78, p-PREK/PERK, and CHOP expression levels, in addition to suppressing oxidative damage (MDA drop and SOD rise). Comparable outcomes were noted in SH-SY5Y cells subjected to severe ER stress caused by TM. On the other hand, 4-PBA, an ER stress inhibitor, considerably reversed these modifications. Remarkably, CCT020312 (a PERK activator) dramatically overrode the inhibitory effects of ZB on the PERK/CHOP pathway and neuronal death in D-gal-induced SH-SY5Y cells. In contrast, GSK2606414 (a PERK inhibitor) significantly increased these effects of ZB. In summary, our results suggested that ZB prevented D-gal-induced cognitive deficits by blocking the PERK/CHOP-dependent ER stress pathway and apoptosis, suggesting that ZB might be a natural sesquiterpene molecule that relieves ARCD.
Collapse
Affiliation(s)
- Chuan Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Meihuan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuanyuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Juxian Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dan Wang
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mi Zou
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingru Liu
- University College London, Gower Street, London WC1E 6BT, UK
| | - Wen Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shijun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Institute of Materia Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
5
|
Alyamni N, Abot JL, Zestos AG. Voltammetric detection of Neuropeptide Y using a modified sawhorse waveform. Anal Bioanal Chem 2024; 416:4807-4818. [PMID: 38914733 PMCID: PMC11315718 DOI: 10.1007/s00216-024-05373-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024]
Abstract
The hormone Neuropeptide Y (NPY) plays critical roles in feeding, satiety, obesity, and weight control. However, its complex peptide structure has hindered the development of fast and biocompatible detection methods. Previous studies utilizing electrochemical techniques with carbon fiber microelectrodes (CFMEs) have targeted the oxidation of amino acid residues like tyrosine to measure peptides. Here, we employ the modified sawhorse waveform (MSW) to enable voltammetric identification of NPY through tyrosine oxidation. Use of MSW improves NPY detection sensitivity and selectivity by reducing interference from catecholamines like dopamine, serotonin, and others compared to the traditional triangle waveform. The technique utilizes a holding potential of -0.2 V and a switching potential of 1.2 V that effectively etches and renews the CFME surface to simultaneously detect NPY and other monoamines with a sensitivity of 5.8 ± 0.94 nA/µM (n = 5). Furthermore, we observed adsorption-controlled, subsecond NPY measurements with CFMEs and MSW. The effective identification of exogenously applied NPY in biological fluids demonstrates the feasibility of this methodology for in vivo and ex vivo studies. These results highlight the potential of MSW voltammetry to enable fast, biocompatible NPY quantification to further elucidate its physiological roles.
Collapse
Affiliation(s)
- Nadiah Alyamni
- Department of Biomedical Engineering, The Catholic University of America, Washington, D.C., 20064, USA
- Department of Chemistry, American University, Washington, D.C., 20016, USA
| | - Jandro L Abot
- Department of Mechanical Engineering, The Catholic University of America, Washington, D.C., 20064, USA
| | - Alexander G Zestos
- Department of Chemistry, American University, Washington, D.C., 20016, USA.
| |
Collapse
|
6
|
Palanivel V, Gupta V, Chitranshi N, Tietz O, Vander Wall R, Blades R, Maha Thananthirige KP, Salkar A, Shen C, Mirzaei M, Gupta V, Graham SL, Basavarajappa D. Neuropeptide Y receptor activation preserves inner retinal integrity through PI3K/Akt signaling in a glaucoma mouse model. PNAS NEXUS 2024; 3:pgae299. [PMID: 39114576 PMCID: PMC11305140 DOI: 10.1093/pnasnexus/pgae299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024]
Abstract
Neuropeptide Y (NPY), an endogenous peptide composed of 36 amino acids, has been investigated as a potential therapeutic agent for neurodegenerative diseases due to its neuroprotective attributes. This study investigated the neuroprotective effects of NPY in a mouse model of glaucoma characterized by elevated intraocular pressure (IOP) and progressive retinal ganglion cell degeneration. Elevated IOP in mice was induced through intracameral microbead injections, accompanied by intravitreal administration of NPY peptide. The results demonstrated that NPY treatment preserved both the structural and functional integrity of the inner retina and mitigated axonal damage and degenerative changes in the optic nerve under high IOP conditions. Further, NPY treatment effectively reduced inflammatory glial cell activation, as evidenced by decreased expression of glial fibrillary acidic protein and Iba-1. Notably, endogenous NPY expression and its receptors (NPY-Y1R and NPY-Y4R) levels were negatively affected in the retina under elevated IOP conditions. NPY treatment restored these changes to a significant extent. Molecular analysis revealed that NPY mediates its protective effects through the mitogen-activated protein kinase (MAPK) and PI3K/Akt signaling pathways. These findings highlight the therapeutic potential of NPY in glaucoma treatment, underscoring its capacity to preserve retinal health, modulate receptor expression under stress, reduce neuroinflammation, and impart protection against axonal impairment.
