1
|
Belenichev I, Popazova O, Yadlovskyi O, Bukhtiyarova N, Ryzhenko V, Pavlov S, Oksenych V, Kamyshnyi O. Possibility of Using NO Modulators for Pharmacocorrection of Endothelial Dysfunction After Prenatal Hypoxia. Pharmaceuticals (Basel) 2025; 18:106. [PMID: 39861168 PMCID: PMC11768627 DOI: 10.3390/ph18010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Prenatal hypoxia (PH) is a key factor in the development of long-term cardiovascular disorders, which are caused by various mechanisms of endothelial dysfunction (ED), including those associated with NO deficiency. This emphasizes the potential of therapeutic agents with NO modulator properties, such as Thiotriazoline, Angiolin, Mildronate, and L-arginine, in the treatment of PH. Methods: Pregnant female rats were given a daily intraperitoneal dose of 50 mg/kg of sodium nitrite starting on the 16th day of pregnancy. A control group of pregnant rats received saline instead. The resulting offspring were divided into the following groups: Group 1-intact rats; Group 2-rat pups subjected to prenatal hypoxia (PH) and treated daily with physiological saline; and Groups 3 to 6-rat pups exposed to prenatal hypoxia and treated daily from the 1st to the 30th day after birth. Levels of sEPCR, Tie2 tyrosine kinase, VEGF-B, SOD1/Cu-Zn SOD, GPX4, and GPX1 in the heart's cytosolic homogenate were assessed using ELISA. The expression of VEGF and VEGF-B mRNA was analyzed via real-time polymerase chain reaction, and the nuclear area of myocardial microvessel endothelial cells was evaluated morphometrically. Results: We have shown that only two representatives of this group-Angiolin and Thiotriazoline-are able to exert full effect on the indices of endothelial dysfunction after PH to decrease sEPCR, increase Tie-2, VEGF-B and VEGF-B mRNA, Cu/ZnSOD, and GPX in myocardial cytosol, and increase the area of endotheliocyte nuclei in 1- and 2-month-old rats in comparison with the control. Conclusions: Our results experimentally substantiate the necessity of early postnatal cardio- and endothelioprotection using NO modulators, taking into account the role of NO-dependent mechanisms in the pathogenesis of cardiovascular system disorders in neonates after PH.
Collapse
Affiliation(s)
- Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine;
| | - Olena Popazova
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
- Institute of Pharmacology and Toxicology, National Medical Academy of Ukraine, 03057 Kyiv, Ukraine
| | - Oleh Yadlovskyi
- Institute of Pharmacology and Toxicology, National Medical Academy of Ukraine, 03057 Kyiv, Ukraine
| | - Nina Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Victor Ryzhenko
- Department of Medical and Pharmaceutical Informatics and Advanced Technologies, Zaporizhzhia State Medical University, 69000 Zaporizhzhia, Ukraine
| | - Sergii Pavlov
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | | | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil State Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
2
|
Jarosz A, Nowak T, Szyluk K, Balcerzyk-Matić A, Iwanicki T, Iwanicka J, Kalita M, Gawron K, Kania W, Niemiec P. The VEGFB Gene Variants and the Effectiveness of Platelet-Rich Plasma Treatment of Lateral Elbow Tendinopathy: A Prospective Cohort Study with a Two-Year Follow-Up. Int J Mol Sci 2024; 25:13166. [PMID: 39684876 DOI: 10.3390/ijms252313166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Platelet-rich plasma (PRP) is an autologous preparation used to accelerate regeneration; however, this form of therapy is not always effective. Vascular endothelial growth factor B (VEGFB), which affects vessel survival, pathological angiogenesis, and muscle development may differentiate the risk and treatment of lateral elbow tendinopathy (LET). In this study, we analyzed the influence of VEGFB gene polymorphisms on the effectiveness of LET treatment with PRP. Therapeutic effectiveness was analyzed in 107 patients (132 elbows) using patient-reported outcome measures (PROMs), specifically the visual analog scale (VAS); quick version of disabilities of the arm, shoulder, and hand score (QDASH); and patient-rated tennis elbow evaluation (PRTEE), for two years (weeks 2, 4, 8, 12, 24, 52, and 104). The polymorphisms selected for the study were rs72922019, rs12366035, rs4930152, rs594942, and rs595880, being in strong linkage disequilibrium. Patients with TT (rs72922019), TT (rs12366035), AA (rs4930152), CC (rs594942), and GG (rs595880) genotypes showed better treatment effectiveness. Statistically important differences were shown for rs72922019 VAS (week 2), QDASH (weeks 0-4), and PRTEE (week 2); rs12366035 and rs4930152 VAS (week 2), QDASH (week 2), and PRTEE (weeks 2 and 4); and rs594942 and rs595880 VAS (weeks 2 and 4), QDASH (week 2), and PRTEE (weeks 2, 52, and 104). The studied polymorphisms also showed an association with blood morphological parameters, including mean platelet volume, platelet distribution width, and eosinophil levels, as well as some comorbidities (heart failure). Genotyping due to patient selection for therapy may be considered for any of the rs72922019, rs12366035, or rs4930152 polymorphisms.
