1
|
Vázquez-Domínguez I, Öktem M, Winkelaar FA, Nguyen TH, Hoogendoorn AD, Roschi E, Astuti GD, Timmermans R, Suárez-Herrera N, Bruno I, Ruiz-Llombart A, Brealey J, de Jong OG, Collin RW, Mastrobattista E, Garanto A. Lipopeptide-mediated Cas9 RNP delivery: A promising broad therapeutic strategy for safely removing deep-intronic variants in ABCA4. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102345. [PMID: 39494150 PMCID: PMC11531624 DOI: 10.1016/j.omtn.2024.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 09/24/2024] [Indexed: 11/05/2024]
Abstract
Deep-intronic (DI) variants represent approximately 10%-12% of disease-causing genetic defects in ABCA4-associated Stargardt disease (STGD1). Although many of these DI variants are amenable to antisense oligonucleotide-based splicing-modulation therapy, no treatment is currently available. These molecules are mostly variant specific, limiting their applicability to a broader patient population. In this study, we investigated the therapeutic potential of the CRISPR-Cas9 system combined with the amphipathic lipopeptide C18:1-LAH5 for intracellular delivery to correct splicing defects caused by different DI variants within the same intron. The combination of these components facilitated efficient editing of two target introns (introns 30 and 36) of ABCA4 in which several recurrent DI variants are found. The partial removal of these introns did not affect ABCA4 splicing or its expression levels when assessed in two different human cellular models: fibroblasts and induced pluripotent stem cell-derived photoreceptor precursor cells (PPCs). Furthermore, the DNA editing in STGD1 patient-derived PPCs led to a ∼50% reduction of the pseudoexon-containing transcripts resulting from the c.4539+2001G>A variant in intron 30. Overall, we provide proof-of-concept evidence of the use of C18:1-LAH5 as a delivery system for therapeutic genome editing for ABCA4-associated DI variants, offering new opportunities for clinical translation.
Collapse
Affiliation(s)
- Irene Vázquez-Domínguez
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Mert Öktem
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Florian A. Winkelaar
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Thai Hoang Nguyen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Anita D.M. Hoogendoorn
- Radboud University Medical Center, Amalia Children’s Hospital, Department of Pediatrics, 6525 GA Nijmegen, the Netherlands
| | - Eleonora Roschi
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Galuh D.N. Astuti
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
- Center for Biomedical Research, Faculty of Medicine, Diponegoro University, Semarang 50275, Indonesia
| | - Raoul Timmermans
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Nuria Suárez-Herrera
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Ilaria Bruno
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Albert Ruiz-Llombart
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Joseph Brealey
- NanoFCM Co Ltd. MediCity, D6 Thane Road, Nottingham NG90 6BH, UK
| | - Olivier G. de Jong
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Rob W.J. Collin
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Alejandro Garanto
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
- Radboud University Medical Center, Amalia Children’s Hospital, Department of Pediatrics, 6525 GA Nijmegen, the Netherlands
| |
Collapse
|
2
|
Vázquez-Domínguez I, Anido AA, Duijkers L, Hoppenbrouwers T, Hoogendoorn AM, Koster C, Collin RJ, Garanto A. Efficacy, biodistribution and safety comparison of chemically modified antisense oligonucleotides in the retina. Nucleic Acids Res 2024; 52:10447-10463. [PMID: 39119918 PMCID: PMC11417397 DOI: 10.1093/nar/gkae686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/25/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Antisense oligonucleotides (AONs) are a versatile tool for treating inherited retinal diseases. However, little is known about how different chemical modifications of AONs can affect their biodistribution, toxicity, and uptake in the retina. Here, we addressed this question by comparing splice-switching AONs with three different chemical modifications commonly used in a clinical setting (2'O-methyl-phosphorothioate (2-OMe/PS), 2'O-methoxyethyl-phosphoriate (2-MOE/PS), and phosphorodiamidite morpholino oligomers (PMO)). These AONs targeted genes exclusively expressed in certain types of retinal cells. Overall, studies in vitro and in vivo in C57BL/6J wild-type mouse retinas showed that 2-OMe/PS and 2-MOE/PS AONs have comparable efficacy and safety profiles. In contrast, octa-guanidine-dendrimer-conjugated in vivo PMO-oligonucleotides (ivPMO) caused toxicity. This was evidenced by externally visible ocular phenotypes in 88.5% of all ivPMO-treated animals, accompanied by severe alterations at the morphological level. However, delivery of unmodified PMO-AONs did not cause any toxicity, although it clearly reduced the efficacy. We conducted the first systematic comparison of different chemical modifications of AONs in the retina. Our results showed that the same AON sequence with different chemical modifications displayed different splicing modulation efficacies, suggesting the 2'MOE/PS modification as the most efficacious in these conditions. Thereby, our work provides important insights for future clinical applications.
