1
|
Parekh P, Serra M, Allaw M, Perra M, Pinna A, Manconi M, Morelli M. Extract from Nasco pomace loaded in nutriosomes exerts anti-inflammatory effects in the MPTP mouse model of Parkinson's disease. Exp Neurol 2024; 382:114958. [PMID: 39303846 DOI: 10.1016/j.expneurol.2024.114958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/24/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Neuroinflammation has recently emerged as a key event in Parkinson's disease (PD) pathophysiology and as a potential target for disease-modifying therapies. Plant-derived extracts, rich in bioactive phytochemicals with antioxidant properties, have shown potential in this regard. Yet their clinical utility is hampered by poor systemic availability and rapid metabolism. Recently, our group demonstrated that intragastric delivery of Nasco pomace extract via nutriosomes (NN), a novel nanoliposome formulation, contrasts the degeneration of nigrostriatal dopaminergic neurons in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. In the present study, we investigated the impact of intragastric NN treatment on the reactivity of glial cells in the substantia nigra pars compacta (SNc) and caudate-putamen (CPu) of MPTP-treated mice. To this scope, in mice exposed to MPTP (20 mg/kg/day, × 4 days), we conducted immunohistochemistry analyses of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (IBA1) to assess the responsiveness of astrocytes and microglial cells, respectively. Additionally, we studied the co-localization of the pro-inflammatory interleukin (IL)-1β and tumor necrosis factor (TNF)-α with IBA1 to obtain insights into microglial phenotype. Immunohistochemical results showed that NN administration significantly mitigated astrogliosis and microgliosis in the CPu and SNc of mice receiving subacute MPTP treatment, with region-specific variations in anti-inflammatory efficacy. Remarkably, the CPu showed a heightened response to NN treatment, including a pronounced decrease in microglial IL-1β and TNF-α production. Altogether, these findings underscore the anti-inflammatory effects of NN treatment and provide a potential mechanism underlying the neuroprotective effects previously observed in a subacute MPTP mouse model of PD.
Collapse
Affiliation(s)
- Pathik Parekh
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy; Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy.
| | - Mohamad Allaw
- Department of Life and Environmental Sciences, University of Cagliari, Italy
| | - Matteo Perra
- Department of Life and Environmental Sciences, University of Cagliari, Italy
| | - Annalisa Pinna
- National Research Council of Italy, Institute of Neuroscience, Cagliari, Italy
| | - Maria Manconi
- Department of Life and Environmental Sciences, University of Cagliari, Italy.
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy; National Research Council of Italy, Institute of Neuroscience, Cagliari, Italy
| |
Collapse
|
2
|
Bourque M, Morissette M, Isenbrandt A, Giatti S, Melcangi RC, Carta M, Frau R, Bortolato M, Soulet D, Di Paolo T. Effect of 5-alpha reductase inhibitors in animal models of Parkinson's disease. Front Neuroendocrinol 2024; 75:101156. [PMID: 39353534 DOI: 10.1016/j.yfrne.2024.101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Parkinson's disease (PD) is characterized by motor symptoms due to loss of brain dopamine and non-motor symptoms, including gastrointestinal disorders. Although there is no cure for PD, symptomatic treatments are available. L-Dopa is the gold standard PD therapy, but most patients develop dyskinesias (LID), which are challenging to manage. Amantadine is recognized as the most effective drug for LID, but its adverse effects limit the use in patients. Here we review how 5α-reductase inhibitors (5ARIs), drugs used to treat benign prostatic hyperplasia and alopecia, exhibit beneficial effects in PD animal models. 5ARIs show neuroprotective properties in brain and gut dopaminergic systems, and reduce dyskinesias in rodent model of PD. Additionally, the 5ARI finasteride dampened dopaminergic-induced drug gambling in PD patients. Neuroprotection and antidyskinetic activities of 5ARIs in animal models of PD suggest their potential repurposing in men with PD to address gut dysfunction, protect brain DA and inhibit dyskinesias.
