1
|
Velázquez-Vega LE, Rivera-Robles M, Sánchez-Álvarez AO, Vivas-Mejía PE, Aponte-Reyes M, Cruz-Collazo AM, Grafals-Ruiz N, Dorta-Estremera S, Hernández-O'Farrill E, Vlaar CP, Dharmawardhane S. Efficacy and delivery strategies of the dual Rac/Cdc42 inhibitor MBQ-167 in HER2 overexpressing breast cancer. Transl Oncol 2024; 44:101928. [PMID: 38489873 PMCID: PMC10956050 DOI: 10.1016/j.tranon.2024.101928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/06/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024] Open
Abstract
Trastuzumab and trastuzumab-based treatments are the standard of care for breast cancer patients who overexpress the human epidermal growth factor receptor 2 (HER2). However, patients often develop resistance to trastuzumab via signaling from alternative growth factor receptors that converge to activate guanine nucleotide exchange factors (GEFs) that in turn activate the Rho GTPases Rac and Cdc42. Since Rac and Cdc42 have been implicated in high tumor grade and therapy resistance, inhibiting the activity of Rac and Cdc42 is a rational strategy to overcome HER2-targeted therapy resistance. Therefore, our group developed MBQ-167, a dual Rac/Cdc42 inhibitor with IC50s of 103 nM and 78 nM for Rac and Cdc42, respectively, which is highly effective in reducing cell and tumor growth and metastasis in breast cancer cell and mouse models. Herein, we created a trastuzumab resistant variant of the SKBR3 HER2 positive breast cancer cell line and show that Rac activation is a central mechanism in trastuzumab resistance. Next, we tested the potential of targeting MBQ-167 to HER2 overexpressing trastuzumab-resistant cell lines in vitro, and show that MBQ-167, but not trastuzumab, reduces cell viability and induces apoptosis. When MBQ-167 was targeted to mammary fatpad tumors established from HER2 overexpressing cells via immunoliposomes functionalized with trastuzumab, MBQ-167 and MBQ-167-loaded liposomes show equal efficacy in reducing the viability of trastuzumab-resistant cells, inhibiting tumor growth in mouse xenografts, and reducing metastasis to lungs and liver. This study demonstrates the efficacy of MBQ-167 as an alternative therapeutic in HER2 overexpressing cancers, delivered either in free form or in liposomes.
Collapse
Affiliation(s)
- Luis E Velázquez-Vega
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Michael Rivera-Robles
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | | | - Pablo E Vivas-Mejía
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico; University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
| | | | - Ailed M Cruz-Collazo
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Nilmary Grafals-Ruiz
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Stephanie Dorta-Estremera
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico; Department of Microbiology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Eliud Hernández-O'Farrill
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Cornelis P Vlaar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico; University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico.
| |
Collapse
|
2
|
Galloni C, Egnuni T, Zahed Mohajerani S, Ye J, Mittnacht S, Speirs V, Lorger M, Mavria G. Brain endothelial cells promote breast cancer cell extravasation to the brain via EGFR-DOCK4-RAC1 signalling. Commun Biol 2024; 7:602. [PMID: 38762624 PMCID: PMC11102446 DOI: 10.1038/s42003-024-06200-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/15/2024] [Indexed: 05/20/2024] Open
Abstract
The role of endothelial cells in promoting cancer cell extravasation to the brain during the interaction of cancer cells with the vasculature is not well characterised. We show that brain endothelial cells activate EGFR signalling in triple-negative breast cancer cells with propensity to metastasise to the brain. This activation is dependent on soluble factors secreted by brain endothelial cells, and occurs via the RAC1 GEF DOCK4, which is required for breast cancer cell extravasation to the brain in vivo. Knockdown of DOCK4 inhibits breast cancer cell entrance to the brain without affecting cancer cell survival or growth. Defective extravasation is associated with loss of elongated morphology preceding intercalation into brain endothelium. We also show that brain endothelial cells promote paracrine stimulation of mesenchymal-like morphology of breast cancer cells via DOCK4, DOCK9, RAC1 and CDC42. This stimulation is accompanied by EGFR activation necessary for brain metastatic breast cancer cell elongation which can be reversed by the EGFR inhibitor Afatinib. Our findings suggest that brain endothelial cells promote metastasis through activation of cell signalling that renders breast cancer cells competent for extravasation. This represents a paradigm of brain endothelial cells influencing the signalling and metastatic competency of breast cancer cells.