Collapse
Affiliation(s)
| | - Alejandro Allo Anido
- Radboud university medical center, Department of Human Genetics, Nijmegen, The Netherlands
| | - Lonneke Duijkers
- Radboud university medical center, Department of Human Genetics, Nijmegen, The Netherlands
| | - Tamara Hoppenbrouwers
- Radboud university medical center, Department of Human Genetics, Nijmegen, The Netherlands
| | - Anita D M Hoogendoorn
- Radboud university medical center, Amalia Children's Hospital, Department of Pediatrics, Nijmegen, The Netherlands
| | - Céline Koster
- Departments of Human Genetics and Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Rob W J Collin
- Radboud university medical center, Department of Human Genetics, Nijmegen, The Netherlands
| | - Alejandro Garanto
- Radboud university medical center, Department of Human Genetics, Nijmegen, The Netherlands
- Radboud university medical center, Amalia Children's Hospital, Department of Pediatrics, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Kurzawa-Akanbi M, Tzoumas N, Corral-Serrano JC, Guarascio R, Steel DH, Cheetham ME, Armstrong L, Lako M. Pluripotent stem cell-derived models of retinal disease: Elucidating pathogenesis, evaluating novel treatments, and estimating toxicity. Prog Retin Eye Res 2024; 100:101248. [PMID: 38369182 DOI: 10.1016/j.preteyeres.2024.101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Blindness poses a growing global challenge, with approximately 26% of cases attributed to degenerative retinal diseases. While gene therapy, optogenetic tools, photosensitive switches, and retinal prostheses offer hope for vision restoration, these high-cost therapies will benefit few patients. Understanding retinal diseases is therefore key to advance effective treatments, requiring in vitro models replicating pathology and allowing quantitative assessments for drug discovery. Pluripotent stem cells (PSCs) provide a unique solution given their limitless supply and ability to differentiate into light-responsive retinal tissues encompassing all cell types. This review focuses on the history and current state of photoreceptor and retinal pigment epithelium (RPE) cell generation from PSCs. We explore the applications of this technology in disease modelling, experimental therapy testing, biomarker identification, and toxicity studies. We consider challenges in scalability, standardisation, and reproducibility, and stress the importance of incorporating vasculature and immune cells into retinal organoids. We advocate for high-throughput automation in data acquisition and analyses and underscore the value of advanced micro-physiological systems that fully capture the interactions between the neural retina, RPE, and choriocapillaris.
Collapse
|
4
|
Suárez-Herrera N, Garanto A, Collin RWJ. Understanding and Rescuing the Splicing Defect Caused by the Frequent ABCA4 Variant c.4253+43G>A Underlying Stargardt Disease. Nucleic Acid Ther 2024; 34:73-82. [PMID: 38466963 DOI: 10.1089/nat.2023.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Pathogenic variants in ABCA4 are the underlying molecular cause of Stargardt disease (STGD1), an autosomal recessive macular dystrophy characterized by a progressive loss of central vision. Among intronic ABCA4 variants, c.4253+43G>A is frequently detected in STGD1 cases and is classified as a hypomorphic allele, generally associated with late-onset cases. This variant was previously reported to alter splicing regulatory sequences, but the splicing outcome is not fully understood yet. In this study, we attempted to better understand its effect on splicing and to rescue the aberrant splicing via antisense oligonucleotides (AONs). Wild-type and c.4253+43G>A variant-harboring maxigene vectors revealed additional skipping events, which were not previously detected upon transfection in HEK293T cells. To restore exon inclusion, we designed a set of 27 AONs targeting either splicing silencer motifs or the variant region and screened these in maxigene-transfected HEK293T cells. Candidate AONs able to promote exon inclusion were selected for further testing in patient-derived photoreceptor precursor cells. Surprisingly, no robust splicing modulation was observed in this model system. Overall, this research helped to adequately characterize the splicing alteration caused by the c.4253+43G>A variant, although future development of AON-mediated exon inclusion therapy for ABCA4 is needed.
