1
|
Knaup I, Kramann R, Sasula MJ, Mack P, Bastos Craveiro R, Niederau C, Coenen F, Neuss S, Jankowski J, Wolf M. TNF reduces osteogenic cell fate in PDL cells at transcriptional and functional levels without alteration of periodontal proliferative capacity. J Orofac Orthop 2024:10.1007/s00056-024-00541-2. [PMID: 39093345 DOI: 10.1007/s00056-024-00541-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/28/2024] [Indexed: 08/04/2024]
Abstract
AIMS To investigate the effect of tumor necrosis factor (TNF) on the growth of human periodontal ligament (PDL) cells, their osteogenic differentiation and modulation of their matrix secretion in vitro. METHODS The influence of 10 ng/ml TNF on proliferation and metabolic activity of PDL cells was analyzed by cell counting (DAPI [4',6-diamidino-2-phenylindole] staining) and the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. In addition, cells were cultured under control conditions and osteogenic conditions (media containing 10 mM β-glycerophosphate). Quantitative expression analysis of genes encoding the osteogenic markers alkaline phosphatase (ALP), collagen type I alpha 1 chain (COL1A1), osteoprotegerin (OPG), and osteopontin (OPN) was performed after 7 and 14 days of cultivation. Calcium deposits were stained with alizarin red. RESULTS Our studies showed that 10 ng/ml TNF did not affect the survival and metabolic activity of PDL cells. Quantitative expression analysis revealed that long-term cultures with TNF impaired osteogenic cell fate at early and late developmental stages. Furthermore, TNF significantly reduced matrix secretion in PDL cells. CONCLUSION The present data confirm TNF as a regulatory factor of proinflammatory remodeling that influences the differentiation behavior but not the metabolism and cell proliferation of the periodontium. Therefore, TNF represents an interesting target for the regulation of orthodontic remodeling processes in the periodontium.
Collapse
Affiliation(s)
- Isabel Knaup
- Department of Orthodontics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Rafael Kramann
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Diseases (Medical Clinic II), Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Martha-Julia Sasula
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Paula Mack
- Department of Orthodontics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Rogério Bastos Craveiro
- Department of Orthodontics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Christian Niederau
- Department of Orthodontics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Franziska Coenen
- Department of Orthodontics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Sabine Neuss
- Helmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Aachen, Germany
- Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael Wolf
- Department of Orthodontics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| |
Collapse
|
2
|
Al-Saran N, Subash-Babu P, Al-Harbi LN, Alrfaei BM, Alshatwi AA. Neuroprotective Effect of Solid Lipid Nanoparticles Loaded with Lepidium sativum (L.) Seed Bioactive Components Enhance Bioavailability and Wnt/β-Catenin/Camk-II Signaling Cascade in SH-SY5Y Neuroblastoma Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:199. [PMID: 38251163 PMCID: PMC10819627 DOI: 10.3390/nano14020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
The primary pathological hallmark of Alzheimer's disease (AD) is the formation and accumulation of neurofibrillary tangles and plaques, which result from the aggregation of amyloid-β (Aβ) induced by oxidative stress. The effectiveness of Alzheimer's disease (AD) therapeutics significantly hinges on the drug's bioavailability and its ability to penetrate neuronal cells. The current investigation was designed as a first attempt to examine bio-fabricated Lepidium sativum (LS) seed-extract-loaded solid lipid nanoparticles (SLNps) to increase bioavailability and bioefficacy for the prevention of undifferentiated SH-SY5Y neuronal cells from oxidative stress induced by H2O2 and amyloid-β peptide (Aβ,1-42). The SLNps were fabricated using LS extract as a water phase and hyaluronic acid and chia seed fatty acids as a lipid phase, then confirmed and characterized using UV, Zeta size, and SEM methods. The biological safety of synthesized LS-SLNps has been determined using MTT assay and PI staining (nuclear damage) in hMSCs. LS-SLNp-pretreated neuronal cells were induced with oxidative stress and 2 µM of beta-amyloid (Aβ,1-42) fibrils; furthermore, the neuroprotective potential of LS-SLNps was determined through the quenching of oxidative stress, enhancing mitochondrial oxidative capacity, and immunoregulatory potential. Observations found that cells treated with both H2O2 and beta-amyloid (Aβ,1-42) fibrils showed decreased neuronal cell growth, nuclear damage, and mitochondrial membrane potential due to oxidative stress. However, SH-SY5Y cells pretreated with LS-SLNps for 24 h showed an increase in cell proliferation with uniform morphology and increased mitochondrial membrane potential compared to cells pretreated with LS alone. Gene expression analysis found that LS-SLNps increased the expression of Wnt 3a and 5a, which stimulated the canonical, β-catenin, and non-canonical Camk-II expressions of nerve cell growth factors, confirming the molecular-level reversal of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nada Al-Saran
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia (P.S.-B.)
| | - Pandurangan Subash-Babu
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia (P.S.-B.)
| | - Laila Naif Al-Harbi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia (P.S.-B.)
| | - Bahauddeen M. Alrfaei
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Minister of National Guard-Health Affairs (MNGHA), P.O. Box 22490, Riyadh 11426, Saudi Arabia
- King Abdullah International Medical Research Center, Minister of National Guard-Health Affairs (MNGHA), P.O. Box 22490, Riyadh 11426, Saudi Arabia
| | - Ali A. Alshatwi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia (P.S.-B.)
| |
Collapse
|