1
|
Chaplia O, Mathyk BA, Nichols-Burns S, Basar M, Halicigil C. Beyond Earth's bounds: navigating the frontiers of Assisted Reproductive Technologies (ART) in space. Reprod Biol Endocrinol 2024; 22:123. [PMID: 39394617 PMCID: PMC11468284 DOI: 10.1186/s12958-024-01290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024] Open
Abstract
As interest in deep space travel grows exponentially, understanding human adaptation in becoming an interplanetary species is crucial. This includes the prospect of reproduction. This review summarizes recent updates and innovations in assisted reproductive technologies (ART) on Earth, while also discussing current challenges and areas for improvement in adapting ART studies to the space environment. We discuss the critical components of ART - gamete handling and preparation, fertilization, embryo culture, and cryopreservation - from the daily practice perspective of clinical embryologists and reproductive endocrinologists and lay out the complicated path ahead.In vitro embryo development in low Earth orbit and beyond remains questionable due to synergetic effects of microgravity and radiation-induced damage observed in simulated and actual in-space mammalian studies. Cryopreservation and long-term storage of frozen samples face substantial obstacles - temperature limitations, lack of trained personnel, and absence of adapted cosmic engineering options. We touch on recent innovations, which may offer potential solutions, such as microfluidic devices and automated systems. Lastly, we stress the necessity for intensive studies and the importance of an interdisciplinary approach to address numerous practical challenges in advancing reproductive medicine in space, with possible implications for both space exploration and terrestrial fertility treatments.
Collapse
Affiliation(s)
- Olga Chaplia
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Fertility Center, Orange, CT, USA
| | - Begum Aydogan Mathyk
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Fertility Center, Orange, CT, USA.
- Department of Obstetrics and Gynecology, Division or Reproductive Endocrinology and Infertility, University of South Florida, Tampa, FL, USA.
| | - Stephanie Nichols-Burns
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Fertility Center, Orange, CT, USA
| | - Murat Basar
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Fertility Center, Orange, CT, USA
| | - Cihan Halicigil
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale Fertility Center, Orange, CT, USA.
| |
Collapse
|
2
|
Gorbacheva EY, Sventitskaya MA, Biryukov NS, Ogneva IV. The Oxidative Phosphorylation and Cytoskeleton Proteins of Mouse Ovaries after 96 Hours of Hindlimb Suspension. Life (Basel) 2023; 13:2332. [PMID: 38137934 PMCID: PMC10744499 DOI: 10.3390/life13122332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/19/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The purpose of this study was to assess oxidative phosphorylation (OXPHOS) in mouse ovaries, determine the relative content of proteins that form the respiratory chain complexes and the main structures of the cytoskeleton, and determine the mRNA of the corresponding genes after hindlimb suspension for 96 h. After hindlimb suspension, the maximum rate of oxygen uptake increased by 133% (p < 0.05) compared to the control due to the complex I of the respiratory chain. The content of mRNA of genes encoding the main components of the respiratory chain increased (cyt c by 78%, cox IV by 56%, ATPase by 69%, p < 0.05 compared with the control). The relative content of cytoskeletal proteins that can participate in the processes of transport and localization of mitochondria does not change, with the exception of an increase in the content of alpha-tubulin by 25% (p < 0.05) and its acetylated isoform (by 36%, p < 0.05); however, the mRNA content of these cytoskeletal genes did not differ from the control. The content of GDF9 mRNA does not change after hindlimb suspension. The data obtained show that short-term exposure to simulated weightlessness leads to intensification of metabolism in the ovaries.
Collapse
Affiliation(s)
- Elena Yu. Gorbacheva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, Moscow 123007, Russia; (E.Y.G.); (N.S.B.); (I.V.O.)
- Gynecology Department, FGBU KB1 (Volynskaya) UDP RF, 10, Starovolynskaya Str., Moscow 121352, Russia
| | - Maria A. Sventitskaya
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, Moscow 123007, Russia; (E.Y.G.); (N.S.B.); (I.V.O.)
- Medical and Biological Physics Department, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Nikolay S. Biryukov
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, Moscow 123007, Russia; (E.Y.G.); (N.S.B.); (I.V.O.)