Collapse
Affiliation(s)
- Nuria Suárez-Herrera
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alejandro Garanto
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Suárez-Herrera N, Li CHZ, Leijsten N, Karjosukarso DW, Corradi Z, Bukkems F, Duijkers L, Cremers FPM, Hoyng CB, Garanto A, Collin RWJ. Preclinical Development of Antisense Oligonucleotides to Rescue Aberrant Splicing Caused by an Ultrarare ABCA4 Variant in a Child with Early-Onset Stargardt Disease. Cells 2024; 13:601. [PMID: 38607040 PMCID: PMC11011354 DOI: 10.3390/cells13070601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Precision medicine is rapidly gaining recognition in the field of (ultra)rare conditions, where only a few individuals in the world are affected. Clinical trial design for a small number of patients is extremely challenging, and for this reason, the development of N-of-1 strategies is explored to accelerate customized therapy design for rare cases. A strong candidate for this approach is Stargardt disease (STGD1), an autosomal recessive macular degeneration characterized by high genetic and phenotypic heterogeneity. STGD1 is caused by pathogenic variants in ABCA4, and amongst them, several deep-intronic variants alter the pre-mRNA splicing process, generally resulting in the insertion of pseudoexons (PEs) into the final transcript. In this study, we describe a 10-year-old girl harboring the unique deep-intronic ABCA4 variant c.6817-713A>G. Clinically, she presents with typical early-onset STGD1 with a high disease symmetry between her two eyes. Molecularly, we designed antisense oligonucleotides (AONs) to block the produced PE insertion. Splicing rescue was assessed in three different in vitro models: HEK293T cells, fibroblasts, and photoreceptor precursor cells, the last two being derived from the patient. Overall, our research is intended to serve as the basis for a personalized N-of-1 AON-based treatment to stop early vision loss in this patient.
Collapse
Affiliation(s)
- Nuria Suárez-Herrera
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
| | - Catherina H. Z. Li
- Department of Ophthalmology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (C.H.Z.L.); (C.B.H.)
| | - Nico Leijsten
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
| | - Dyah W. Karjosukarso
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
| | - Zelia Corradi
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
| | - Femke Bukkems
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
| | - Lonneke Duijkers
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
| | - Carel B. Hoyng
- Department of Ophthalmology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (C.H.Z.L.); (C.B.H.)
- Dutch Center for RNA Therapeutics, 2311 EZ Leiden, The Netherlands
| | - Alejandro Garanto
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
- Dutch Center for RNA Therapeutics, 2311 EZ Leiden, The Netherlands
- Department of Pediatrics, Amalia Children’s Hospital, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Rob W. J. Collin
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
- Dutch Center for RNA Therapeutics, 2311 EZ Leiden, The Netherlands
| |
Collapse
|
6
|
Suárez-Herrera N, Riswick IB, Vázquez-Domínguez I, Duijkers L, Karjosukarso DW, Piccolo D, Bauwens M, De Baere E, Cheetham ME, Garanto A, Collin RWJ. Proof-of-concept for multiple AON delivery by a single U7snRNA vector to restore splicing defects in ABCA4. Mol Ther 2024; 32:837-851. [PMID: 38243599 PMCID: PMC10928313 DOI: 10.1016/j.ymthe.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/13/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024] Open
Abstract
The high allelic heterogeneity in Stargardt disease (STGD1) complicates the design of intervention strategies. A significant proportion of pathogenic intronic ABCA4 variants alters the pre-mRNA splicing process. Antisense oligonucleotides (AONs) are an attractive yet mutation-specific therapeutic strategy to restore these splicing defects. In this study, we experimentally assessed the potential of a splicing modulation therapy to target multiple intronic ABCA4 variants. AONs were inserted into U7snRNA gene cassettes and tested in midigene-based splice assays. Five potent antisense sequences were selected to generate a multiple U7snRNA cassette construct, and this combination vector showed substantial rescue of all of the splicing defects. Therefore, the combination cassette was used for viral synthesis and assessment in patient-derived photoreceptor precursor cells (PPCs). Simultaneous delivery of several modified U7snRNAs through a single AAV, however, did not show substantial splicing correction, probably due to suboptimal transduction efficiency in PPCs and/or a heterogeneous viral population containing incomplete AAV genomes. Overall, these data demonstrate the potential of the U7snRNA system to rescue multiple splicing defects, but also suggest that AAV-associated challenges are still a limiting step, underscoring the need for further optimization before implementing this strategy as a potential treatment for STGD1.