Collapse
Affiliation(s)
- Chiara Galloni
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- Sheffield Institute for Nucleic Acids (SInFoNiA) and School of Biosciences, University of Sheffield, Sheffield, UK
| | - Teklu Egnuni
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Safoura Zahed Mohajerani
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- Leeds Centre for Disease Models, University of Leeds, Leeds, UK
| | - Jiaqi Ye
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | | | - Valerie Speirs
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Mihaela Lorger
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Georgia Mavria
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK.
| |
Collapse
|
3
|
Ji J, Zhou Z, Luo Q, Zhu Y, Wang R, Liu Y. TMEM16A enhances the activity of the Cdc42-NWASP signaling pathway to promote invasion and metastasis in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 137:161-171. [PMID: 38155002 DOI: 10.1016/j.oooo.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/22/2023] [Indexed: 12/30/2023]
Abstract
OBJECTIVE We explored the relationship between TMEM16A and metastasis and development in oral squamous cell carcinoma (OSCC). STUDY DESIGN The University of Alabama at Birmingham and Gene Expression Profiling Interactive Analysis Databases were employed to analyze the relationship between the expression of TMEM16A and the survival of patients with OSCC. TMEM16A was knocked down and overexpressed in CAL27 and SCC-4 cells, respectively, and the malignant behavior and expression of key proteins were detected. The Cdc42-NWASP pathway was inhibited, and the effects of TMEM16A and the Cdc42-NWASP pathway on promoting the malignant behavior of cancer cells were verified. A xenograft tumor model was constructed, and tumor growth, cell proliferation index, apoptosis, and Cdc42-NWASP signal pathway activity were detected. RESULTS The expression of TMEM16A in oral cancer tissues was significantly higher than in adjacent tissues, and mice with high expression of TMEM16A had shorter survival. Overexpression of TMTM16A could significantly promote the occurrence of cancer and reduce the apoptosis of cancer cells, whereas the activity of the Cdc42 pathway was higher. Knocking down TMEM16A or inhibiting the Cdc42-NWASP pathway could reverse these results. CONCLUSION The activation of the Cdc42-NWASP pathway by high TMEM16A expression is closely related to OSCC and may become a new therapeutic target to prevent OSCC metastasis.
Collapse
Affiliation(s)
- Juanjuan Ji
- Department of Stomatology, The Affiliated Hospital of Yunnan University/The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Zhi Zhou
- Department of Stomatology, The Affiliated Hospital of Yunnan University/The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Qi Luo
- Department of Stomatology, The Affiliated Hospital of Yunnan University/The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Yaling Zhu
- Department of Stomatology, The Affiliated Hospital of Yunnan University/The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Rui Wang
- Department of Stomatology, The Affiliated Hospital of Yunnan University/The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Yali Liu
- Department of Orthodontics, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
4
|
Halász H, Szatmári Z, Kovács K, Koppán M, Papp S, Szabó-Meleg E, Szatmári D. Changes of Ex Vivo Cervical Epithelial Cells Due to Electroporation with JMY. Int J Mol Sci 2023; 24:16863. [PMID: 38069185 PMCID: PMC10706833 DOI: 10.3390/ijms242316863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
The ionic environment within the nucleoplasm might diverge from the conditions found in the cytoplasm, potentially playing a role in the cellular stress response. As a result, it is conceivable that interactions of nuclear actin and actin-binding proteins (ABPs) with apoptosis factors may differ in the nucleoplasm and cytoplasm. The primary intracellular stress response is Ca2+ influx. The junctional mediating and regulating Y protein (JMY) is an actin-binding protein and has the capability to interact with the apoptosis factor p53 in a Ca2+-dependent manner, forming complexes that play a regulatory role in cytoskeletal remodelling and motility. JMY's presence is observed in both the cytoplasm and nucleoplasm. Here, we show that ex vivo ectocervical squamous cells subjected to electroporation with JMY protein exhibited varying morphological alterations. Specifically, the highly differentiated superficial and intermediate cells displayed reduced nuclear size. In inflamed samples, nuclear enlargement and simultaneous cytoplasmic reduction were observable and showed signs of apoptotic processes. In contrast, the less differentiated parabasal and metaplastic cells showed increased cytoplasmic activity and the formation of membrane protrusions. Surprisingly, in severe inflammation, vaginosis or ASC-US (Atypical Squamous Cells of Undetermined Significance), JMY appears to influence only the nuclear and perinuclear irregularities of differentiated cells, and cytoplasmic abnormalities still existed after the electroporation. Our observations can provide an appropriate basis for the exploration of the relationship between cytopathologically relevant morphological changes of epithelial cells and the function of ABPs. This is particularly important since ABPs are considered potential diagnostic and therapeutic biomarkers for both cancers and chronic inflammation.
