1
|
Li R, He T, Yang M, Xu J, Li Y, Wang X, Guo X, Li M, Xu L. Regulation of Bacillus Calmette-Guérin-induced macrophage autophagy and apoptosis by the AMPK-mTOR-ULK1 pathway. Microbiol Res 2025; 290:127952. [PMID: 39476518 DOI: 10.1016/j.micres.2024.127952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/02/2024] [Accepted: 10/24/2024] [Indexed: 12/12/2024]
Abstract
Tuberculosis (TB) is a chronic wasting infectious disease caused by Mycobacterium tuberculosis (MTB) or Mycobacterium bovis that can be transmitted among people and domestic animals. During the development of TB, macrophages of the innate immune system can act against MTB via autophagy and apoptosis to prevent the spread of the disease. Among the many autophagy regulatory pathways, the adenosine monophosphate (AMP)-activated protein kinase (AMPK)-mammalian rapamycin target protein (mTOR)-Unc-51-like kinase 1 (ULK1) pathway has received considerable attention. This study investigates the regulatory role of the AMPK-mTOR-ULK1 pathway in attenuating M. bovis Bacillus Calmette-Guérin (BCG)-induced autophagy and apoptosis in murine monocyte macrophages (RAW264.7). Changes in macrophage autophagy and apoptosis were analyzed using the AMPK activator AICAR and inhibitor Compound C to interfere with the AMPK-mTOR-ULK1 pathway and siRNA to silence the pathway. Consequently, BCG stimulation of macrophages significantly activated the AMPK-mTOR-ULK1 pathway while BCG-induced macrophage AMPK activation promoted macrophage autophagy and apoptosis. Activation of the AMPK-mTOR-ULK1 pathway by AICAR significantly improved autophagy occurrence in BCG-induced macrophages and increased apoptosis while Compound C with siRNA produced opposing effects by attenuating autophagy and apoptosis in BCG-induced macrophages. Thus, the AMPK-mTOR-ULK1 pathway has a dual regulatory role in BCG-induced macrophage autophagy and apoptosis and may have synergistic effects. This study analyzes the mechanism of resistance of host cells to MTB and provides a theoretical basis for new therapeutic strategies and related drug development.
Collapse
Affiliation(s)
- Ruiqian Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Tianle He
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Min Yang
- Guyuan Vocational and Technical School, Guyuan, Ningxia 756000, China
| | - Jinghua Xu
- COFCO Feed (Yinchuan) Co., Ltd., Lingwu, Ningxia 750499, China
| | - Yongqin Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xueyan Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xuelian Guo
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Mingzhu Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Lihua Xu
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
2
|
Chu L, Liu A, Chang J, Zhang J, Hou X, Zhu X, Xing Q, Bao Z. TORC1 Regulates Thermotolerance via Modulating Metabolic Rate and Antioxidant Capacity in Scallop Argopecten irradians irradians. Antioxidants (Basel) 2024; 13:1359. [PMID: 39594501 PMCID: PMC11591371 DOI: 10.3390/antiox13111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Target of rapamycin complex 1 (TORC1) is a key regulator of metabolism in eukaryotes across multiple pathways. Although TORC1 has been extensively studied in vertebrates and some invertebrates, research on this complex in scallops is limited. In this study, we identified the genes encoding TORC1 complex subunits in the scallop Argopecten irradians irradians through genome-wide in silico scanning. Five genes, including TOR, RAPTOR, LST8, DEPTOR, and PRAS40, that encode the subunits of TORC1 complex were identified in the bay scallop. We then conducted structural characterization and phylogenetic analysis of the A. i. irradians TORC1 (AiTORC1) subunits to determine their structural features and evolutionary relationships. Next, we analyzed the spatiotemporal expressions of AiTORC1-coding genes during various embryo/larvae developmental stages and across different tissues in healthy adult scallops. The results revealed stage- and tissue-specific expression patterns, suggesting diverse roles in development and growth. Furthermore, the regulation of AiTORC1-coding genes was examined in temperature-sensitive tissues (the mantle, gill, hemocyte, and heart) of bay scallops exposed to high-temperature (32 °C) stress over different durations (0 h, 6 h, 12 h, 24 h, 3 d, 6 d, and 10 d). The expression of AiTORC1-coding genes was predominantly suppressed in the hemocyte but was generally activated in the mantle, gill, and heart, indicating a tissue-specific response to heat stress. Finally, functional validation was performed using the TOR inhibitor rapamycin to suppress AiTORC1, leading to an enhanced catabolism, a decreased antioxidant capacity, and a significant reduction in thermotolerance in bay scallops. Collectively, this study elucidates the presence, structural features, evolutional relationships, expression profiles, and roles in antioxidant capacity and metabolism regulation of AiTORC1 in the bay scallop, providing a preliminary understanding of its versatile functions in response to high-temperature challenges in marine mollusks.