Collapse
Affiliation(s)
- Alicja Jarosz
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow 18 Str., 40-752 Katowice, Poland
| | - Tomasz Nowak
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow 18 Str., 40-752 Katowice, Poland
| | - Karol Szyluk
- District Hospital of Orthopaedics and Trauma Surgery, Bytomska 62 Str., 41-940 Piekary Slaskie, Poland
- Department of Physiotherapy, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow 12 Str., 40-752 Katowice, Poland
| | - Anna Balcerzyk-Matić
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow 18 Str., 40-752 Katowice, Poland
| | - Tomasz Iwanicki
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow 18 Str., 40-752 Katowice, Poland
| | - Joanna Iwanicka
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow 18 Str., 40-752 Katowice, Poland
| | - Marcin Kalita
- District Hospital of Orthopaedics and Trauma Surgery, Bytomska 62 Str., 41-940 Piekary Slaskie, Poland
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland
| | - Wojciech Kania
- Department of Trauma and Orthopedic Surgery, Multidisciplinary Hospital in Jaworzno, Chelmonskiego 28 Str., 43-600 Jaworzno, Poland
| | - Paweł Niemiec
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow 18 Str., 40-752 Katowice, Poland
| |
Collapse
|
3
|
Ceci C, Lacal PM, Barbaccia ML, Mercuri NB, Graziani G, Ledonne A. The VEGFs/VEGFRs system in Alzheimer's and Parkinson's diseases: Pathophysiological roles and therapeutic implications. Pharmacol Res 2024; 201:107101. [PMID: 38336311 DOI: 10.1016/j.phrs.2024.107101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
The vascular endothelial growth factors (VEGFs) and their cognate receptors (VEGFRs), besides their well-known involvement in physiological angiogenesis/lymphangiogenesis and in diseases associated to pathological vessel formation, play multifaceted functions in the central nervous system (CNS). In addition to shaping brain development, by controlling cerebral vasculogenesis and regulating neurogenesis as well as astrocyte differentiation, the VEGFs/VEGFRs axis exerts essential functions in the adult brain both in physiological and pathological contexts. In this article, after describing the physiological VEGFs/VEGFRs functions in the CNS, we focus on the VEGFs/VEGFRs involvement in neurodegenerative diseases by reviewing the current literature on the rather complex VEGFs/VEGFRs contribution to the pathogenic mechanisms of Alzheimer's (AD) and Parkinson's (PD) diseases. Thereafter, based on the outcome of VEGFs/VEGFRs targeting in animal models of AD and PD, we discuss the factual relevance of pharmacological VEGFs/VEGFRs modulation as a novel and potential disease-modifying approach for these neurodegenerative pathologies. Specific VEGFRs targeting, aimed at selective VEGFR-1 inhibition, while preserving VEGFR-2 signal transduction, appears as a promising strategy to hit the molecular mechanisms underlying AD pathology. Moreover, therapeutic VEGFs-based approaches can be proposed for PD treatment, with the aim of fine-tuning their brain levels to amplify neurotrophic/neuroprotective effects while limiting an excessive impact on vascular permeability.