Collapse
Affiliation(s)
- Henriett Halász
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (H.H.); (E.S.-M.)
| | | | - Krisztina Kovács
- Department of Pathology, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | | | - Szilárd Papp
- DaVinci Clinics, 7635 Pécs, Hungary; (M.K.); (S.P.)
| | - Edina Szabó-Meleg
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (H.H.); (E.S.-M.)
| | - Dávid Szatmári
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (H.H.); (E.S.-M.)
| |
Collapse
|
5
|
Hu X, Ma Z, Xu B, Li S, Yao Z, Liang B, Wang J, Liao W, Lin L, Wang C, Zheng S, Wu Q, Huang Q, Yu L, Wang F, Shi M. Glutamine metabolic microenvironment drives M2 macrophage polarization to mediate trastuzumab resistance in HER2-positive gastric cancer. Cancer Commun (Lond) 2023; 43:909-937. [PMID: 37434399 PMCID: PMC10397568 DOI: 10.1002/cac2.12459] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/04/2023] [Accepted: 06/21/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Trastuzumab is a first-line targeted therapy for human epidermal growth factor receptor-2 (HER2)-positive gastric cancer. However, the inevitable occurrence of acquired trastuzumab resistance limits the drug benefit, and there is currently no effective reversal measure. Existing researches on the mechanism of trastuzumab resistance mainly focused on tumor cells themselves, while the understanding of the mechanisms of environment-mediated drug resistance is relatively lacking. This study aimed to further explore the mechanisms of trastuzumab resistance to identify strategies to promote survival in these patients. METHODS Trastuzumab-sensitive and trastuzumab-resistant HER2-positive tumor tissues and cells were collected for transcriptome sequencing. Bioinformatics were used to analyze cell subtypes, metabolic pathways, and molecular signaling pathways. Changes in microenvironmental indicators (such as macrophage, angiogenesis, and metabolism) were verified by immunofluorescence (IF) and immunohistochemical (IHC) analyses. Finally, a multi-scale agent-based model (ABM) was constructed. The effects of combination treatment were further validated in nude mice to verify these effects predicted by the ABM. RESULTS Based on transcriptome sequencing, molecular biology, and in vivo experiments, we found that the level of glutamine metabolism in trastuzumab-resistant HER2-positive cells was increased, and glutaminase 1 (GLS1) was significantly overexpressed. Meanwhile, tumor-derived GLS1 microvesicles drove M2 macrophage polarization. Furthermore, angiogenesis promoted trastuzumab resistance. IHC showed high glutamine metabolism, M2 macrophage polarization, and angiogenesis in trastuzumab-resistant HER2-positive tumor tissues from patients and nude mice. Mechanistically, the cell division cycle 42 (CDC42) promoted GLS1 expression in tumor cells by activating nuclear factor kappa-B (NF-κB) p65 and drove GLS1 microvesicle secretion through IQ motif-containing GTPase-activating protein 1 (IQGAP1). Based on the ABM and in vivo experiments, we confirmed that the combination of anti-glutamine metabolism, anti-angiogenesis, and pro-M1 polarization therapy had the best effect in reversing trastuzumab resistance in HER2-positive gastric cancer. CONCLUSIONS This study revealed that tumor cells secrete GLS1 microvesicles via CDC42 to promote glutamine metabolism, M2 macrophage polarization, and pro-angiogenic function of macrophages, leading to acquired trastuzumab resistance in HER2-positive gastric cancer. A combination of anti-glutamine metabolism, anti-angiogenesis, and pro-M1 polarization therapy may provide a new insight into reversing trastuzumab resistance.
Collapse
Affiliation(s)
- Xingbin Hu
- Department of OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Zhenfeng Ma
- Department of OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Beibei Xu
- Department of OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Shulong Li
- School of Biomedical EngineeringSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Zhiqi Yao
- Department of OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Bishan Liang
- Department of OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Jiao Wang
- Department of OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Wangjun Liao
- Department of OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Li Lin
- Department of OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Chunling Wang
- Department of OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Siting Zheng
- Department of OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Qijing Wu
- Department of OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Qiong Huang
- Department of OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Le Yu
- School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Fenghua Wang
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdongP. R. China
| | - Min Shi
- Department of OncologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
| |
Collapse
|
6
|
Xu J, Shao R, Zhang X, Yao D, Han S. Serum cell division cycle 42 in advanced hepatocellular carcinoma patients: Linkage with clinical characteristics and immune checkpoint inhibitor-related treatment outcomes. Clin Res Hepatol Gastroenterol 2023; 47:102149. [PMID: 37247692 DOI: 10.1016/j.clinre.2023.102149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/27/2023] [Indexed: 05/31/2023]
Abstract
OBJECTIVE Cell division cycle 42 (CDC42) facilitates immune escape and drug resistance towards immunotherapy in several malignancies. This prospective study aimed to explore the predictive value of serum CDC42 for immune checkpoint inhibitor (ICI)-treatment response and survival in advanced hepatocellular carcinoma (HCC) patients. METHODS Thirty advanced HCC patients scheduled for ICI or ICI-based treatment were enrolled in this prospective study, whose serum CDC42 was determined via enzyme-linked immunosorbent assay before therapy initiation. RESULTS The median (interquartile range) of serum CDC42 level was 766.5 (605.0-1329.5) pg/mL. Serum CDC42 was related to increased tumor size but decreased programmed death-ligand 1 combined positive score (PD-L1 CPS). With respect to ICI or ICI-based treatment outcomes, elevated serum CDC42 was associated with decreased disease control rate, but did not link with objective response rate. Patients with high serum CDC42 (vs. low, cut by its median level) had shortened progression-free survival (PFS), while overall survival (OS) only disclosed a reduced trend (lacked statistical significance) in patients with high serum CDC42 (vs. low). In detail, the median (95%CI) PFS and OS were 3.0 (0.0-6.0) months and 11.7 (2.7-20.7) months in patients with high serum CDC42, while they were 11.1 (6.6-15.6) months and 19.3 (14.5-24.1) months in patients with low CDC42. After adjusted by multivariate cox regression analysis, high serum CDC42 (vs. low) was independently associated with shortened PFS, but not OS. CONCLUSIONS Elevated serum CDC42 possesses a potential value in predicting worse ICI or ICI-based treatment outcomes in advanced HCC.