Collapse
Affiliation(s)
- Longfei Chu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Ancheng Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Jiaxi Chang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Xinghai Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
3
|
Cheng X, Dai Y, Shang B, Zhang S, Lin L, Wu Q, Zhan R, Li S, Liu S. Danggui Shaoyao San and disassembled prescription: neuroprotective effects via AMPK/mTOR-mediated autophagy in mice. BMC Complement Med Ther 2024; 24:298. [PMID: 39127649 PMCID: PMC11317013 DOI: 10.1186/s12906-024-04588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Danggui Shaoyao San (DSS), a frequently prescribed Chinese medicine formula, has demonstrated clinical efficacy in the treatment of Alzheimer's disease (AD). This study aims to explore the differences in therapeutic effects of DSS and its disassembled prescriptions, Suangan (SG) and Xingan (XG), in treating Alzheimer's Disease and the mechanism of DSS recovering autophagy in AD. METHODS A network pharmacology strategy was employed to delineate the bioactive constituents, associated targets, and regulatory mechanisms of DSS in AD, encompassing in silico target forecasting, the generation and scrutiny of PPI networks, alongside GO and KEGG-based pathway elucidation. An AD mouse model, induced by intracerebroventricular injection of Aβ1-42, was used to evaluate the therapeutic effects of DSS and its disassembled prescriptions on AD. Cognitive function was evaluated using the Morris water maze. Expression levels of inflammatory cytokines were quantified via RT-qPCR and ELISA. Western blotting was used to detect the expression of proteins related to AD pathological markers and the AMPK/mTOR signaling pathway. RESULTS 50 active compounds and 718 HUB genes were screened from relevant databases and literature. KEGG and GO analyses indicated that DSS's potential mechanisms against AD involved the AMPK/mTOR signaling pathway and mitophagy. In vivo animal model, the results demonstrated that DSS, SG, and XG treatments improved cognitive function and ameliorated neuroinflammation in mice. Additionally, they alleviated the pathological changes of neuronal cells. These treatments also increased the protein level of PSD-95, and decreased levels of APP and p-Tau. Among them, DSS exhibited the best efficacy. Furthermore, DSS, SG, and XG upregulated the expression of LC3, Beclin1, and p-AMPK, while decreasing the expression of P62 and p-mTOR. CONCLUSIONS DSS, SG, and XG were found to ameliorate AD-related pathological symptoms in Aβ1-42-injected mice, likely through the AMPK/mTOR autophagy signaling pathway.
