1
|
Koido S, Taguchi J, Shimabuku M, Kan S, Bito T, Misawa T, Ito Z, Uchiyama K, Saruta M, Tsukinaga S, Suka M, Yanagisawa H, Sato N, Ohkusa T, Shimodaira S, Sugiyama H. Dendritic cells pulsed with multifunctional Wilms' tumor 1 (WT1) peptides combined with multiagent chemotherapy modulate the tumor microenvironment and enable conversion surgery in pancreatic cancer. J Immunother Cancer 2024; 12:e009765. [PMID: 39384197 PMCID: PMC11474828 DOI: 10.1136/jitc-2024-009765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/08/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND We aimed to develop a chemoimmunotherapy regimen consisting of a novel Wilms' tumor 1 (WT1) peptide-pulsed dendritic cell (WT1-DC) vaccine and multiagent chemotherapy and to investigate the safety, clinical outcomes, and WT1-specific immune responses of patients with unresectable advanced pancreatic ductal adenocarcinoma (UR-PDAC) who received this treatment. METHODS Patients with UR-PDAC with stage III disease (locally advanced (LA-PDAC; n=6)), stage IV disease (metastatic (M-PDAC; n=3)), or recurrent disease after surgery (n=1) were enrolled in this phase I study. The patients received one cycle of nab-paclitaxel plus gemcitabine alone followed by 15 doses of the WT1-DC vaccine independent of chemotherapy. The novel WT1 peptide cocktail was composed of a multifunctional helper peptide specific for major histocompatibility complex class II, human leukocyte antigen (HLA)-A*02:01, or HLA-A*02:06 and a killer peptide specific for HLA-A*24:02. RESULTS The chemoimmunotherapy regimen was well tolerated. In the nine patients for whom a prognostic analysis was feasible, the clinical outcomes of long-term WT1 peptide-specific delayed-type hypersensitivity (WT1-DTH)-positive patients (n=4) were significantly superior to those of short-term WT1-DTH-positive patients (n=5). During chemoimmunotherapy, eight patients were deemed eligible for conversion surgery and underwent R0 resection (four patients with LA-PDAC, one patient with M-PDAC, and one recurrence) or R1 resection (one patient with M-PDAC), and one patient with LA-PDAC was determined to be unresectable. Long-term WT1-DTH positivity was observed in three of the four patients with R0-resected LA-PDAC. These three patients exhibited notable infiltration of T cells and programmed cell death protein-1+ cells within the pancreatic tumor microenvironment (TME). All patients with long-term WT1-DTH positivity were alive for at least 4.5 years after starting therapy. In patients with long-term WT1-DTH positivity, the percentage of WT1-specific circulating CD4+ or CD8+ T cells that produced IFN-γ or TNF-α was significantly greater than that in patients with short-term WT1-DTH positivity after two vaccinations. Moreover, after 12 vaccinations, the percentages of both circulating regulatory T cells and myeloid-derived suppressor cells were significantly lower in patients with long-term WT1-DTH-positive PDAC than in short-term WT1-DTH-positive patients. CONCLUSIONS Potent activation of WT1-specific immune responses through a combination chemoimmunotherapy regimen including the WT1-DC vaccine in patients with UR-PDAC may modulate the TME and enable conversion surgery, resulting in clinical benefits (Online supplemental file 1). TRIAL REGISTRATION NUMBER jRCTc030190195.
Collapse
Affiliation(s)
- Shigeo Koido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | | | | | - Shin Kan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | - Tuuse Bito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | - Takeyuki Misawa
- Department of Surgery, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | - Zensho Ito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | - Kan Uchiyama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Minato-ku, Japan
| | - Shintaro Tsukinaga
- Department of Endoscopy, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | - Machi Suka
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Minato-ku, Japan
| | - Hiroyuki Yanagisawa
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Minato-ku, Japan
| | - Nobuhiro Sato
- Department of Microbiota Research, Juntendo University, Bunkyo-ku, Japan
| | - Toshifumi Ohkusa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Japan
- Department of Microbiota Research, Juntendo University, Bunkyo-ku, Japan
| | | | - Haruo Sugiyama
- Department of Functional Diagnostic Science, Osaka University, Suita, Japan
| |
Collapse
|
2
|
Nguyen HD, Lin CC. Viscoelastic stiffening of gelatin hydrogels for dynamic culture of pancreatic cancer spheroids. Acta Biomater 2024; 177:203-215. [PMID: 38354874 PMCID: PMC10958777 DOI: 10.1016/j.actbio.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
The tumor microenvironment (TME) in pancreatic adenocarcinoma (PDAC) is a complex milieu of cellular and non-cellular components. Pancreatic cancer cells (PCC) and cancer-associated fibroblasts (CAF) are two major cell types in PDAC TME, whereas the non-cellular components are enriched with extracellular matrices (ECM) that contribute to high stiffness and fast stress-relaxation. Previous studies have suggested that higher matrix rigidity promoted aggressive phenotypes of tumors, including PDAC. However, the effects of dynamic viscoelastic matrix properties on cancer cell fate remain largely unexplored. The focus of this work was to understand the effects of such dynamic matrix properties on PDAC cell behaviors, particularly in the context of PCC/CAF co-culture. To this end, we engineered gelatin-norbornene (GelNB) based hydrogels with a built-in mechanism for simultaneously increasing matrix elastic modulus and viscoelasticity. Two GelNB-based macromers, namely GelNB-hydroxyphenylacetic acid (GelNB-HPA) and GelNB-boronic acid (GelNB-BA), were modularly mixed and crosslinked with 4-arm poly(ethylene glycol)-thiol (PEG4SH) to form elastic hydrogels. Treating the hybrid hydrogels with tyrosinase not only increased the elastic moduli of the gels (due to HPA dimerization) but also concurrently produced 1,2-diols that formed reversible boronic acid-diol bonding with the BA groups on GelNB-BA. We employed patient-derived CAF and a PCC cell line COLO-357 to demonstrate the effect of increasing matrix stiffness and viscoelasticity on CAF and PCC cell fate. Our results indicated that in the stiffened environment, PCC underwent epithelial-mesenchymal transition. In the co-culture PCC and CAF spheroid, CAF enhanced PCC spreading and stimulated collagen 1 production. Through mRNA-sequencing, we further showed that stiffened matrices, regardless of the degree of stress-relaxation, heightened the malignant phenotype of PDAC cells. STATEMENT OF SIGNIFICANCE: The pancreatic cancer microenvironment is a complex milieu composed of various cell types and extracellular matrices. It has been suggested that stiffer matrices could promote aggressive behavior in pancreatic cancer, but the effect of dynamic stiffening and matrix stress-relaxation on cancer cell fate remains largely undefined. This study aimed to explore the impact of dynamic changes in matrix viscoelasticity on pancreatic ductal adenocarcinoma (PDAC) cell behavior by developing a hydrogel system capable of simultaneously increasing stiffness and stress-relaxation on demand. This is achieved by crosslinking two gelatin-based macromers through orthogonal thiol-norbornene photochemistry and post-gelation stiffening with mushroom tyrosinase. The results revealed that higher matrix stiffness, regardless of the degree of stress relaxation, exacerbated the malignant characteristics of PDAC cells.
Collapse
Affiliation(s)
- Han D Nguyen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Chien-Chi Lin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|