Collapse
Affiliation(s)
- Jinxia Xu
- Nuclear Medicine Laboratory, Tangshan People's Hospital, Tangshan, China
| | - Ruiyu Shao
- Sixth Department of Oncology, Tangshan People's Hospital, Tangshan, China
| | - Xiaoru Zhang
- Nuclear Medicine Laboratory, Tangshan People's Hospital, Tangshan, China
| | - Deshun Yao
- Second Department of Breast Surgery, Tangshan People's Hospital, Tangshan, China
| | - Sugui Han
- Nuclear Medicine Laboratory, Tangshan People's Hospital, Tangshan, China.
| |
Collapse
|
7
|
Yao G, Deng L, Long X, Zhou Y, Zhou X. An integrated bioinformatic investigation of focal adhesion-related genes in glioma followed by preliminary validation of COL1A2 in tumorigenesis. Aging (Albany NY) 2023; 15:6225-6254. [PMID: 37354488 PMCID: PMC10373961 DOI: 10.18632/aging.204834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/10/2023] [Indexed: 06/26/2023]
Abstract
Focal adhesions (FAs) allow cells to contact the extracellular matrix, helping to maintain tension and enabling signal transmission in cell migration, differentiation, and apoptosis. In addition, FAs are associated with changes in the tumor microenvironment (TME) that lead to malignant progression and drug resistance in tumors. However, there are still few studies on the comprehensive analysis of focal adhesion-related genes (FARGs) in glioma. Expression data and clinical information of glioma samples were downloaded from public databases. Two distinct molecular subtypes were identified based on FARGs using an unsupervised consensus clustering algorithm. A scoring system consisting of nine FARGs was constructed using integrated LASSO regression and multivariate Cox regression. It not only has outstanding prognostic value but also can guide immunotherapy of glioma patients, which was verified in TCGA, CGGA, GSE16011, and IMvigor210 cohorts. The results of bioinformatics analysis, immunohistochemistry staining, and western blotting all revealed that the expression of COL1A2 was up-regulated in glioblastoma and related to poor prognosis outcomes in patients from public datasets. COL1A2 promotes the proliferation, migration, and invasion of glioblastoma cells. A positive correlation between COL1A2 and CD8 was determined in GBM specimens from eight patients. Moreover, the results of cell co-cultured assay showed that COL1A2 participated in the killing of GBM cells by Jurkat cells. Our study indicates that the FARGs have prominent application value in the identification of molecular subtypes and prediction of survival outcomes in glioma patients. Bioinformatics analysis and experimental verification provide a direction for further research on FARGs.
Collapse
Affiliation(s)
- Guojun Yao
- Department of Neurosurgery, The First People’s Hospital of Fuzhou City, Fuzhou 344099, Jiangxi, P.R. China
| | - Ling Deng
- College of Nursing and Rehabilitation, Fuzhou Medical College of Nanchang University, Fuzhou 344099, Jiangxi, P.R. China
| | - Xinquan Long
- Department of Neurosurgery, The First People’s Hospital of Fuzhou City, Fuzhou 344099, Jiangxi, P.R. China
| | - Yufan Zhou
- Department of Neurosurgery, The First People’s Hospital of Fuzhou City, Fuzhou 344099, Jiangxi, P.R. China
| | - Xiang Zhou
- Department of Neurosurgery, The First People’s Hospital of Fuzhou City, Fuzhou 344099, Jiangxi, P.R. China
| |
Collapse
|
8
|
González B, Aldea M, Cullen PJ. Chaperone-Dependent Degradation of Cdc42 Promotes Cell Polarity and Shields the Protein from Aggregation. Mol Cell Biol 2023; 43:200-222. [PMID: 37114947 PMCID: PMC10184603 DOI: 10.1080/10985549.2023.2198171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 04/29/2023] Open
Abstract
Rho GTPases are global regulators of cell polarity and signaling. By exploring the turnover regulation of the yeast Rho GTPase Cdc42p, we identified new regulatory features surrounding the stability of the protein. We specifically show that Cdc42p is degraded at 37 °C by chaperones through lysine residues located in the C-terminus of the protein. Cdc42p turnover at 37 °C occurred by the 26S proteasome in an ESCRT-dependent manner in the lysosome/vacuole. By analyzing versions of Cdc42p that were defective for turnover, we show that turnover at 37 °C promoted cell polarity but was defective for sensitivity to mating pheromone, presumably mediated through a Cdc42p-dependent MAP kinase pathway. We also identified one residue (K16) in the P-loop of the protein that was critical for Cdc42p stability. Accumulation of Cdc42pK16R in some contexts led to the formation of protein aggregates, which were enriched in aging mother cells and cells undergoing proteostatic stress. Our study uncovers new aspects of protein turnover regulation of a Rho-type GTPase that may extend to other systems. Moreover, residues identified here that mediate Cdc42p turnover correlate with several human diseases, which may suggest that turnover regulation of Cdc42p is important to aspects of human health.