Collapse
Affiliation(s)
- Xiaoqing Cheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China
| | - Yuqiong Dai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China
| | - Baoling Shang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shuting Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China
| | - Liting Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China
| | - Qingguang Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China
| | - Ruoting Zhan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengqing Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China.
| | - Sijun Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
4
|
Ohtsuka H, Ohara K, Shimasaki T, Hatta Y, Maekawa Y, Aiba H. A novel transcription factor Sdr1 involving sulfur depletion response in fission yeast. Genes Cells 2024; 29:667-680. [PMID: 39105351 DOI: 10.1111/gtc.13136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 08/07/2024]
Abstract
In the fission yeast Schizosaccharomyces pombe, the response to sulfur depletion has been less studied compared to the response to nitrogen depletion. Our study reveals that the fission yeast gene, SPCC417.09c, plays a significant role in the sulfur depletion response. This gene encodes a protein with a Zn2Cys6 fungal-type DNA-binding domain and a transcription factor domain, and we have named it sdr1+ (sulfur depletion response 1). Interestingly, while sulfur depletion typically induces autophagy akin to nitrogen depletion, we found that autophagy was not induced under sulfur depletion in the absence of sdr1+. This suggests that sdr1+ is necessary for the induction of autophagy under conditions of sulfur depletion. Although sdr1+ is not essential for the growth of fission yeast, its overexpression, driven by the nmt1 promoter, inhibits growth. This implies that Sdr1 may possess cell growth-inhibitory capabilities. In addition, our analysis of Δsdr1 cells revealed that sdr1+ also plays a role in regulating the expression of genes associated with the phosphate depletion response. In conclusion, our study introduces Sdr1 as a novel transcription factor that contributes to an appropriate cellular nutrient starvation response. It does so by inhibiting inappropriate cell growth and inducing autophagy in response to sulfur depletion.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Kotaro Ohara
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Yoshiko Hatta
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Yasukichi Maekawa
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
5
|
Liu X, Keyhani NO, Liu H, Zhang Y, Xia Y, Cao Y. Glyoxal oxidase-mediated detoxification of reactive carbonyl species contributes to virulence, stress tolerance, and development in a pathogenic fungus. PLoS Pathog 2024; 20:e1012431. [PMID: 39078845 PMCID: PMC11315307 DOI: 10.1371/journal.ppat.1012431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/09/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Reactive carbonyl and oxygen species (RCS/ROS), often generated as metabolic byproducts, particularly under conditions of pathology, can cause direct damage to proteins, lipids, and nucleic acids. Glyoxal oxidases (Gloxs) oxidize aldehydes to carboxylic acids, generating hydrogen peroxide (H2O2). Although best characterized for their roles in lignin degradation, Glox in plant fungal pathogens are known to contribute to virulence, however, the mechanism underlying such effects are unclear. Here, we show that Glox in the insect pathogenic fungus, Metarhizium acridum, is highly expressed in mycelia and during formation of infection structures (appressoria), with the enzyme localizing to the cell membrane. MaGlox targeted gene disruption mutants showed RCS and ROS accumulation, resulting in cell toxicity, induction of apoptosis and increased autophagy, inhibiting normal fungal growth and development. The ability of the MaGlox mutant to scavenge RCS was significantly reduced, and the mutant exhibited increased susceptibility to aldehydes, oxidative and cell wall perturbing agents but not toward osmotic stress, with altered cell wall contents. The ΔMaGlox mutant was impaired in its ability to penetrate the host cuticle and evade host immune defense resulting in attenuated pathogenicity. Overexpression of MaGlox promoted fungal growth and conidial germination, increased tolerance to H2O2, but had little to other phenotypic effects. Transcriptomic analyses revealed downregulation of genes related to cell wall synthesis, conidiation, stress tolerance, and host cuticle penetration in the ΔMaGlox mutant. These findings demonstrate that MaGlox-mediated scavenging of RCS is required for virulence, and contributes to normal fungal growth and development, stress resistance.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People’s Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People’s Republic of China
| | - Nemat O. Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, Illinois, United States of America
| | - Hong Liu
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People’s Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People’s Republic of China
| | - Yue Zhang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People’s Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People’s Republic of China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People’s Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People’s Republic of China
| | - Yueqing Cao
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People’s Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People’s Republic of China
| |
Collapse
|
6
|
Rutherford KM, Lera-Ramírez M, Wood V. PomBase: a Global Core Biodata Resource-growth, collaboration, and sustainability. Genetics 2024; 227:iyae007. [PMID: 38376816 PMCID: PMC11075564 DOI: 10.1093/genetics/iyae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/13/2024] [Indexed: 02/21/2024] Open
Abstract
PomBase (https://www.pombase.org), the model organism database (MOD) for fission yeast, was recently awarded Global Core Biodata Resource (GCBR) status by the Global Biodata Coalition (GBC; https://globalbiodata.org/) after a rigorous selection process. In this MOD review, we present PomBase's continuing growth and improvement over the last 2 years. We describe these improvements in the context of the qualitative GCBR indicators related to scientific quality, comprehensivity, accelerating science, user stories, and collaborations with other biodata resources. This review also showcases the depth of existing connections both within the biocuration ecosystem and between PomBase and its user community.