Collapse
Affiliation(s)
- Viswanthram Palanivel
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Vivek Gupta
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Nitin Chitranshi
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Ole Tietz
- Faculty of Medicine, Health and Human Sciences, Dementia Research Centre, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Roshana Vander Wall
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Reuben Blades
- Faculty of Medicine, Health and Human Sciences, Dementia Research Centre, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Kanishka Pushpitha Maha Thananthirige
- Faculty of Medicine, Health and Human Sciences, Dementia Research Centre, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Akanksha Salkar
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Chao Shen
- Microscopy Unit, Faculty of Science and Engineering, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Mehdi Mirzaei
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Stuart L Graham
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| |
Collapse
|
7
|
Canbolat F, Kantarci-Carsibasi N, Isik S, Shamshir SRM, Girgin M. Identification of the Candidate mGlu2 Allosteric Modulator THRX-195518 through In Silico Method and Evaluation of Its Neuroprotective Potential against Glutamate-Induced Neurotoxicity in SH-SY5Y Cell Line. Curr Issues Mol Biol 2024; 46:788-807. [PMID: 38248353 PMCID: PMC10814480 DOI: 10.3390/cimb46010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024] Open
Abstract
Glutamate (Glu) toxicity has been an important research topic in toxicology and neuroscience studies. In vitro and in vivo studies have shown that Group II metabotropic Glu2 (mGlu2) activators have cell viability effects. This study aims to determine a candidate ligand with high mGlu2 allosteric region activity among cytotoxicity-safe molecules using the in silico positioning method and to evaluate its cell viability effect in vitro. We investigated the candidate molecule's cell viability effect on the SH-SY5Y human neuroblastoma cell line by MTT analysis. In the study, LY 379268 (agonist) and JNJ-46281222 (positive allosteric modulator; PAM) were used as control reference molecules. Drug bank screening yielded THRX-195518 (docking score being -12.4 kcal/mol) as a potential novel drug candidate that has a high docking score and has not been mentioned in the literature so far. The orthosteric agonist LY 379268 exhibited a robust protective effect in our study. Additionally, our findings demonstrate that JNJ-46281222 and THRX-195518, identified as activating the mGlu2 allosteric region through in silico methods, preserve cell viability against Glu toxicity. Therefore, our study not only emphasizes the positive effects of this compound on cell viability against Glu toxicity but also sheds light on the potential of THRX-195518, acting as a mGlu2 PAM, based on in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) data, as a candidate drug molecule. These findings underscore the potential utility of THRX-195518 against both neurotoxicity and Central Nervous System (CNS) disorders, providing valuable insights.
Collapse
Affiliation(s)
- Fadime Canbolat
- Department of Pharmacy Services, Vocational School of Health Services, Çanakkale Onsekiz Mart University, 17800 Çanakkale, Turkey
| | - Nigar Kantarci-Carsibasi
- Department of Chemical Engineering, Uskudar University, 34662 Istanbul, Turkey; (N.K.-C.); (M.G.)
| | - Sevim Isik
- Stem Cell Research and Application Center (USKOKMER), Department of Molecular Biology and Genetics, Uskudar University, 34662 Istanbul, Turkey;
| | | | - Münteha Girgin
- Department of Chemical Engineering, Uskudar University, 34662 Istanbul, Turkey; (N.K.-C.); (M.G.)