Collapse
Affiliation(s)
- Beatriz González
- Department of Biological Sciences, State University of New York at Buffalo, New York, USA
| | - Martí Aldea
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona, Spain
| | - Paul J. Cullen
- Department of Biological Sciences, State University of New York at Buffalo, New York, USA
| |
Collapse
|
9
|
Salmina K, Vainshelbaum NM, Kreishmane M, Inashkina I, Cragg MS, Pjanova D, Erenpreisa J. The Role of Mitotic Slippage in Creating a "Female Pregnancy-like System" in a Single Polyploid Giant Cancer Cell. Int J Mol Sci 2023; 24:3237. [PMID: 36834647 PMCID: PMC9960874 DOI: 10.3390/ijms24043237] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
In our recent work, we observed that triple-negative breast cancer MDA-MB-231 cells respond to doxorubicin (DOX) via "mitotic slippage" (MS), discarding cytosolic damaged DNA during the process that provides their resistance to this genotoxic treatment. We also noted two populations of polyploid giant cells: those budding surviving offspring, versus those reaching huge ploidy by repeated MS and persisting for several weeks. Their separate roles in the recovery from treatment remained unclear. The current study was devoted to characterising the origin and relationship of these two sub-populations in the context of MS. MS was hallmarked by the emergence of nuclear YAP1/OCT4A/MOS/EMI2-positivity featuring a soma-germ transition to the meiotic-metaphase-arrested "maternal germ cell". In silico, the link between modules identified in the inflammatory innate immune response to cytosolic DNA and the reproductive module of female pregnancy (upregulating placenta developmental genes) was observed in polyploid giant cells. Asymmetry of the two subnuclei types, one repairing DNA and releasing buds enriched by CDC42/ACTIN/TUBULIN and the other persisting and degrading DNA in a polyploid giant cell, was revealed. We propose that when arrested in MS, a "maternal cancer germ cell" may be parthenogenetically stimulated by the placental proto-oncogene parathyroid-hormone-like-hormone, increasing calcium, thus creating a "female pregnancy-like" system within a single polyploid giant cancer cell.
Collapse
Affiliation(s)
- Kristine Salmina
- Cancer Research Division, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Ninel Miriam Vainshelbaum
- Cancer Research Division, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
- Faculty of Biology, The University of Latvia, LV-1586 Riga, Latvia
| | - Madara Kreishmane
- Cancer Research Division, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Inna Inashkina
- Cancer Research Division, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Mark Steven Cragg
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Dace Pjanova
- Cancer Research Division, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Jekaterina Erenpreisa
- Cancer Research Division, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| |
Collapse
|
10
|
Almaghrbi H, Giordo R, Pintus G, Zayed H. Non-coding RNAs as biomarkers of myocardial infarction. Clin Chim Acta 2023; 540:117222. [PMID: 36627010 DOI: 10.1016/j.cca.2023.117222] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
Non-coding RNAs (ncRNAs) encompass a family of ubiquitous RNA molecules that lack protein-coding potential and have tissue-specific expression. A significant body of evidence indicates that ncRNA's aberrant expression plays a critical role in disease onset and development. NcRNAs' biochemical characteristics such as disease-associated concentration changes, structural stability, and high abundance in body fluids make them promising prognostic and diagnostic biomarkers. Myocardial infarction (MI) is a leading cause of mortality worldwide. Acute myocardial infarction (AMI), the term in use to describe MI's early phase, is generally diagnosed by physical examination, electrocardiogram (ECG), and the presence of specific biomarkers. In this regard, compared to standard MI biomarkers, such as the cardiac troponin isoforms (cTnT & cTnI) and the Creatinine Kinase (CK), ncRNAs appears to provide better sensitivity and specificity, ensuring a rapid and correct diagnosis, an earlier treatment, and consequently a good prognosis for the patients. This review aims to summarize and discuss the most promising and recent data on the potential clinical use of circulating ncRNAs as MI biomarkers. Specifically, we focused primarily on miRNAs and lncRNAs, highlighting their significant specificity and sensitivity, discussing their limitations, and suggesting possible overcoming approaches.