Collapse
Affiliation(s)
- Kim M Rutherford
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Manuel Lera-Ramírez
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Valerie Wood
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
7
|
Ohtsuka H, Kawai S, Otsubo Y, Shimasaki T, Yamashita A, Aiba H. Metarhizium robertsii COH1 functionally complements Schizosaccharomyces pombe Ecl family proteins. J GEN APPL MICROBIOL 2024; 69:335-338. [PMID: 37813640 DOI: 10.2323/jgam.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The fission yeast Schizosaccharomyces pombe ecl family genes respond to various starvation signals and induce appropriate intracellular responses, including the extension of chronological lifespan and induction of sexual differentiation. Herein, we propose that the colonization of hemocoel 1 (COH1) protein of Metarhizium robertsii, an insect-pathogenic fungus, is a functional homolog of S. pombe Ecl1 family proteins.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University
| | - Sawa Kawai
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University
| | - Yoko Otsubo
- Interdisciplinary Research Unit, National Institute for Basic Biology
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University
| | - Akira Yamashita
- Interdisciplinary Research Unit, National Institute for Basic Biology
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University
| |
Collapse
|
8
|
Martins TS, Correia M, Pinheiro D, Lemos C, Mendes MV, Pereira C, Costa V. Sit4 Genetically Interacts with Vps27 to Regulate Mitochondrial Function and Lifespan in Saccharomyces cerevisiae. Cells 2024; 13:655. [PMID: 38667270 PMCID: PMC11049076 DOI: 10.3390/cells13080655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
The Sit4 protein phosphatase plays a key role in orchestrating various cellular processes essential for maintaining cell viability during aging. We have previously shown that SIT4 deletion promotes vacuolar acidification, mitochondrial derepression, and oxidative stress resistance, increasing yeast chronological lifespan. In this study, we performed a proteomic analysis of isolated vacuoles and yeast genetic interaction analysis to unravel how Sit4 influences vacuolar and mitochondrial function. By employing high-resolution mass spectrometry, we show that sit4Δ vacuolar membranes were enriched in Vps27 and Hse1, two proteins that are part of the endosomal sorting complex required for transport-0. In addition, SIT4 exhibited a negative genetic interaction with VPS27, as sit4∆vps27∆ double mutants had a shortened lifespan compared to sit4∆ and vps27∆ single mutants. Our results also show that Vps27 did not increase sit4∆ lifespan by improving protein trafficking or vacuolar sorting pathways. However, Vps27 was critical for iron homeostasis and mitochondrial function in sit4∆ cells, as sit4∆vps27∆ double mutants exhibited high iron levels and impaired mitochondrial respiration. These findings show, for the first time, cross-talk between Sit4 and Vps27, providing new insights into the mechanisms governing chronological lifespan.
