1
|
Cao X, Fang H, Zhou L. CircNRIP1 promotes proliferation, migration and phenotypic switch of Ang II-induced HA-VSMCs by increasing CXCL5 mRNA stability via recruiting IGF2BP1. Autoimmunity 2024; 57:2304820. [PMID: 38269483 DOI: 10.1080/08916934.2024.2304820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/07/2024] [Indexed: 01/26/2024]
Abstract
Circular RNA (circRNA) has been found to be differentially expressed and involved in regulating the processes of human diseases, including thoracic aortic dissection (TAD). However, the role and mechanism of circNRIP1 in the TAD process are still unclear. GEO database was used to screen the differentially expressed circRNA and mRNA in type A TAD patients and age-matched normal donors. Angiotensin II (Ang II)-induced human aortic vascular smooth muscle cells (HA-VSMCs) were used to construct TAD cell models. The expression levels of circNRIP1, NRIP1, CXC-motif chemokine 5 (CXCL5) and IGF2BP1 were detected by quantitative real-time PCR. Cell proliferation and migration were determined by EdU assay, transwell assay and wound healing assay. The protein levels of synthetic phenotype markers, contractile phenotype markers, CXCL5 and IGF2BP1 were tested by western blot analysis. The interaction between IGF2BP1 and circNRIP1/CXCL5 was confirmed by RIP assay, and CXCL5 mRNA stability was assessed by actinomycin D assay. CircNRIP1 was upregulated in TAD patients and Ang II-induced HA-VSMCs. Knockdown of circNRIP1 suppressed Ang II-induced proliferation, migration and phenotypic switch of HA-VSMCs. Also, high expression of CXCL5 was observed in TAD patients, and its knockdown could inhibit Ang II-induced HA-VSMCs proliferation, migration and phenotypic switch. Moreover, CXCL5 overexpression reversed the regulation of circNRIP1 knockdown on Ang II-induced HA-VSMCs functions. Mechanistically, circNRIP1 could competitively bind to IGF2BP1 and subsequently enhance CXCL5 mRNA stability. CircNRIP1 might contribute to TAD progression by promoting CXCL5 mRNA stability via recruiting IGF2BP1.
Collapse
Affiliation(s)
- Xianzhao Cao
- Department of Cardiothoracic Surgery, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| | - Hongyan Fang
- Department of Emergency Surgery, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| | - Longshu Zhou
- Department of Cardiothoracic Surgery, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
2
|
Luo X, Shi J, Wang S, Jin X. The role of circular RNA targeting IGF2BPs in cancer-a potential target for cancer therapy. J Mol Med (Berl) 2024; 102:1297-1314. [PMID: 39287635 DOI: 10.1007/s00109-024-02488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/01/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Circular RNAs (circRNAs) are an interesting class of conserved single-stranded RNA molecules derived from exon or intron sequences produced by the reverse splicing of precursor mRNA. CircRNAs play important roles as microRNA sponges, gene splicing and transcriptional regulators, RNA-binding protein sponges, and protein/peptide translation factors. Abnormal functions of circRNAs and RBPs in tumor progression have been widely reported. Insulin-like growth factor-2 mRNA-binding proteins (IGF2BPs) are a highly conserved family of RBPs identified in humans that function as post-transcriptional fine-tuners of target transcripts. Emerging evidence suggests that IGF2BPs regulate the processing and metabolism of RNA, including its stability, translation, and localization, and participate in a variety of cellular functions and pathophysiology. In this review, we have summarized the roles and molecular mechanisms of circRNAs and IGF2BPs in cancer development and progression. In addition, we briefly introduce the role of other RNAs and IGF2BPs in cancer, discuss the current clinical applications and challenges faced by circRNAs and IGF2BPs, and propose future directions for this promising research field.