Collapse
Affiliation(s)
- Mélanie Bourque
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Marc Morissette
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Amandine Isenbrandt
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Faculty of Pharmacy, Laval University, Quebec, QC, Canada
| | - Silvia Giatti
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan, Italy
| | - Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan, Italy
| | - Manolo Carta
- Department of Biomedical Sciences, "Guy Everett Laboratory", University of Cagliari, Cittadella Universitaria SP 8, Monserrato 09042, Italy
| | - Roberto Frau
- Department of Biomedical Sciences, "Guy Everett Laboratory", University of Cagliari, Cittadella Universitaria SP 8, Monserrato 09042, Italy
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, UT 84112, USA
| | - Denis Soulet
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Faculty of Pharmacy, Laval University, Quebec, QC, Canada
| | - Thérèse Di Paolo
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Faculty of Pharmacy, Laval University, Quebec, QC, Canada.
| |
Collapse
|
3
|
Miller MR, Landis HE, Miller RE, Tizabi Y. Intercellular Adhesion Molecule 1 (ICAM-1): An Inflammatory Regulator with Potential Implications in Ferroptosis and Parkinson's Disease. Cells 2024; 13:1554. [PMID: 39329738 PMCID: PMC11430830 DOI: 10.3390/cells13181554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Intercellular adhesion molecule 1 (ICAM-1/CD54), a transmembrane glycoprotein, has been considered as one of the most important adhesion molecules during leukocyte recruitment. It is encoded by the ICAM1 gene and plays a central role in inflammation. Its crucial role in many inflammatory diseases such as ulcerative colitis and rheumatoid arthritis are well established. Given that neuroinflammation, underscored by microglial activation, is a key element in neurodegenerative diseases such as Parkinson's disease (PD), we investigated whether ICAM-1 has a role in this progressive neurological condition and, if so, to elucidate the underpinning mechanisms. Specifically, we were interested in the potential interaction between ICAM-1, glial cells, and ferroptosis, an iron-dependent form of cell death that has recently been implicated in PD. We conclude that there exist direct and indirect (via glial cells and T cells) influences of ICAM-1 on ferroptosis and that further elucidation of these interactions can suggest novel intervention for this devastating disease.
Collapse
Affiliation(s)
| | - Harold E. Landis
- Integrative Medicine Fellow, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | | | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| |
Collapse
|
4
|
Ma W, Geng Y, Liu Y, Pan H, Wang Q, Zhang Y, Wang L. The mechanisms of white matter injury and immune system crosstalk in promoting the progression of Parkinson's disease: a narrative review. Front Aging Neurosci 2024; 16:1345918. [PMID: 38863783 PMCID: PMC11165104 DOI: 10.3389/fnagi.2024.1345918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/15/2024] [Indexed: 06/13/2024] Open
Abstract
Parkinson's disease (PD) is neurodegenerative disease in middle-aged and elderly people with some pathological mechanisms including immune disorder, neuroinflammation, white matter injury and abnormal aggregation of alpha-synuclein, etc. New research suggests that white matter injury may be important in the development of PD, but how inflammation, the immune system, and white matter damage interact to harm dopamine neurons is not yet understood. Therefore, it is particularly important to delve into the crosstalk between immune cells in the central and peripheral nervous system based on the study of white matter damage in PD. This crosstalk could not only exacerbate the pathological process of PD but may also reveal new therapeutic targets. By understanding how immune cells penetrate through the blood-brain barrier and activate inflammatory responses within the central nervous system, we can better grasp the impact of structural destruction of white matter in PD and explore how this process can be modulated to mitigate or combat disease progression. Microglia, astrocytes, oligodendrocytes and peripheral immune cells (especially T cells) play a central role in its pathological process where these immune cells produce and respond to pro-inflammatory cytokines such as tumor necrosis factor (TNF-α), interleukin-1β(IL-1β) and interleukin-6(IL-6), and white matter injury causes microglia to become pro-inflammatory and release inflammatory mediators, which attract more immune cells to the damaged area, increasing the inflammatory response. Moreover, white matter damage also causes dysfunction of blood-brain barrier, allows peripheral immune cells and inflammatory factors to invade the brain further, and enhances microglia activation forming a vicious circle that intensifies neuroinflammation. And these factors collectively promote the neuroinflammatory environment and neurodegeneration changes of PD. Overall, these findings not only deepen our understanding of the complexity of PD, but also provide new targets for the development of therapeutic strategies focused on inflammation and immune regulation mechanisms. In summary, this review provided the theoretical basis for clarifying the pathogenesis of PD, summarized the association between white matter damage and the immune cells in the central and peripheral nervous systems, and then emphasized their potential specific mechanisms of achieving crosstalk with further aggravating the pathological process of PD.