Collapse
Affiliation(s)
- Telma S. Martins
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.S.M.); (M.C.); (D.P.); (C.L.); (M.V.M.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Miguel Correia
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.S.M.); (M.C.); (D.P.); (C.L.); (M.V.M.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Denise Pinheiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.S.M.); (M.C.); (D.P.); (C.L.); (M.V.M.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Carolina Lemos
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.S.M.); (M.C.); (D.P.); (C.L.); (M.V.M.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Marta Vaz Mendes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.S.M.); (M.C.); (D.P.); (C.L.); (M.V.M.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Clara Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.S.M.); (M.C.); (D.P.); (C.L.); (M.V.M.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Vítor Costa
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.S.M.); (M.C.); (D.P.); (C.L.); (M.V.M.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
9
|
Yu T, Rui L, Jiumei Z, Ziwei L, Ying H. Advances in the study of autophagy in breast cancer. Breast Cancer 2024; 31:195-204. [PMID: 38315272 PMCID: PMC10901946 DOI: 10.1007/s12282-023-01541-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/25/2023] [Indexed: 02/07/2024]
Abstract
Breast cancer is the most prevalent malignant tumor among women, with a high incidence and mortality rate all year round, which seriously affects women's health. Autophagy, a well-conserved cellular process inherent in eukaryotic organisms, plays a pivotal role in degrading damaged proteins and organelles, recycling their breakdown products to aid cells in navigating stress and gradually restoring homeostatic equilibrium. Recent studies have unveiled the intricate connection between autophagy and breast cancer. Autophagy is a double-edged sword in breast cancer, demonstrating a dual role: restraining its onset and progression on one hand, while promoting its metastasis and advancement on the other. It is also because of this interrelationship between the two that regulation of autophagy in the treatment of breast cancer is now an important strategy in clinical treatment. In this article, we systematically survey the recent research findings, elucidating the multifaceted role of autophagy in breast cancer and its underlying mechanisms, with the aim of contributing new references to the clinical management of breast cancer.
Collapse
Affiliation(s)
- Tang Yu
- The Third Affiliated Hospital of Kunming Medical University, Kunming, China
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liu Rui
- The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhao Jiumei
- Chongqing Nanchuan District People's Hospital, Chongqing, China
| | - Li Ziwei
- Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hu Ying
- The Second Affiliatied Hospital of Kunming Medical University and Department of Clinical Larboratory, Kunming, China.
| |
Collapse
|
10
|
Du J, Dong Y, Zuo W, Deng Y, Zhu H, Yu Q, Li M. Mec1-Rad53 Signaling Regulates DNA Damage-Induced Autophagy and Pathogenicity in Candida albicans. J Fungi (Basel) 2023; 9:1181. [PMID: 38132782 PMCID: PMC10744610 DOI: 10.3390/jof9121181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
DNA damage activates the DNA damage response and autophagy in C. albicans; however, the relationship between the DNA damage response and DNA damage-induced autophagy in C. albicans remains unclear. Mec1-Rad53 signaling is a critical pathway in the DNA damage response, but its role in DNA damage-induced autophagy and pathogenicity in C. albicans remains to be further explored. In this study, we compared the function of autophagy-related (Atg) proteins in DNA damage-induced autophagy and traditional macroautophagy and explored the role of Mec1-Rad53 signaling in regulating DNA damage-induced autophagy and pathogenicity. We found that core Atg proteins are required for these two types of autophagy, while the function of Atg17 is slightly different. Our results showed that Mec1-Rad53 signaling specifically regulates DNA damage-induced autophagy but has no effect on macroautophagy. The recruitment of Atg1 and Atg13 to phagophore assembly sites (PAS) was significantly inhibited in the mec1Δ/Δ and rad53Δ/Δ strains. The formation of autophagic bodies was obviously affected in the mec1Δ/Δ and rad53Δ/Δ strains. We found that DNA damage does not induce mitophagy and ER autophagy. We also identified two regulators of DNA damage-induced autophagy, Psp2 and Dcp2, which regulate DNA damage-induced autophagy by affecting the protein levels of Atg1, Atg13, Mec1, and Rad53. The deletion of Mec1 or Rad53 significantly reduces the ability of C. albicans to systematically infect mice and colonize the kidneys, and it makes C. albicans more susceptible to being killed by macrophages.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, China; (J.D.); (Y.D.); (W.Z.); (Y.D.); (H.Z.); (Q.Y.)