Collapse
Affiliation(s)
- Nuria Suárez-Herrera
- Radboud University Medical Center, Department of Human Genetics, 6525GA Nijmegen, the Netherlands
| | - Iris B Riswick
- Radboud University Medical Center, Department of Human Genetics, 6525GA Nijmegen, the Netherlands
| | - Irene Vázquez-Domínguez
- Radboud University Medical Center, Department of Human Genetics, 6525GA Nijmegen, the Netherlands
| | - Lonneke Duijkers
- Radboud University Medical Center, Department of Human Genetics, 6525GA Nijmegen, the Netherlands
| | - Dyah W Karjosukarso
- Radboud University Medical Center, Department of Human Genetics, 6525GA Nijmegen, the Netherlands
| | | | - Miriam Bauwens
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| | - Elfride De Baere
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| | | | - Alejandro Garanto
- Radboud University Medical Center, Department of Human Genetics, 6525GA Nijmegen, the Netherlands; Radboud University Medical Center, Amalia Children's Hospital, Department of Pediatrics, Nijmegen 6252GA, the Netherlands
| | - Rob W J Collin
- Radboud University Medical Center, Department of Human Genetics, 6525GA Nijmegen, the Netherlands.
| |
Collapse
|
7
|
Tse V, Chacaltana G, Gutierrez M, Forino N, Jimenez A, Tao H, Do P, Oh C, Chary P, Quesada I, Hamrick A, Lee S, Stone M, Sanford J. An intronic RNA element modulates Factor VIII exon-16 splicing. Nucleic Acids Res 2024; 52:300-315. [PMID: 37962303 PMCID: PMC10783525 DOI: 10.1093/nar/gkad1034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Pathogenic variants in the human Factor VIII (F8) gene cause Hemophilia A (HA). Here, we investigated the impact of 97 HA-causing single-nucleotide variants on the splicing of 11 exons from F8. For the majority of F8 exons, splicing was insensitive to the presence of HA-causing variants. However, splicing of several exons, including exon-16, was impacted by variants predicted to alter exonic splicing regulatory sequences. Using exon-16 as a model, we investigated the structure-function relationship of HA-causing variants on splicing. Intriguingly, RNA chemical probing analyses revealed a three-way junction structure at the 3'-end of intron-15 (TWJ-3-15) capable of sequestering the polypyrimidine tract. We discovered antisense oligonucleotides (ASOs) targeting TWJ-3-15 partially rescue splicing-deficient exon-16 variants by increasing accessibility of the polypyrimidine tract. The apical stem loop region of TWJ-3-15 also contains two hnRNPA1-dependent intronic splicing silencers (ISSs). ASOs blocking these ISSs also partially rescued splicing. When used in combination, ASOs targeting both the ISSs and the region sequestering the polypyrimidine tract, fully rescue pre-mRNA splicing of multiple HA-linked variants of exon-16. Together, our data reveal a putative RNA structure that sensitizes F8 exon-16 to aberrant splicing.
Collapse
Affiliation(s)
- Victor Tse
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Guillermo Chacaltana
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Martin Gutierrez
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Nicholas M Forino
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Arcelia G Jimenez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Hanzhang Tao
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Phong H Do
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Catherine Oh
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Priyanka Chary
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Isabel Quesada
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Antonia Hamrick
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Sophie Lee
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Jeremy R Sanford
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| |
Collapse
|
8
|
Kaltak M, de Bruijn P, van Leeuwen W, Platenburg G, Cremers FPM, Collin RWJ, Swildens J. QR-1011 restores defective ABCA4 splicing caused by multiple severe ABCA4 variants underlying Stargardt disease. Sci Rep 2024; 14:684. [PMID: 38182646 PMCID: PMC10770117 DOI: 10.1038/s41598-024-51203-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
Stargardt disease type 1 (STGD1), the most common form of hereditary macular dystrophy, can be caused by biallelic combinations of over 2200 variants in the ABCA4 gene. This leads to reduced or absent ABCA4 protein activity, resulting in toxic metabolite accumulation in the retina and damage of the retinal pigment epithelium and photoreceptors. Approximately 21% of all ABCA4 variants that contribute to disease influence ABCA4 pre-mRNA splicing. This emphasizes the need for therapies to restore disrupted ABCA4 splicing and halt STGD1 progression. Previously, QR-1011, an antisense oligonucleotide (AON), successfully corrected splicing abnormalities and restored normal ABCA4 protein translation in human retinal organoids carrying the prevalent disease-causing variant c.5461-10T>C in ABCA4. Here, we investigated whether QR-1011 could also correct splicing in four less common non-canonical splice site (NCSS) variants flanking ABCA4 exon 39: c.5461-8T>G, c.5461-6T>C, c.5584+5G>A and c.5584+6T>C. We administered QR-1011 and three other AONs to midigene-transfected cells and demonstrate that QR-1011 had the most pronounced effect on splicing compared to the others. Moreover, QR-1011 significantly increased full-length ABCA4 transcript levels for c.5461-8T>G and c.5584+6T>C. Splicing restoration could not be achieved in the other two variants, suggesting their more severe effect on splicing. Overall, QR-1011, initially developed for a single ABCA4 variant, exhibited potent splice correction capabilities for two additional severe NCSS variants nearby. This suggests the possibility of a broader therapeutic impact of QR-1011 extending beyond its original target and highlights the potential for treating a larger population of STGD1 patients affected by multiple severe ABCA4 variants with a single AON.