Collapse
Affiliation(s)
- Wen Ma
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China
| | - Yifan Geng
- Xuzhou Clinical School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Youhan Liu
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China
| | - Huixin Pan
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China
| | - Qinglu Wang
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China
| | - Yaohua Zhang
- Key Laboratory of Biomedical Engineering & Technology of Shandong High School, Qilu Medical University, Zibo, China
| | - Liping Wang
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China
| |
Collapse
|
5
|
Jin X, Dong W, Chang K, Yan Y. Research on the signaling pathways related to the intervention of traditional Chinese medicine in Parkinson's disease:A literature review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117850. [PMID: 38331124 DOI: 10.1016/j.jep.2024.117850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is the most common progressive neurodegenerative disorder affecting more than 10 million people worldwide and is characterized by the progressive loss of Daergic (DA) neurons in the substantia nigra pars compacta. It has been reported that signaling pathways play a crucial role in the pathogenesis of PD, while the active ingredients of traditional Chinese medicine (TCM) have been found to possess a protective effect against PD. TCM has demonstrated significant potential in mitigating oxidative stress (OS), neuroinflammation, and apoptosis of DA neurons via the regulation of signaling pathways associated with PD. AIM OF THE REVIEW This study discussed and analyzed the signaling pathways involved in the occurrence and development of PD and the mechanism of active ingredients of TCM regulating PD via signaling pathways, with the aim of providing a basis for the development and clinical application of therapeutic strategies for TCM in PD. MATERIALS AND METHODS With "Parkinson's disease", "Idiopathic Parkinson's Disease", "Lewy Body Parkinson's Disease", "Parkinson's Disease, Idiopathic", "Parkinson Disease, Idiopathic", "Parkinson's disorders", "Parkinsonism syndrome", "Traditional Chinese medicine", "Chinese herbal medicine", "active ingredients", "medicinal plants" as the main keywords, PubMed, Web of Science and other online search engines were used for literature retrieval. RESULTS PD exhibits a close association with various signaling pathways, including but not limited to MAPKs, NF-κB, PI3K/Akt, Nrf2/ARE, Wnt/β-catenin, TLR/TRIF, NLRP3, Notch. The therapeutic potential of TCM lies in its ability to regulate these signaling pathways. In addition, the active ingredients of TCM have shown significant effects in improving OS, neuroinflammation, and DA neuron apoptosis in PD. CONCLUSION The active ingredients of TCM have unique advantages in regulating PD-related signaling pathways. It is suggested to combine network pharmacology and bioinformatics to study the specific targets of TCM. This not only provides a new way for the prevention and treatment of PD with the active ingredients of TCM, but also provides a scientific basis for the selection and development of TCM preparations.