| |
Collapse
|
11
|
Ohtsuka H, Otsubo Y, Shimasaki T, Yamashita A, Aiba H. ecl family genes: Factors linking starvation and lifespan extension in Schizosaccharomyces pombe. Mol Microbiol 2023; 120:645-657. [PMID: 37525511 DOI: 10.1111/mmi.15134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
In the fission yeast Schizosaccharomyces pombe, the duration of survival in the stationary phase, termed the chronological lifespan (CLS), is affected by various environmental factors and the corresponding gene activities. The ecl family genes were identified in the genomic region encoding non-coding RNA as positive regulators of CLS in S. pombe, and subsequently shown to encode relatively short proteins. Several studies revealed that ecl family genes respond to various nutritional starvation conditions via different mechanisms, and they are additionally involved in stress resistance, autophagy, sexual differentiation, and cell cycle control. Recent studies reported that Ecl family proteins strongly suppress target of rapamycin complex 1, which is a conserved eukaryotic nutrient-sensing kinase complex that also regulates longevity in a variety of organisms. In this review, we introduce the regulatory mechanisms of Ecl family proteins and discuss their emerging findings.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Yoko Otsubo
- Interdisciplinary Research Unit, National Institute for Basic Biology, Okazaki, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Akira Yamashita
- Interdisciplinary Research Unit, National Institute for Basic Biology, Okazaki, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
12
|
Huang J, Chen Z, Wu Z, Xie X, Liu S, Kong W, Zhou J. Geniposide stimulates autophagy by activating the GLP-1R/AMPK/mTOR signaling in osteoarthritis chondrocytes. Biomed Pharmacother 2023; 167:115595. [PMID: 37769389 DOI: 10.1016/j.biopha.2023.115595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 09/30/2023] Open
Abstract
Osteoarthritis (OA) is a chronic joint disease characterized by cartilage degeneration. Autophagy is associated with chondrocyte homeostasis and exhibits a role in protecting against OA pathogenesis. Geniposide (GEN), an iridoid glycoside extracted from Eucommia ulmoides Oliv, acts as an activator of GLP-1R, which can stimulate autophagy. The AMPK/mTOR signaling pathway participates in the mediation of autophagy, and GLP-1R may act as an upstream factor of AMPK. However, whether GEN mediates the autophagic responses by activating the GLP-1R/AMPK/mTOR signaling pathway in OA chondrocytes is still unclear. In the current study, attenuated autophagy in MIA-induced rat OA models was observed, as shown by up-regulated expression of p62 and down-regulated expression of Beclin-1 and LC3-II/I. GEN stimulated autophagy and protected OA cartilage by up-regulating GLP-1R expression. In addition, GEN could enhance AMPK phosphorylation and down-regulate mTOR expression in IL-1β-treated C28/I2 cells. Inhibition of AMPK or activation of mTOR could reverse the stimulatory effects of GEN on autophagy. Furthermore, a GLP-1R inhibitor Exendin 9-39 could eliminate the chondroprotective effects of GEN by suppressing the AMPK/mTOR signaling pathway. Conclusively, Geniposide exhibits protective effects against osteoarthritis development by stimulating autophagy via activating the GLP-1R/AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jishang Huang
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Zhixi Chen
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Zhenyu Wu
- First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xunlu Xie
- Department of Pathology, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Shiwei Liu
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Weihao Kong
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China.