Collapse
Affiliation(s)
- Heba Almaghrbi
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, 505055 Dubai, United Arab Emirates
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy; Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah 27272, United Arab Emirates.
| | - Hatem Zayed
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
11
|
Urine proteomic signatures predicting the progression from premalignancy to malignant gastric cancer. EBioMedicine 2022; 86:104340. [DOI: 10.1016/j.ebiom.2022.104340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
|
12
|
Sayedyahossein S, Smith J, Barnaeva E, Li Z, Choe J, Ronzetti M, Dextras C, Hu X, Marugan J, Southall N, Baljinnyam B, Thines L, Tran AD, Ferrer M, Sacks DB. Discovery of small molecule inhibitors that effectively disrupt IQGAP1-Cdc42 interaction in breast cancer cells. Sci Rep 2022; 12:17372. [PMID: 36253497 PMCID: PMC9576799 DOI: 10.1038/s41598-022-21342-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/26/2022] [Indexed: 01/10/2023] Open
Abstract
The small GTPase Cdc42 is an integral component of the cytoskeleton, and its dysregulation leads to pathophysiological conditions, such as cancer. Binding of Cdc42 to the scaffold protein IQGAP1 stabilizes Cdc42 in its active form. The interaction between Cdc42 and IQGAP1 enhances migration and invasion of cancer cells. Disrupting this association could impair neoplastic progression and metastasis; however, no effective means to achieve this has been described. Here, we screened 78,500 compounds using a homogeneous time resolved fluorescence-based assay to identify small molecules that disrupt the binding of Cdc42 to IQGAP1. From the combined results of the validation assay and counter-screens, we selected 44 potent compounds for cell-based experiments. Immunoprecipitation and cell viability analysis rendered four lead compounds, namely NCGC00131308, NCGC00098561, MLS000332963 and NCGC00138812, three of which inhibited proliferation and migration of breast carcinoma cells. Microscale thermophoresis revealed that two compounds bind directly to Cdc42. One compound reduced the amount of active Cdc42 in cells and effectively impaired filopodia formation. Docking analysis provided plausible models of the compounds binding to the hydrophobic pocket adjacent to the GTP binding site of Cdc42. In conclusion, we identified small molecules that inhibit binding between Cdc42 and IQGAP1, which could potentially yield chemotherapeutic agents.
Collapse
Affiliation(s)
- Samar Sayedyahossein
- grid.94365.3d0000 0001 2297 5165Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892 USA ,grid.39381.300000 0004 1936 8884Present Address: Department of Physiology and Pharmacology, University of Western Ontario, London, ON Canada
| | - Jessica Smith
- grid.94365.3d0000 0001 2297 5165Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892 USA ,grid.94365.3d0000 0001 2297 5165Present Address: Center for Scientific Review, National Institutes of Health, Bethesda, MD USA
| | - Elena Barnaeva
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD USA
| | - Zhigang Li
- grid.94365.3d0000 0001 2297 5165Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Jun Choe
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD USA
| | - Michael Ronzetti
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD USA
| | - Christopher Dextras
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD USA
| | - Xin Hu
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD USA
| | - Juan Marugan
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD USA
| | - Noel Southall
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD USA
| | - Bolormaa Baljinnyam
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD USA
| | - Louise Thines
- grid.94365.3d0000 0001 2297 5165Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Andy D. Tran
- grid.48336.3a0000 0004 1936 8075Confocal Microscopy Core Facility, Laboratory of Cancer Biology and Genetics, NCI, National Institutes of Health, Rockville, MD USA
| | - Marc Ferrer
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD USA
| | - David B. Sacks
- grid.94365.3d0000 0001 2297 5165Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
13
|
Stepchenko AG, Bulavkina EV, Portseva TN, Georgieva SG, Pankratova EV. Suppression of OCT-1 in Metastatic Breast Cancer Cells Reduces Tumor Metastatic Potential, Hypoxia Resistance, and Drug Resistance. Life (Basel) 2022; 12:life12091435. [PMID: 36143471 PMCID: PMC9502003 DOI: 10.3390/life12091435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
OCT-1/POU2F1 is a ubiquitously expressed transcription factor. Its expression starts at the earliest stage of embryonic development. OCT-1 controls genes involved in the regulation of differentiation, proliferation, cell metabolism, and aging. High levels of OCT-1 transcription factor in tumor cells correlate with tumor malignancy and resistance to antitumor therapy. Here, we report that suppression of OCT-1 in breast cancer cells reduces their metastatic potential and drug resistance. OCT-1 knockdown in the MDA-MB231 breast cancer cells leads to a fivefold decrease (p < 0.01) in cell migration rates in the Boyden chamber. A decrease in the transcription levels of human invasion signature (HIS) genes (ARHGDIB, CAPZA2, PHACTR2, CDC42, XRCC5, and CAV1) has been also demonstrated by real-time PCR, with high expression of these genes being a hallmark of actively metastasizing breast cancer cells. Transcriptional activity of ATF6 response elements is significantly reduced in the cell lines with decreased OCT-1 expression, which results in lower levels of adaptive EPR stress response. OCT-1 knockdown more than two times increases the MDA-MB231 cell death rate in hypoxia and significantly increases the doxorubicin or docetaxel-treated MDA-MB231 cell death rate. Our findings indicate that OCT-1 may be an important therapeutic target and its selective inhibition may have significant therapeutic effects and may improve prognosis in breast cancer patients.