| |
Collapse
|
8
|
Sánchez ML, Rodríguez FD, Coveñas R. Neuropeptide Y Peptide Family and Cancer: Antitumor Therapeutic Strategies. Int J Mol Sci 2023; 24:9962. [PMID: 37373115 DOI: 10.3390/ijms24129962] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Currently available data on the involvement of neuropeptide Y (NPY), peptide YY (PYY), and pancreatic polypeptide (PP) and their receptors (YRs) in cancer are updated. The structure and dynamics of YRs and their intracellular signaling pathways are also studied. The roles played by these peptides in 22 different cancer types are reviewed (e.g., breast cancer, colorectal cancer, Ewing sarcoma, liver cancer, melanoma, neuroblastoma, pancreatic cancer, pheochromocytoma, and prostate cancer). YRs could be used as cancer diagnostic markers and therapeutic targets. A high Y1R expression has been correlated with lymph node metastasis, advanced stages, and perineural invasion; an increased Y5R expression with survival and tumor growth; and a high serum NPY level with relapse, metastasis, and poor survival. YRs mediate tumor cell proliferation, migration, invasion, metastasis, and angiogenesis; YR antagonists block the previous actions and promote the death of cancer cells. NPY favors tumor cell growth, migration, and metastasis and promotes angiogenesis in some tumors (e.g., breast cancer, colorectal cancer, neuroblastoma, pancreatic cancer), whereas in others it exerts an antitumor effect (e.g., cholangiocarcinoma, Ewing sarcoma, liver cancer). PYY or its fragments block tumor cell growth, migration, and invasion in breast, colorectal, esophageal, liver, pancreatic, and prostate cancer. Current data show the peptidergic system's high potential for cancer diagnosis, treatment, and support using Y2R/Y5R antagonists and NPY or PYY agonists as promising antitumor therapeutic strategies. Some important research lines to be developed in the future will also be suggested.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37008 Salamanca, Spain
| | - Francisco D Rodríguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37008 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37008 Salamanca, Spain
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37008 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
9
|
Plantainoside D Reduces Depolarization-Evoked Glutamate Release from Rat Cerebral Cortical Synaptosomes. Molecules 2023; 28:molecules28031313. [PMID: 36770979 PMCID: PMC9919923 DOI: 10.3390/molecules28031313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/13/2023] [Accepted: 01/29/2023] [Indexed: 01/31/2023] Open
Abstract
Inhibiting the excessive release of glutamate in the brain is emerging as a promising therapeutic option and is efficient for treating neurodegenerative disorders. The aim of this study is to investigate the effect and mechanism of plantainoside D (PD), a phenylenthanoid glycoside isolated from Plantago asiatica L., on glutamate release in rat cerebral cortical nerve terminals (synaptosomes). We observed that PD inhibited the potassium channel blocker 4-aminopyridine (4-AP)-evoked release of glutamate and elevated concentration of cytosolic Ca2+. Using bafilomycin A1 to block glutamate uptake into synaptic vesicles and EDTA to chelate extracellular Ca2+, the inhibitory effect of PD on 4-AP-evoked glutamate release was prevented. In contrast, the action of PD on the 4-AP-evoked release of glutamate in the presence of dl-TBOA, a potent nontransportable inhibitor of glutamate transporters, was unaffected. PD does not alter the 4-AP-mediated depolarization of the synaptosomal membrane potential, suggesting that the inhibitory effect of PD on glutamate release is associated with voltage-dependent Ca2+ channels (VDCCs) but not the modulation of plasma membrane potential. Pretreatment with the Ca2+ channel blocker (N-type) ω-conotoxin GVIA abolished the inhibitory effect of PD on the evoked glutamate release, as did pretreatment with the protein kinase C inhibitor GF109203x. However, the PD-mediated inhibition of glutamate release was eliminated by applying the mitochondrial Na+/Ca2+ exchanger inhibitor CGP37157 or dantrolene, which inhibits Ca2+ release through ryanodine receptor channels. These data suggest that PD mediates the inhibition of evoked glutamate release from synaptosomes primarily by reducing the influx of Ca2+ through N-type Ca2+ channels, subsequently reducing the protein kinase C cascade.
Collapse
|