| |
Collapse
|
13
|
Zhang Q, Wang M, Deng X, Zhao D, Zhao F, Xiao J, Ma J, Pan X. Shikonin promotes hypertrophic scar repair by autophagy of hypertrophic scar-derived fibroblasts. Acta Cir Bras 2023; 38:e384623. [PMID: 37878984 PMCID: PMC10592587 DOI: 10.1590/acb384623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/14/2023] [Indexed: 10/27/2023] Open
Abstract
PURPOSE To investigate the Shikonin (SHI) induce autophagy of hypertrophic scar-derived fibroblasts (HSFs) and the mechanism of which in repairing hypertrophic scar. METHODS This study showed that SHI induced autophagy from HSFs and repaired skin scars through the AMPK/mTOR pathway. Alamar Blue and Sirius red were used to identify cell activity and collagen. Electron microscopy, label-free quantitative proteomic analysis, fluorescence and other methods were used to identify autophagy. The differences in the expression of autophagy and AMPK/mTOR pathway-related proteins after SHI treatment were quantitatively analyzed by Western blots. A quantitative real-time polymerase chain reaction assay was used to detect the expression of LC3, AMPK and ULK after adding chloroquine (CQ) autophagy inhibitor. RESULTS After treatment with SHI for 24 hours, it was found that the viability of HSFs was significantly reduced, the protein expression of LC3-II/LC3-I and Beclin1 increased, while the protein expression of P62 decreased. The expression of phosphorylated AMPK increased and expression of phosphorylated mTOR decreased. After the use of CQ, the cell autophagy caused by SHI was blocked. The key genes LC3 and P62 were then reexamined by immunohistochemistry using a porcine full-thickness burn hypertrophic scar model, and the results verified that SHI could induce autophagy in vivo. CONCLUSIONS These findings suggested that SHI promoted autophagy of HSFs cells, and the potential mechanism may be related to the AMPK/mTOR signal pathway, which provided new insights for the treatment of hypertrophic scars.
Collapse
Affiliation(s)
- Qing Zhang
- Ningxia Medical University General Hospital - Tissue Organ Bank & Tissue Engineering Centre - c (Ningxia) - China
- Ningxia Medical University - Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education - School of Basic Medicine - Yinchuan (Ningxia) - China
| | - Maomao Wang
- Ningxia Medical University - Clinical Medical School - Yinchuan (Ningxia) - China
| | - Xingwang Deng
- The First People's Hospital - Department of Burns and Plastic Surgery - Shizuishan - China
| | - Dan Zhao
- Ningxia Medical University General Hospital - Tissue Organ Bank & Tissue Engineering Centre - c (Ningxia) - China
| | - Fang Zhao
- Ningxia Medical University General Hospital - Tissue Organ Bank & Tissue Engineering Centre - c (Ningxia) - China
| | - Jinli Xiao
- Ningxia Medical University - Clinical Medical School - Yinchuan (Ningxia) - China
| | - Jiaxiang Ma
- Ningxia Medical University General Hospital - Tissue Organ Bank & Tissue Engineering Centre - c (Ningxia) - China
| | - Xiaoliang Pan
- Ningxia Medical University General Hospital - Tissue Organ Bank & Tissue Engineering Centre - c (Ningxia) - China
| |
Collapse
|
14
|
Lamas-Maceiras M, Vizoso-Vázquez Á, Barreiro-Alonso A, Cámara-Quílez M, Cerdán ME. Thanksgiving to Yeast, the HMGB Proteins History from Yeast to Cancer. Microorganisms 2023; 11:microorganisms11040993. [PMID: 37110415 PMCID: PMC10142021 DOI: 10.3390/microorganisms11040993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Yeasts have been a part of human life since ancient times in the fermentation of many natural products used for food. In addition, in the 20th century, they became powerful tools to elucidate the functions of eukaryotic cells as soon as the techniques of molecular biology developed. Our molecular understandings of metabolism, cellular transport, DNA repair, gene expression and regulation, and the cell division cycle have all been obtained through biochemistry and genetic analysis using different yeasts. In this review, we summarize the role that yeasts have had in biological discoveries, the use of yeasts as biological tools, as well as past and on-going research projects on HMGB proteins along the way from yeast to cancer.
Collapse
Affiliation(s)
- Mónica Lamas-Maceiras
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| | - Ángel Vizoso-Vázquez
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| | - Aida Barreiro-Alonso
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| | - María Cámara-Quílez
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| | - María Esperanza Cerdán
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|