1
|
Tósaki Á, Szabó Z, Király J, Lőrincz EB, Vass V, Tánczos B, Bereczki I, Herczegh P, Remenyik É, Tósaki Á, Szabó E. A new cannabigerol derivative, LE-127/2, induces autophagy mediated cell death in human cutaneous melanoma cells. Eur J Pharm Sci 2024; 203:106920. [PMID: 39357769 DOI: 10.1016/j.ejps.2024.106920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Despite the targeted- and immunotherapies used in the past decade, survival rate among patients with metastatic melanoma remains low, therefore, melanoma is responsible for the majority of skin cancer-related deaths. The ongoing investigation of natural antitumor agents, the nonpsychoactive cannabinoid, cannabigerol (CBG) found in Cannabis sativa is emerging as a promising candidate. CBG offers a potential therapeutic role in the treatment of melanoma demonstrating cell growth inhibition in some tumors. Its low water solubility and bioavailability hinder the potential effectiveness. To address these challenges, a modified CBG, namely LE-127/2 was synthesized by Mannich-type reaction. The aim was to investigate the effect of this novel compound on cell proliferation as well as the mechanism of cell death with a particular focus on autophagy and apoptosis. Human cutan melanoma cell lines, WM35, A2058 and WM3000 were utilized for the present study. Cell proliferation of the cells after the treatment with LE-127/2, parent CBG or vemurafenib was assessed by Cell Titer Blue Assay. Cells were treated with a 1.25-80 µM of the above-mentioned compounds, and it was found that at 20 μM of all drugs showed a comparable effective inhibition of cell proliferation, however, vemurafenib and CBG proved to be more effective than LE-127/2. In addition, clonogenic cell survival assays were performed to examine the inhibitory effect of LE-127/2 on the colony formation ability of melanoma cell lines. Cells treated with 20 µM of LE-127/2 for 14 days showed about a 50% suppression of clonogenic cell survival. LE-127/2 exerted the most intensive inhibition on A2058 cell colonies. Furthermore, notably, LDH cytotoxicity assay performed on HaCaT cell line, proved LE-127/2 to be cytotoxic only at higher concentration, such as 80 μM, while the parent CBG was cytotoxic at concentration as low as 5 μM, suggesting that the new CBG derivative as a drug candidate may be applied in human pharmacotherapy without causing a substantial damage in intact epidermal cells. Analysis of protein expression revealed the impact of LE-127/2 on the expression of basic proteins (LC-3, Beclin-1 and p62) involved in the process of autophagy in the three different melanoma cell lines studied. Elevated expression of these proteins was detected as a result of LE-127/2 (20 µM) treatment. LE-127/2 also induced the expression of some proteins involved in apoptosis, and it is particularly noteworthy the increased level of cleaved PARP. Based on the results obtained, it can be concluded that LE-127/2 induced autophagy could lead to the inhibition of cell proliferation and death in melanoma cells.
Collapse
Affiliation(s)
- Ágnes Tósaki
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Zsuzsanna Szabó
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary.
| | - József Király
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary.
| | - Eszter Boglárka Lőrincz
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary.
| | - Virág Vass
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary; Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary.
| | - Bence Tánczos
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary; HUN-REN-DE Pharmamodul Research Group, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98, Hungary.
| | - Ilona Bereczki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary; HUN-REN-DE Pharmamodul Research Group, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98, Hungary.
| | - Pál Herczegh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary; HUN-REN-DE Pharmamodul Research Group, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98, Hungary.
| | - Éva Remenyik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Árpád Tósaki
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary; HUN-REN-DE Pharmamodul Research Group, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98, Hungary.
| | - Erzsébet Szabó
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary; HUN-REN-DE Pharmamodul Research Group, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98, Hungary.