Collapse
Affiliation(s)
- Xiaxia Jin
- National Key Laboratory of Quality Assurance and Sustainable Utilization of Authentic Medicinal Materials, Chinese Medicine Resource Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wendi Dong
- Foshan Clinical Medical College, Guangzhou University of Traditional Chinese Medicine, Foshan 528000, China
| | - Kaile Chang
- Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, China
| | - Yongmei Yan
- National Key Laboratory of Quality Assurance and Sustainable Utilization of Authentic Medicinal Materials, Chinese Medicine Resource Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Department of Encephalopathy, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang 712000, China.
| |
Collapse
|
6
|
Brash-Arias D, García LI, Pérez-Estudillo CA, Rojas-Durán F, Aranda-Abreu GE, Herrera-Covarrubias D, Chi-Castañeda D. The Role of Astrocytes and Alpha-Synuclein in Parkinson's Disease: A Review. NEUROSCI 2024; 5:71-86. [PMID: 39483813 PMCID: PMC11523690 DOI: 10.3390/neurosci5010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 11/03/2024] Open
Abstract
The search for new therapies to reduce symptoms and find a cure for Parkinson's disease has focused attention on two key points: the accumulation of alpha-synuclein aggregates and astrocytes. The former is a hallmark of the disease, while the latter corresponds to a type of glial cell with an important role in both the prevention and development of this neurodegenerative disorder. Traditionally, research has focused on therapies targeting dopaminergic neurons. Currently, as more is known about the genetic and molecular factors and the neuroglial interaction in the disease, great emphasis has been placed on the neuroprotective role of astrocytes in the early stages of the disease and on the astrocytic capture of alpha-synuclein under both physiological and pathological conditions. This review aims to analyze the contribution of alpha-synuclein and astrocytes to the development and progression of Parkinson's disease, as well as to evaluate recent therapeutic proposals specifically focused on synucleopathies and astroglial cells as potential therapies for the disease.
Collapse
Affiliation(s)
- David Brash-Arias
- Doctorado en Investigaciones Cerebrales, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico;
| | - Luis I. García
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico
| | | | - Fausto Rojas-Durán
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico
| | | | | | - Donaji Chi-Castañeda
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico
| |
Collapse
|
7
|
Yarkova ES, Grigor’eva EV, Medvedev SP, Pavlova SV, Zakian SM, Malakhova AA. IPSC-Derived Astrocytes Contribute to In Vitro Modeling of Parkinson's Disease Caused by the GBA1 N370S Mutation. Int J Mol Sci 2023; 25:327. [PMID: 38203497 PMCID: PMC10779194 DOI: 10.3390/ijms25010327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that ranks second in prevalence after Alzheimer's disease. The number of PD diagnoses increases annually. Nevertheless, modern PD treatments merely mitigate symptoms rather than preventing neurodegeneration progression. The creation of an appropriate model to thoroughly study the mechanisms of PD pathogenesis remains a current challenge in biomedicine. Recently, there has been an increase in data regarding the involvement of not only dopaminergic neurons of the substantia nigra but also astrocytes in the pathogenesis of PD. Cell models based on induced pluripotent stem cells (iPSCs) and their differentiated derivatives are a useful tool for studying the contribution and interaction of these two cell types in PD. Here, we generated two iPSC lines, ICGi034-B and ICGi034-C, by reprogramming peripheral blood mononuclear cells of a patient with a heterozygous mutation c.1226A>G (p.N370S) in the GBA1 gene by non-integrating episomal vectors encoding OCT4, KLF4, L-MYC, SOX2, LIN28, and mp53DD. The iPSC lines demonstrate the expression of pluripotency markers and are capable of differentiating into three germ layers. We differentiated the ICGi034-B and ICGi034-C iPSC lines into astrocytes. This resulting cell model can be used to study the involvement of astrocytes in the pathogenesis of GBA-associated PD.
Collapse
Affiliation(s)
- Elena S. Yarkova
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Elena V. Grigor’eva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.P.M.); (S.V.P.); (S.M.Z.); (A.A.M.)
| | - Sergey P. Medvedev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.P.M.); (S.V.P.); (S.M.Z.); (A.A.M.)
| | - Sophia V. Pavlova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.P.M.); (S.V.P.); (S.M.Z.); (A.A.M.)
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Suren M. Zakian
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.P.M.); (S.V.P.); (S.M.Z.); (A.A.M.)
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Anastasia A. Malakhova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.P.M.); (S.V.P.); (S.M.Z.); (A.A.M.)
| |
Collapse
|