Collapse
Affiliation(s)
- Xia Luo
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jiaxin Shi
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Siyuan Wang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
3
|
Liu W, Sun Y, Huo Y, Zhang L, Zhang N, Yang M. Circular RNAs in lung cancer: implications for preventing therapeutic resistance. EBioMedicine 2024; 107:105309. [PMID: 39191172 PMCID: PMC11445705 DOI: 10.1016/j.ebiom.2024.105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
LC is one of the most common malignant tumours that often presents with no distinct symptoms in the early stages, leading to late diagnoses when patients are at an advanced stage and no longer suitable for surgical treatment. Although adjuvant treatments are available, patients frequently develop tolerance to these treatments over time, resulting in poor prognoses for patients with advanced LC. Recently, circular RNAs (circRNAs), a type of non-coding RNA, have gained significant attention in LC research. Owing to their unique circular structure, circRNAs are highly stable within cells. This review systematically summarises the expression, characteristics, biological functions, and molecular regulatory mechanisms of circRNAs involved in therapy resistance as well as the potential applications in early diagnosis and gene targeting therapy in LC.
Collapse
Affiliation(s)
- Wenjuan Liu
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, Shandong Province, China
| | - Yawen Sun
- Department of Scientific Research and Education, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yanfei Huo
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Long Zhang
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, Shandong Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
4
|
Feng Y, Liang L, Jia W, Wang J, Xu C, Zhu D, Xu B, Zhao W, Ling X, Zhou Y, Kong L, Ding W. Circ_0007386 Promotes the Progression of Hepatocellular Carcinoma Through the miR-507/ CCNT2 Axis. J Hepatocell Carcinoma 2024; 11:1095-1112. [PMID: 38887684 PMCID: PMC11182359 DOI: 10.2147/jhc.s459633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Background Circular RNAs (circRNAs) have been shown to play a crucial role in the initiation and development of Hepatocellular carcinoma (HCC). However, the mechanism and function of circ_0007386 in HCC are still unknown. Methods Circ_0007386 expression level in HCC tissues, and HCC cell lines was further analyzed by qRT-PCR. Agarose gel electrophoresis and Sanger sequencing were used to figure out the structure of circ_0007386. The involvement of circ_0007386 in HCC development was evaluated by experimental investigations conducted in both laboratory settings (in vitro) and living organisms (in vivo). RNA immunoprecipitation, Western blotting, luciferase reporter assay and fluorescence in situ hybridization (FISH) were applied for finding out the interaction among circ_0007386, miR-507 and CCNT2. To assess the connection between circ_0007386 and lenvatinib resistance, lenvatinib-resistant HCC cell lines were employed. Results The expression of circ_0007386 was found to increase in HCC tissues, and it was observed to be associated with a worse prognosis. Overexpression of circ_0007386 stimulated HCC cells proliferation, invasion, migration and the epithelial-mesenchymal transition (EMT) while silencing of circ_0007386 resulted in the opposite effect. Mechanistic investigations revealed that circ_0007386 acted as a competing endogenous RNA of miR-507 to prevent CCNT2 downregulation. Downregulating miR-507 or overexpressing CCNT2 could reverse phenotypic alterations that originated from inhibiting of circ_0007386. Importantly, circ_0007386 determines the resistance of hepatoma cells to lenvatinib treatment. Conclusion Circ_0007386 advanced HCC progression and lenvatinib resistance through the miR-507/ CCNT2 axis. Meanwhile, circ_0007386 served as a potential biomarker and therapeutic target in HCC patients.