| |
Collapse
|
2
|
Aguilera-Durán G, Hernández-Castro S, Loera-García BV, Rivera-Vargas A, Alvarez-Baltazar JM, Cuevas-Flores MDR, Romo-Mancillas A. Ursolic acid interaction with transcription factors BRAF, V600E, and V600K: a computational approach towards new potential melanoma treatments. J Mol Model 2024; 30:373. [PMID: 39387972 DOI: 10.1007/s00894-024-06165-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
CONTEXT Melanoma is one of the cancers with the highest mortality rate for its ability to metastasize. Several targets have undergone investigation for the development of drugs against this pathology. One of the main targets is the kinase BRAF (RAF, rapidly accelerated fibrosarcoma). The most common mutation in melanoma is BRAFV600E and has been reported in 50-90% of patients with melanoma. Due to the relevance of the BRAFV600E mutation, inhibitors to this kinase have been developed, vemurafenib-OMe and dabrafenib. Ursolic acid (UA) is a pentacyclic triterpene with a privileged structure, the pentacycle scaffold, which allows to have a broad variety of biological activity; the most studied is its anticancer capacity. In this work, we reported the interaction profile of vemurafenib-OMe, dabrafenib, and UA, to define whether UA has binding capacity to BRAFWT, BRAFV600E, and BRAFV600K. Homology modeling of BRAFWT, V600E, and V600K; molecular docking; and molecular dynamics simulations were carried out and interactions and residues relevant to the binding of the inhibitors were obtained. We found that UA, like the inhibitors, presents hydrogen bond interactions, and hydrophobic interactions of van der Waals, and π-stacking with I463, Q530, C532, and F583. The ΔG of ursolic acid in complex with BRAFV600K (- 63.31 kcal/mol) is comparable to the ΔG of the selective inhibitor dabrafenib (- 63.32 kcal/mol) in complex to BRAFV600K and presents a ΔG like vemurafenib-OMe with BRAFWT and V600E. With this information, ursolic acid could be considered as a lead compound for design cycles and to optimize the binding profile and the selectivity towards mutations for the development of new selective inhibitors for BRAFV600E and V600K to new potential melanoma treatments. METHODS The homology modeling calculations were executed on the public servers I-TASSER and ROBETTA, followed by molecular docking calculations using AutoGrid 4.2.6, AutoDockGPU 1.5.3, and AutoDockTools 1.5.6. Molecular dynamics and metadynamics simulations were performed in the Desmond module of the academic version of the Schrödinger-Maestro 2020-4 program, utilizing the OPLS-2005 force field. Ligand-protein interactions were evaluated using Schrödinger-Maestro program, LigPlot + , and PLIP (protein-ligand interaction profiler). Finally, all of the protein figures presented in this article were made in the PyMOL program.
Collapse
Affiliation(s)
- Giovanny Aguilera-Durán
- Laboratorio de Química Cuántica y Modelado Molecular, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, 98160, Zacatecas, Mexico.
- Grupo de Diseño Asistido Por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, 76010, Querétaro, Mexico.
| | - Stephanie Hernández-Castro
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de Las Campanas S/N, 76010, Querétaro, Mexico
- Grupo de Diseño Asistido Por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, 76010, Querétaro, Mexico
| | - Brenda V Loera-García
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Zona Universitaria, 78210, San Luis Potosí, Mexico
| | - Alex Rivera-Vargas
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de Las Campanas S/N, 76010, Querétaro, Mexico
- Grupo de Diseño Asistido Por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, 76010, Querétaro, Mexico
| | - J M Alvarez-Baltazar
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de Las Campanas S/N, 76010, Querétaro, Mexico
- Grupo de Diseño Asistido Por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, 76010, Querétaro, Mexico
| | - Ma Del Refugio Cuevas-Flores
- Laboratorio de Química Cuántica y Modelado Molecular, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, 98160, Zacatecas, Mexico
| | - Antonio Romo-Mancillas
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de Las Campanas S/N, 76010, Querétaro, Mexico.
- Grupo de Diseño Asistido Por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, 76010, Querétaro, Mexico.
| |
Collapse
|
3
|
Limonta P, Chiaramonte R, Casati L. Unveiling the Dynamic Interplay between Cancer Stem Cells and the Tumor Microenvironment in Melanoma: Implications for Novel Therapeutic Strategies. Cancers (Basel) 2024; 16:2861. [PMID: 39199632 PMCID: PMC11352669 DOI: 10.3390/cancers16162861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Cutaneous melanoma still represents a significant health burden worldwide, being responsible for the majority of skin cancer deaths. Key advances in therapeutic strategies have significantly improved patient outcomes; however, most patients experience drug resistance and tumor relapse. Cancer stem cells (CSCs) are a small subpopulation of cells in different tumors, including melanoma, endowed with distinctive capacities of self-renewal and differentiation into bulk tumor cells. Melanoma CSCs are characterized by the expression of specific biomarkers and intracellular pathways; moreover, they play a pivotal role in tumor onset, progression and drug resistance. In recent years, great efforts have been made to dissect the molecular mechanisms underlying the protumor activities of melanoma CSCs to provide the basis for novel CSC-targeted therapies. Herein, we highlight the intricate crosstalk between melanoma CSCs and bystander cells in the tumor microenvironment (TME), including immune cells, endothelial cells and cancer-associated fibroblasts (CAFs), and its role in melanoma progression. Specifically, we discuss the peculiar capacities of melanoma CSCs to escape the host immune surveillance, to recruit immunosuppressive cells and to educate immune cells toward an immunosuppressive and protumor phenotype. We also address currently investigated CSC-targeted strategies that could pave the way for new promising therapeutic approaches for melanoma care.