Collapse
Affiliation(s)
- Melita Kaltak
- R&D Department, ProQR Therapeutics, Zernikedreef 9, 2333 CK, Leiden, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Petra de Bruijn
- R&D Department, ProQR Therapeutics, Zernikedreef 9, 2333 CK, Leiden, The Netherlands
| | - Willemijn van Leeuwen
- R&D Department, ProQR Therapeutics, Zernikedreef 9, 2333 CK, Leiden, The Netherlands
| | - Gerard Platenburg
- R&D Department, ProQR Therapeutics, Zernikedreef 9, 2333 CK, Leiden, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Jim Swildens
- R&D Department, ProQR Therapeutics, Zernikedreef 9, 2333 CK, Leiden, The Netherlands.
| |
Collapse
|
9
|
Kaltak M, Corradi Z, Collin RWJ, Swildens J, Cremers FPM. Stargardt disease-associated missense and synonymous ABCA4 variants result in aberrant splicing. Hum Mol Genet 2023; 32:3078-3089. [PMID: 37555651 PMCID: PMC10586196 DOI: 10.1093/hmg/ddad129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023] Open
Abstract
Missense variants in ABCA4 constitute ~50% of causal variants in Stargardt disease (STGD1). Their pathogenicity is attributed to their direct effect on protein function, whilst their potential impact on pre-mRNA splicing disruption remains poorly understood. Interestingly, synonymous ABCA4 variants have previously been classified as 'severe' variants based on in silico analyses. Here, we systemically investigated the role of synonymous and missense variants in ABCA4 splicing by combining computational predictions and experimental assays. To identify variants of interest, we used SpliceAI to ascribe defective splice predictions on a dataset of 5579 biallelic STGD1 probands. We selected those variants with predicted delta scores for acceptor/donor gain > 0.20, and no previous reports on their effect on splicing. Fifteen ABCA4 variants were selected, 4 of which were predicted to create a new splice acceptor site and 11 to create a new splice donor site. In addition, three variants of interest with delta scores < 0.20 were included. The variants were introduced in wild-type midigenes that contained 4-12 kb of ABCA4 genomic sequence, which were subsequently expressed in HEK293T cells. By using RT-PCR and Sanger sequencing, we identified splice aberrations for 16 of 18 analyzed variants. SpliceAI correctly predicted the outcomes for 15 out of 18 variants, illustrating its reliability in predicting the impact of coding ABCA4 variants on splicing. Our findings highlight a causal role for coding ABCA4 variants in splicing aberrations, improving the severity assessment of missense and synonymous ABCA4 variants, and guiding to new treatment strategies for STGD1.
Collapse
Affiliation(s)
- Melita Kaltak
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
- R&D Department, ProQR Therapeutics, Leiden, 2333 CK, The Netherlands
| | - Zelia Corradi
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Jim Swildens
- R&D Department, ProQR Therapeutics, Leiden, 2333 CK, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| |
Collapse
|
10
|
Kelley RA, Wu Z. Utilization of the retinal organoid model to evaluate the feasibility of genetic strategies to ameliorate retinal disease(s). Vision Res 2023; 210:108269. [PMID: 37295270 DOI: 10.1016/j.visres.2023.108269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
Organoid models have quickly become a popular research tool to evaluate novel therapeutics on 3-D recapitulated tissue. This has enabled researchers to use physiologically relevant human tissue in vitro to augment the standard use of immortalized cells and animal models. Organoids can also provide a model when an engineered animal cannot recreate a specific disease phenotype. In particular, the retinal research field has taken advantage of this burgeoning technology to provide insight into inherited retinal disease(s) mechanisms and therapeutic intervention to ameliorate their effects. In this review we will discuss the use of both wild-type and patient-specific retinal organoids to further gene therapy research that could potentially prevent retinal disease(s) progression. Furthermore, we will discuss the pitfalls of current retinal organoid technology and present potential solutions that could overcome these hurdles in the near future.