- Medical and Biological Physics Department, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Irina V. Ogneva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe shosse, Moscow 123007, Russia; (E.Y.G.); (N.S.B.); (I.V.O.)
- Medical and Biological Physics Department, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow 119991, Russia
| |
Collapse
|
3
|
Miglietta S, Cristiano L, Battaglione E, Macchiarelli G, Nottola SA, De Marco MP, Costanzi F, Schimberni M, Colacurci N, Caserta D, Familiari G. Heavy Metals in Follicular Fluid Affect the Ultrastructure of the Human Mature Cumulus-Oocyte Complex. Cells 2023; 12:2577. [PMID: 37947655 PMCID: PMC10650507 DOI: 10.3390/cells12212577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
It is known that exposure to heavy metal such as lead (Pb) and cadmium (Cd) has several adverse effects, particularly on the human reproductive system. Pb and Cd have been associated with infertility in both men and women. In pregnant women, they have been associated with spontaneous abortion, preterm birth, and impairment of the development of the fetus. Since these heavy metals come from both natural and anthropogenic activities and their harmful effects have been observed even at low levels of exposure, exposure to them remains a public health issue, especially for the reproductive system. Given this, the present study aimed to investigate the potential reproductive effects of Pb and Cd levels in the follicular fluid (FF) of infertile women and non-smokers exposed to heavy metals for professional reasons or as a result of living in rural areas near landfills and waste disposal areas in order to correlate the intrafollicular presence of these metals with possible alterations in the ultrastructure of human cumulus-oocyte complexes (COCs), which are probably responsible for infertility. Blood and FF metals were measured using atomic absorption spectrometry. COCs corresponding to each FF analyzed were subjected to ultrastructural analyses using transmission electron microscopy. We demonstrated for the first time that intrafollicular levels of Pb (0.66 µg/dL-0.85 µg/dL) and Cd (0.26 µg/L-0.41 µg/L) could be associated with morphological alterations of both the oocyte and cumulus cells' (CCs) ultrastructure. Since blood Cd levels (0.54 µg/L-1.87 µg/L) were above the current reference values established by the guidelines of the Agency for Toxic Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA) (0.4 µg/L), whereas blood Pb levels (1.28 µg/dL-3.98 µg/dL) were below the ATSDR reference values (≤5 µg/dL), we believe that these alterations could be due especially to Cd, even if we cannot exclude a possible additional effect of Pb. Our results highlighted that oocytes were affected in maturation and quality, whereas CCs showed scarcely active steroidogenic elements. Regressing CCs, with cytoplasmic alterations, were also numerous. According to Cd's endocrine-disrupting activity, the poor steroidogenic activity of CCs might correlate with delayed oocyte cytoplasmic maturation. So, we conclude that levels of heavy metals in the blood and the FF might negatively affect fertilization, embryo development, and pregnancy, compromising oocyte competence in fertilization both directly and indirectly, impairing CC steroidogenic activity, and inducing CC apoptosis.
Collapse
Affiliation(s)
- Selenia Miglietta
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy; (E.B.); (S.A.N.); (G.F.)
| | - Loredana Cristiano
- Department of Life Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.C.); (G.M.)
| | - Ezio Battaglione
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy; (E.B.); (S.A.N.); (G.F.)
| | - Guido Macchiarelli
- Department of Life Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.C.); (G.M.)
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy; (E.B.); (S.A.N.); (G.F.)
| | - Maria Paola De Marco
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa 1035, 00189 Rome, Italy; (M.P.D.M.); (F.C.); (D.C.)
| | - Flavia Costanzi
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa 1035, 00189 Rome, Italy; (M.P.D.M.); (F.C.); (D.C.)
| | - Mauro Schimberni
- GENERA Centers for Reproductive Medicine, Clinica Valle Giulia, 00197 Rome, Italy;
| | - Nicola Colacurci
- Department of Woman Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Donatella Caserta
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa 1035, 00189 Rome, Italy; (M.P.D.M.); (F.C.); (D.C.)
| | - Giuseppe Familiari
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy; (E.B.); (S.A.N.); (G.F.)
| |
Collapse
|