Collapse
Affiliation(s)
- Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences “R. Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy
| | - Raffaella Chiaramonte
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy;
| | - Lavinia Casati
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy;
| |
Collapse
|
4
|
Dziubańska-Kusibab PJ, Nevedomskaya E, Haendler B. Preclinical Anticipation of On- and Off-Target Resistance Mechanisms to Anti-Cancer Drugs: A Systematic Review. Int J Mol Sci 2024; 25:705. [PMID: 38255778 PMCID: PMC10815614 DOI: 10.3390/ijms25020705] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
The advent of targeted therapies has led to tremendous improvements in treatment options and their outcomes in the field of oncology. Yet, many cancers outsmart precision drugs by developing on-target or off-target resistance mechanisms. Gaining the ability to resist treatment is the rule rather than the exception in tumors, and it remains a major healthcare challenge to achieve long-lasting remission in most cancer patients. Here, we discuss emerging strategies that take advantage of innovative high-throughput screening technologies to anticipate on- and off-target resistance mechanisms before they occur in treated cancer patients. We divide the methods into non-systematic approaches, such as random mutagenesis or long-term drug treatment, and systematic approaches, relying on the clustered regularly interspaced short palindromic repeats (CRISPR) system, saturated mutagenesis, or computational methods. All these new developments, especially genome-wide CRISPR-based screening platforms, have significantly accelerated the processes for identification of the mechanisms responsible for cancer drug resistance and opened up new avenues for future treatments.
Collapse
Affiliation(s)
| | | | - Bernard Haendler
- Research and Early Development Oncology, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany; (P.J.D.-K.); (E.N.)
| |
Collapse
|
5
|
Sposito M, Belluomini L, Pontolillo L, Tregnago D, Trestini I, Insolda J, Avancini A, Milella M, Bria E, Carbognin L, Pilotto S. Adjuvant Targeted Therapy in Solid Cancers: Pioneers and New Glories. J Pers Med 2023; 13:1427. [PMID: 37888038 PMCID: PMC10608226 DOI: 10.3390/jpm13101427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
Targeted therapy (TT) has revolutionized cancer treatment, successfully applied in various settings. Adjuvant TT in resected early-stage gastrointestinal stromal tumors (GIST), melanoma, non-small cell lung cancer (NSCLC), and breast cancer has led to practice-changing achievements. In particular, standard treatments include BRAF inhibitors for melanoma, osimertinib for NSCLC, hormone therapy or HER2 TT for breast cancer, and imatinib for GIST. Despite the undeniable benefit derived from adjuvant TT, the optimal duration of TT and the appropriate managing of the relapse remain open questions. Furthermore, neoadjuvant TT is emerging as valuable, particularly in breast cancer, and ongoing studies evaluate TT in the perioperative setting for early-stage NSCLC. In this review, we aim to collect and describe the large amount of data available in the literature about adjuvant TT across different histologies, focusing on epidemiology, major advances, and future directions.
Collapse
Affiliation(s)
- Marco Sposito
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy; (M.S.); (L.B.); (D.T.); (I.T.); (J.I.); (A.A.); (M.M.)
| | - Lorenzo Belluomini
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy; (M.S.); (L.B.); (D.T.); (I.T.); (J.I.); (A.A.); (M.M.)
| | - Letizia Pontolillo
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy; (L.P.); (E.B.)
- Medical Oncology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Daniela Tregnago
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy; (M.S.); (L.B.); (D.T.); (I.T.); (J.I.); (A.A.); (M.M.)
| | - Ilaria Trestini
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy; (M.S.); (L.B.); (D.T.); (I.T.); (J.I.); (A.A.); (M.M.)
| | - Jessica Insolda
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy; (M.S.); (L.B.); (D.T.); (I.T.); (J.I.); (A.A.); (M.M.)
| | - Alice Avancini
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy; (M.S.); (L.B.); (D.T.); (I.T.); (J.I.); (A.A.); (M.M.)
| | - Michele Milella
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy; (M.S.); (L.B.); (D.T.); (I.T.); (J.I.); (A.A.); (M.M.)
| | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy; (L.P.); (E.B.)
- Medical Oncology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Luisa Carbognin
- Gynecology Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCSS, 00168 Roma, Italy;
| | - Sara Pilotto
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy; (M.S.); (L.B.); (D.T.); (I.T.); (J.I.); (A.A.); (M.M.)
| |
Collapse
|