Collapse
Affiliation(s)
- Claudia Ceci
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Maria Luisa Barbaccia
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Biagio Mercuri
- Neurology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; IRCCS Santa Lucia Foundation, Department of Experimental Neuroscience, Rome, Italy; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Grazia Graziani
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Ada Ledonne
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; IRCCS Santa Lucia Foundation, Department of Experimental Neuroscience, Rome, Italy; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
4
|
Robbin V, Bansal V, Siddiqui F, Allen M, Hoppensteadt-Moorman D, Kantarcioglu B, Abulencia E, Magpoc E, Fareed J, Syed M. Endogenous Dysregulation of Thromboinflammatory Biomarkers in End-Stage Renal Disease, and Their Amplification by Heart Failure. Clin Appl Thromb Hemost 2024; 30:10760296241263858. [PMID: 39140866 PMCID: PMC11325466 DOI: 10.1177/10760296241263858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
In patients with end-stage renal disease (ESRD), heart failure with reduced ejection fraction (HFrEF) is a common comorbidity. Thromboinflammatory processes in both conditions represent complex pathophysiology, demonstrated by dysregulation of thromboinflammatory biomarkers, and commonly resulting in the combined pathology of cardiorenal syndrome. We sought to investigate the effects of HFrEF on these biomarkers in patients with ESRD, and observe the relationship to mortality. Blood samples from 73 patients with ESRD (mean age 67 ± 13 years, 56% male) and 40 healthy controls were analyzed via enzyme-linked immunosorbent assay and other chromogenic methods for angiopoietin-2 (Ang2), endogenous glycosaminoglycans, fatty acid binding protein, interleukin-6, lipopolysaccharide, free fatty acids, NT-pro B-type natriuretic peptide, tumor necrosis factor α, vascular endothelial growth factor, and von Willebrand factor. Patients were stratified into those with or without HFrEF (EF < 50%). Patients had highly prevalent comorbidities including coronary artery disease 46%, diabetes 69%, hypertension 97%, and smoking 49%. Most biomarkers were upregulated in ESRD compared to controls. Patients with HFrEF and ESRD had greater interleukin-6 and NT-pro B-type natriuretic peptide and lesser lipopolysaccharide compared to ESRD only. Spearman correlations between most biomarkers were increased in HFrEF + ESRD over ESRD only. Ang-2 was associated with mortality in this cohort. The dysregulation of thromboinflammation in ESRD is somewhat amplified in comorbid HFrEF. Correlation among biomarkers in this cohort indicates the mechanisms of thromboinflammatory biomarker generation in ESRD and HFrEF share an integrative process. Ang2, interleukin-6, and lipopolysaccharide show promise as biomarkers for risk stratification among patients with both HFrEF and ESRD.
Collapse
Affiliation(s)
- Vanessa Robbin
- Department of Vascular Biology and Hemostasis, Cardiovascular Research Institute, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| | - Vinod Bansal
- Department of Nephrology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| | - Fakiha Siddiqui
- Department of Vascular Biology and Hemostasis, Cardiovascular Research Institute, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
- Program in Health Sciences. UCAM - Universidad Católica San Antonio de Murcia, Spain
| | - Madeline Allen
- Department of Vascular Biology and Hemostasis, Cardiovascular Research Institute, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| | - Debra Hoppensteadt-Moorman
- Department of Vascular Biology and Hemostasis, Cardiovascular Research Institute, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| | - Bulent Kantarcioglu
- Department of Vascular Biology and Hemostasis, Cardiovascular Research Institute, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| | - Emma Abulencia
- Department of Nephrology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| | - Evangeline Magpoc
- Department of Nephrology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| | - Jawed Fareed
- Department of Vascular Biology and Hemostasis, Cardiovascular Research Institute, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| | - Mushabbar Syed
- Department of Cardiology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
5
|