Collapse
Affiliation(s)
- Alexander G. Stepchenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Elizaveta V. Bulavkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Tatiana N. Portseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Sofia G. Georgieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
- Correspondence: (S.G.G.); (E.V.P.)
| | - Elizaveta V. Pankratova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence: (S.G.G.); (E.V.P.)
| |
Collapse
|
14
|
Huang D, Qiu H, Miao L, Guo L, Zhang X, Lin M, Li Z, Li F. Cdc42 promotes thyroid cancer cell proliferation and migration and tumor-associated macrophage polarization through the PTEN/AKT pathway. J Biochem Mol Toxicol 2022; 36:e23115. [PMID: 35822655 DOI: 10.1002/jbt.23115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 04/21/2022] [Accepted: 05/18/2022] [Indexed: 11/09/2022]
Abstract
The purpose of this study was to investigate the potential mechanism and function of Cdc42 in thyroid cancer. We found that knockdown of Cdc42 inhibited the migration and proliferation of WRO cells. This role of Cdc42 is achieved by interacting with PTEN and interfering with its PTEN nuclear translocation. The overexpression of Cdc42 enhances the production of lactic acid and promotes the polarization of M2 macrophages, and therefore M2 macrophages inhibit the function of T cells. Overall, Cdc42 can promote cell proliferation and migration through the PTEN/AKT pathway and promote tumor-related M2 macrophage polarization and inhibit T cell activity by enhancing aerobic glycolysis, animal experiments confirmed that tumor volume increased after Cdc42 overexpressed in TBP-3743 murine thyroid cancer cells. Increased infiltration of Treg and macrophages was also observed. taken together, our results indicate that Cdc42 can be used as a diagnostic and thyroid cancer Prognostic biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Deyi Huang
- Ultrasound Department, The People's Hospital of Yuhuan, Yuhuan, China
| | - Huali Qiu
- Ultrasound Department, The People's Hospital of Yuhuan, Yuhuan, China
| | - Lin Miao
- Thyroid Breast Surgery Department, The People's Hospital of Yuhuan, Yuhuan, China
| | - Lin Guo
- Inspection Department, The People's Hospital of Yuhuan, Yuhuan, China
| | - Xiaoting Zhang
- Ultrasound Department, The People's Hospital of Yuhuan, Yuhuan, China
| | - Mengmeng Lin
- Ultrasound Department, The People's Hospital of Yuhuan, Yuhuan, China
| | - Zhongyun Li
- Ultrasound Department, The People's Hospital of Yuhuan, Yuhuan, China
| | - Fang Li
- Ultrasound Department, The People's Hospital of Yuhuan, Yuhuan, China
| |
Collapse
|
15
|
Zheng PF, Chen LZ, Liu P, Pan HW. A novel lncRNA-miRNA-mRNA triple network identifies lncRNA XIST as a biomarker for acute myocardial infarction. Aging (Albany NY) 2022; 14:4085-4106. [PMID: 35537778 PMCID: PMC9134965 DOI: 10.18632/aging.204075] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/16/2022] [Indexed: 11/25/2022]
Abstract
Despite the well-established role of long non-coding RNAs (lncRNAs) across various biological processes, their mechanisms in acute myocardial infarction (AMI) are not fully elucidated. The GSE34198 dataset from the Gene Expression Omnibus (GEO) database, which comprised 49 specimens from individuals with AMI and 47 specimens from controls, was extracted and analysed using the weighted gene co-expression network analysis (WGCNA) package. Twenty-seven key genes were identified through a combination of the degree and gene significance (GS) values, and the CDC42 (degree = 64), JAK2 (degree = 41), and CHUK (degree = 30) genes were identified as having the top three-degree values among the 27 genes. Potential interactions between lncRNA, miRNAs and mRNAs were predicted using the starBase V3.0 database, and a lncRNA-miRNA-mRNA triple network containing the lncRNA XIST, twenty-one miRNAs and three hub genes (CDC42, JAK2 and CHUK) was identified. RT-qPCR validation showed that the expression of the JAK2 and CDC42 genes and the lncRNA XIST was noticeably increased in samples from patients with AMI compared to normal samples. Pearson's correlation analysis also proved that JAK2 and CDC42 expression levels correlated positively with lncRNA XIST expression levels. The area under ROC curve (AUC) of lncRNA XIST was 0.886, and the diagnostic efficacy of the lncRNA XIST was significantly better than that of JAK2 and CDC42. The results suggested that the lncRNA XIST appears to be a risk factor for AMI likely through its ability to regulate JAK2 and CDC42 gene expressions, and it is expected to be a novel and reliable biomarker for the diagnosis of AMI.