Collapse
Affiliation(s)
- Ryan A Kelley
- PTC Therapeutics, 100 Corporate Ct #2400, South Plainfield, NJ 07080, USA.
| | - Zhijian Wu
- PTC Therapeutics, 100 Corporate Ct #2400, South Plainfield, NJ 07080, USA
| |
Collapse
|
11
|
Kaltak M, Blanco-Garavito R, Molday LL, Dhaenens CM, Souied EE, Platenburg G, Swildens J, Molday RS, Cremers FPM. Stargardt disease-associated in-frame ABCA4 exon 17 skipping results in significant ABCA4 function. J Transl Med 2023; 21:546. [PMID: 37587475 PMCID: PMC10428568 DOI: 10.1186/s12967-023-04406-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND ABCA4, the gene implicated in Stargardt disease (STGD1), contains 50 exons, of which 17 contain multiples of three nucleotides. The impact of in-frame exon skipping is yet to be determined. Antisense oligonucleotides (AONs) have been investigated in Usher syndrome-associated genes to induce skipping of in-frame exons carrying severe variants and mitigate their disease-linked effect. Upon the identification of a STGD1 proband carrying a novel exon 17 canonical splice site variant, the activity of ABCA4 lacking 22 amino acids encoded by exon 17 was examined, followed by design of AONs able to induce exon 17 skipping. METHODS A STGD1 proband was compound heterozygous for the splice variant c.2653+1G>A, that was predicted to result in in-frame skipping of exon 17, and a null variant [c.735T>G, p.(Tyr245*)]. Clinical characteristics of this proband were studied using multi-modal imaging and complete ophthalmological examination. The aberrant splicing of c.2653+1G>A was investigated in vitro in HEK293T cells with wild-type and mutant midigenes. The residual activity of the mutant ABCA4 protein lacking Asp864-Gly885 encoded by exon 17 was analyzed with all-trans-retinal-activated ATPase activity assay, along with its subcellular localization. To induce exon 17 skipping, the effect of 40 AONs was examined in vitro in WT WERI-Rb-1 cells and 3D human retinal organoids. RESULTS Late onset STGD1 in the proband suggests that c.2653+1G>A does not have a fully deleterious effect. The in vitro splice assay confirmed that this variant leads to ABCA4 transcripts without exon 17. ABCA4 Asp864_Gly863del was stable and retained 58% all-trans-retinal-activated ATPase activity compared to WT ABCA4. This sequence is located in an unstructured linker region between transmembrane domain 6 and nucleotide-binding domain-1 of ABCA4. AONs were designed to possibly reduce pathogenicity of severe variants harbored in exon 17. The best AON achieved 59% of exon 17 skipping in retinal organoids. CONCLUSIONS Exon 17 deletion in ABCA4 does not result in the absence of protein activity and does not cause a severe STGD1 phenotype when in trans with a null allele. By applying AONs, the effect of severe variants in exon 17 can potentially be ameliorated by exon skipping, thus generating partial ABCA4 activity in STGD1 patients.
Collapse
Affiliation(s)
- Melita Kaltak
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- ProQR Therapeutics, Leiden, The Netherlands
| | - Rocio Blanco-Garavito
- Department of Ophthalmology, Intercommunal Hospital Center and Henri Mondor Hospital, Paris-Est Créteil University, Creteil, France
| | - Laurie L Molday
- Department of Biochemistry and Molecular Biology, Department of Ophthalmology and Visual Sciences, Centre for Macular Research, University of British Columbia, Vancouver, BC, Canada
| | - Claire-Marie Dhaenens
- University of Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience & Cognition, Lille, France
| | - Eric E Souied
- Department of Ophthalmology, Intercommunal Hospital Center and Henri Mondor Hospital, Paris-Est Créteil University, Creteil, France
| | | | | | - Robert S Molday
- Department of Biochemistry and Molecular Biology, Department of Ophthalmology and Visual Sciences, Centre for Macular Research, University of British Columbia, Vancouver, BC, Canada
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|