Zhang H, Wang SL, Sun T, Liu J, Li P, Yang JC, Gao F. Role of circulating CD14++CD16 + monocytes and VEGF-B186 in formation of collateral circulation in patients with hyperacute AMI. Heliyon 2023; 9:e17692. [PMID: 37456037 PMCID: PMC10345246 DOI: 10.1016/j.heliyon.2023.e17692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Collateral formation is insufficient in some patients with acute myocardial infarction (AMI). Peripheral blood CD14++CD16+ monocytes (intermediate monocytes; IM) and vascular endothelial growth factors (VEGFs) are associated with formation of collateral circulation. Methods We enrolled 49 patients with AMI who underwent emergency percutaneous transluminal coronary intervention (PCI) (Group A) and 27 patients underwent delayed PCI 1 week after AMI (Group B). The percentage of circulating IM and levels of VEGFs in circulation were determined on day 8th. Left ventricular ejection fraction (LVEF) was measured 3 months after AMI. Results The peripheral levels of IM and serum VEGF levels on day 8th were significantly higher in patients with well-developed collateral circulation in Group A than those in Group B. The levels of circulating VEGFs in the collateral circulation (+) subgroup in Group B were lower than those in the collateral circulation (-) subgroup. Moreover, the serum VEGF-B186 levels positively correlated with IM. Conclusions Hyperacute collateral formation in patients with AMI correlated with a higher percentage of CD14++CD16+ monocytes and VEGF-B186 levels in the circulation, which was associated with milder left ventricular remodeling. The regulation of CD14++CD16+ monocytes and VEGF-B may be critical to the formation of collateral circulation and to healing AMI.
Collapse
Affiliation(s)
- He Zhang
- Department of Cardiology, The Third Hospital of Shijiazhuang City, Shijiazhuang, 050000, China
| | - Shi-lei Wang
- Catheter Lab, The Third Hospital of Shijiazhuang City, Shijiazhuang, 050000, China
| | - Tao Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University Beijing, 100011, China
| | - Jia Liu
- Department of Cardiology, Hebei Provincial People's Hospital, Shijiazhuang, 050000, China
| | - Ping Li
- Department of Medical Affairs, The Third Hospital of Shijiazhuang City, Shijiazhuang, 050000, China
| | - Jing-ci Yang
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Fang Gao
- Department of Infectious Diseases, The Third Hospital of Shijiazhuang City, Shijiazhuang, 050000, China
| |
Collapse
|
6
|
Yang X, Cheng K, Wang LY, Jiang JG. The role of endothelial cell in cardiac hypertrophy: Focusing on angiogenesis and intercellular crosstalk. Biomed Pharmacother 2023; 163:114799. [PMID: 37121147 DOI: 10.1016/j.biopha.2023.114799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023] Open
Abstract
Cardiac hypertrophy is characterized by cardiac structural remodeling, fibrosis, microvascular rarefaction, and chronic inflammation. The heart is structurally organized by different cell types, including cardiomyocytes, fibroblasts, endothelial cells, and immune cells. These cells highly interact with each other by a number of paracrine or autocrine factors. Cell-cell communication is indispensable for cardiac development, but also plays a vital role in regulating cardiac response to damage. Although cardiomyocytes and fibroblasts are deemed as key regulators of hypertrophic stimulation, other cells, including endothelial cells, also exert important effects on cardiac hypertrophy. More particularly, endothelial cells are the most abundant cells in the heart, which make up the basic structure of blood vessels and are widespread around other cells in the heart, implicating the great and inbuilt advantage of intercellular crosstalk. Cardiac microvascular plexuses are essential for transport of liquids, nutrients, molecules and cells within the heart. Meanwhile, endothelial cell-mediated paracrine signals have multiple positive or negative influences on cardiac hypertrophy. However, a comprehensive discussion of these influences and consequences is required. This review aims to summarize the basic function of endothelial cells in angiogenesis, with an emphasis on angiogenic molecules under hypertrophic conditions. The secondary objective of the research is to fully discuss the key molecules involved in the intercellular crosstalk and the endothelial cell-mediated protective or detrimental effects on other cardiac cells. This review provides a more comprehensive understanding of the overall role of endothelial cells in cardiac hypertrophy and guides the therapeutic approaches and drug development of cardiac hypertrophy.
Collapse
Affiliation(s)
- Xing Yang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430000, China
| | - Kun Cheng
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Lu-Yun Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430000, China.
| | - Jian-Gang Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430000, China.
| |
Collapse
|