Collapse
Affiliation(s)
- Yanzhi Feng
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Provincial Medical Innovation Center, Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Provincial Medical Key Laboratory, Nanjing, Jiangsu, People’s Republic of China
| | - Litao Liang
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Provincial Medical Innovation Center, Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Provincial Medical Key Laboratory, Nanjing, Jiangsu, People’s Republic of China
| | - Wenbo Jia
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Provincial Medical Innovation Center, Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Provincial Medical Key Laboratory, Nanjing, Jiangsu, People’s Republic of China
| | - Jinyi Wang
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Provincial Medical Innovation Center, Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Provincial Medical Key Laboratory, Nanjing, Jiangsu, People’s Republic of China
| | - Chao Xu
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Provincial Medical Innovation Center, Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Provincial Medical Key Laboratory, Nanjing, Jiangsu, People’s Republic of China
| | - Deming Zhu
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Provincial Medical Innovation Center, Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Provincial Medical Key Laboratory, Nanjing, Jiangsu, People’s Republic of China
| | - Bin Xu
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Provincial Medical Innovation Center, Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Provincial Medical Key Laboratory, Nanjing, Jiangsu, People’s Republic of China
| | - Wenhu Zhao
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Provincial Medical Innovation Center, Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Provincial Medical Key Laboratory, Nanjing, Jiangsu, People’s Republic of China
| | - Xiangyu Ling
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Provincial Medical Innovation Center, Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Provincial Medical Key Laboratory, Nanjing, Jiangsu, People’s Republic of China
| | - Yongping Zhou
- Jiangnan University Medical Center, JUMC, Department of Hepatobiliary, Wuxi, Jiangsu, People’s Republic of China
| | - Lianbao Kong
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Provincial Medical Innovation Center, Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Provincial Medical Key Laboratory, Nanjing, Jiangsu, People’s Republic of China
| | - Wenzhou Ding
- Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Provincial Medical Innovation Center, Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Provincial Medical Key Laboratory, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
5
|
Gong L, Liu Q, Jia M, Sun X. Systematic analysis of IGF2BP family members in non-small-cell lung cancer. Hum Genomics 2024; 18:63. [PMID: 38867248 PMCID: PMC11167947 DOI: 10.1186/s40246-024-00632-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The insulin-like growth factor-2 mRNA-binding proteins 1, 2, and 3 (IGF2BP1, IGF2BP2, and IGF2BP3) are known to be involved in tumorigenesis, metastasis, prognosis, and cancer immunity in various human cancers, including non-small cell lung cancer (NSCLC). However, the literature on NSCLC largely omits the specific context of lung squamous cell carcinoma (LUSC), an oversight we aim to address. METHODS Our study evaluated the differential expression of IGF2BP family members in tumors and normal tissues. Meta-analyses were conducted to assess the prognostic value of IGF2BPs in lung adenocarcinoma (LUAD) and LUSC. Additionally, correlations between IGF2BPs and tumor immune cell infiltration, mutation characteristics, chemotherapy sensitivity, and tumor mutation burden (TMB) were investigated. GSEA was utilized to delineate biological processes and pathways associated with IGF2BPs. RESULTS IGF2BP2 and IGF2BP3 expression were found to be upregulated in LUSC patients. IGF2BP2 mRNA levels were correlated with cancer immunity in both LUSC and LUAD patients. A higher frequency of gene mutations was observed in different IGF2BP1/2/3 expression groups in LUAD compared to LUSC. Meta-analyses revealed a significant negative correlation between overall survival (OS) and IGF2BP2/3 expression in LUAD patients but not in LUSC patients. GSEA indicated a positive association between VEGF and IGF2BP family genes in LUAD, while matrix metallopeptidase activity was inversely correlated with IGF2BP family genes in LUSC. Several chemotherapy drugs showed significantly lower IC50 values in high IGF2BP expression groups in both LUAD and LUSC. CONCLUSION Our findings indicated that IGF2BPs play different roles in LUAD and LUSC. This divergence highlights the need for tailored therapeutic strategies and prognostic tools, cognizant of the unique molecular profiles of LUAD and LUSC.
Collapse
Affiliation(s)
- Liping Gong
- Department of Academic Research, The Secondary Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Qin Liu
- Department of Cancer Center, The Secondary Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Ming Jia
- Department of Cancer Center, The Secondary Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Xifeng Sun
- Institute of Medical Sciences, The Secondary Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, P.R. China.
| |
Collapse
|
6
|
Li D, Che X, Gao N, Li J. CircSTRBP contributes to H 2O 2-induced lens epithelium cell dysfunction through increasing NOX4 mRNA stability by recruiting IGF2BP1. Exp Eye Res 2024; 241:109817. [PMID: 38340945 DOI: 10.1016/j.exer.2024.109817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/11/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Previous studies have shown that the development of age-related cataract (ARC) is involved in lens epithelium dysfunction, which is associated with abnormally expressed circular RNAs (circRNAs). The current work aims to probe the role of circSTRBP (hsa_circ_0088,427) in hydrogen peroxide (H2O2)-induced lens epitheliums. Lens epithelium tissues were harvested from ARC or normal subjects (n = 23). CircSTRBP, spermatid perinuclear RNA binding protein (STRBP), and nicotinamide adenine dinucleotide phosphate oxidase subunit 4 (NOX4) levels were measured using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Cell proliferation, cycle progression, and apoptosis were assessed using 5-ethynyl-2'-deoxyuridine (EdU), Cell Counting Kit-8 (CCK-8), and flow cytometry assays. Caspase 3 activity, reactive oxygen species (ROS), malondialdehyde (MDA), and Glutathione peroxidases (GSH-PX) levels were detected using corresponding kits. NOX4 protein level was determined using Western blot. The interaction between insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) and circSTRBP or NOX4 was assessed through RNA immunoprecipitation (RIP). CircSTRBP and NOX4 abundances were increased in lens epithelium samples from ARC patients and H2O2-treated SRA01/04 cells. CircSTRBP knockdown might abolish H2O2-triggered SRA01/04 cell proliferation repression and apoptosis and oxidative stress promotion. In mechanism, circSTRBP is bound with IGF2BP1 and improves the stability and expression of NOX4 mRNA in SRA01/04 cells. CircSTRBP facilitated H2O2-induced SRA01/04 cell apoptosis and oxidative stress through by enhancing NOX4 mRNA stability via recruiting IGF2BP1, providing novel insights for ARC progression and treatment.
Collapse
Affiliation(s)
- Di Li
- Department of Ophthalmology, Shaanxi Provincial People's Hospital, Xi'an, China.
| | - Xuanyi Che
- Department of Ophthalmology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Ningning Gao
- Department of Ophthalmology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jing Li
- Department of Ophthalmology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
7
|
Chen J, Hei R, Chen C, Wu X, Han T, Bian H, Gu J, Lu Y, Zheng Q. CircCRIM1 suppresses osteosarcoma progression via sponging miR146a-5p and targeting NUMB. Am J Cancer Res 2023; 13:3463-3481. [PMID: 37693139 PMCID: PMC10492126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 05/26/2023] [Indexed: 09/12/2023] Open
Abstract
CircCRIM1 (hsa_circ_0002346) is a circular RNA derived from gene CRIM1 (the cysteine rich transmembrane BMP regulator 1 circRNAs) by back-splicing. Recent studies have suggested the diverse function of CircCRIM1 in the tumorigenesis of multiple malignancies, including osteosarcoma (OS). Here, we investigated the role and mechanism of circCRIM1 during OS progression. Differentially expressed circRNAs (including circCRIM1) in OS and human osteoblast (hFOB1.19) cell lines were selected by searching the circRNA expression microarray dataset of GSE96964. The expression levels of circCRIM1 and its sponging miRNAs and target genes were examined by RT-qPCR. The effects of circCRIM1 on the proliferation, migration, and invasion of OS cells were investigated by in vitro gain of function experiments. The in vivo function of circCRIM1 on OS was evaluated by measuring the subcutaneous and in situ tumor growth in nude mice. In addition, dual-luciferase reporter assay and in situ hybridization (FISH) were performed to explore the underlying mechanisms of circCRIM1 and its sponging miRNAs and target genes in OS. CircCRIM1 is downregulated in human OS cell lines and predominantly presents in the cytoplasm as demonstrated by RT-qPCR and FISH assays. Overexpression of circCRIM1 suppressed the migration, invasion, proliferation of OS cells in vitro and OS tumor growth in vivo. Mechanistically, we identified miR146a-5p as a sponge miRNA of circCRIM1 through bioinformatic prediction and confirmed their interaction and colocalization via reporter gene assay and FISH analysis. This interaction leads to increase expression of the downstream target gene NUMB, which will cause inhibition of the Notch signal pathway. We further demonstrated that miR146a-5p overexpression could reverse the antitumor effect induced by circCRIM1 in OS cells. Our results support that circCRIM1 acts as a tumor suppressor in OS by sponging miR146a-5p and its downstream target NUMB.
Collapse
Affiliation(s)
- Jinnan Chen
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Ruoxuan Hei
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
- Department of Clinical Diagnose, Tangdu Hospital, Air Force Medical UniversityXi’an 710000, Shaanxi, China
| | - Chen Chen
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Xuan Wu
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Tiaotiao Han
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Huiqin Bian
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Junxia Gu
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Yaojuan Lu
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
- Shenzhen Walgenron Bio-Pharm Co., Ltd.Shenzhen 518118, Guangdong, China
| | - Qiping Zheng
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
- Shenzhen Walgenron Bio-Pharm Co., Ltd.Shenzhen 518118, Guangdong, China
| |
Collapse
|