Collapse
Affiliation(s)
- Peng-Fei Zheng
- Cardiology Department, Hunan Provincial People's Hospital, Furong District, Changsha 410000, Hunan, China.,Clinical Research Center for Heart Failure in Hunan Province, Furong District, Changsha 410000, Hunan, China.,Institute of Cardiovascular Epidemiology, Hunan Provincial People's Hospital, Furong District, Changsha 410000, Hunan, China
| | - Lu-Zhu Chen
- Department of Cardiology, The Central Hospital of ShaoYang, Daxiang District, Shaoyang 422000, Hunan, China
| | - Peng Liu
- Department of Cardiology, The Central Hospital of ShaoYang, Daxiang District, Shaoyang 422000, Hunan, China
| | - Hong-Wei Pan
- Cardiology Department, Hunan Provincial People's Hospital, Furong District, Changsha 410000, Hunan, China.,Clinical Research Center for Heart Failure in Hunan Province, Furong District, Changsha 410000, Hunan, China.,Institute of Cardiovascular Epidemiology, Hunan Provincial People's Hospital, Furong District, Changsha 410000, Hunan, China
| |
Collapse
|
16
|
Alves MT, da Conceição IMCA, de Oliveira AN, Oliveira HHM, Soares CE, de Paula Sabino A, Silva LM, Simões R, Luizon MR, Gomes KB. microRNA miR-133a as a Biomarker for Doxorubicin-Induced Cardiotoxicity in Women with Breast Cancer: A Signaling Pathway Investigation. Cardiovasc Toxicol 2022; 22:655-662. [PMID: 35524907 DOI: 10.1007/s12012-022-09748-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/22/2022] [Indexed: 11/28/2022]
Abstract
Cardiovascular toxicity is the main adverse effect of Doxorubicin (DOX) in cancer patients. microRNAs (miRNAs) are promising biomarkers to identify cardiac injury induced by DOX in breast cancer patients during the subclinical phase. Using RT-qPCR, we compared the expression of circulating miR-208a5p, miR-133a, miR-499a5p, miR-15a, miR-133b, and miR-49a3p in serum samples from DOX-induced cardiotoxicity (case) compared to the non-cardiotoxicity group (control). To further explore the potential roles of these circulating miRNA in cardiotoxicity, we searched the miRTarBase for experimentally validated miRNA-target interactions and performed a functional enrichment analysis based on those interactions. miR-133a was significantly upregulated in case compared to control group. The most relevant pathway regulated by miR-133a was ErbB2 signaling, whose main genes involved are EGFR, ERBB2, and RHOA, which are possibly downregulated by miR133a. The other miRNAs did not show significant differential expression when compared on both groups. The data suggest that miR-133a is associated with DOX-based cardiotoxicity during chemotherapy in breast cancer patients through ErbB2 signaling pathway. Moreover, miR-133a may be a future marker of DOX-induced cardiotoxicity in women with breast cancer.
Collapse
Affiliation(s)
- Michelle Teodoro Alves
- Departamento de Análises Clínicas eToxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | - Cintia Esteves Soares
- Fundação Hospitalar Do Estado de Minas Gerais (FHEMIG), Belo Horizonte, Minas Gerais, Brazil
| | - Adriano de Paula Sabino
- Departamento de Análises Clínicas eToxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
| | | | - Ricardo Simões
- Faculdade de Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo Rizzatti Luizon
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karina Braga Gomes
- Departamento de Análises Clínicas eToxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil.
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
17
|
Huang Z, Yang J, Qiu W, Huang J, Chen Z, Han Y, Ye C. HAUS5 Is A Potential Prognostic Biomarker With Functional Significance in Breast Cancer. Front Oncol 2022; 12:829777. [PMID: 35280773 PMCID: PMC8913513 DOI: 10.3389/fonc.2022.829777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background Breast cancer (BRCA) has become the most frequently appearing, lethal, and aggressive cancer with increasing morbidity and mortality. Previously, it was discovered that the HAUS5 protein is involved in centrosome integrity, spindle assembly, and the completion of the cytoplasmic division process during mitosis. By encouraging chromosome misdivision and aneuploidy, HAUS5 has the potential to cause cancer. The significance of HAUS5 in BRCA and the relationship between its expression and clinical outcomes or immune infiltration remains unclear. Methods Pan-cancer was analyzed by TIMER2 web and the expression differential of HAUS5 was discovered. The prognostic value of HAUS5 for BRCA was evaluated with KM plotter and confirmed with Gene Expression Omnibus (GEO) dataset. Following that, we looked at the relationship between the high and low expression groups of HAUS5 and breast cancer clinical indications. Signaling pathways linked to HAUS5 expression were discovered using Gene Set Enrichment Analysis (GSEA). The relative immune cell infiltrations of each sample were assessed using the CIBERSORT algorithm and ESTIMATE method. We evaluated the Tumor Mutation Burden (TMB) value between the two sets of samples with high and low HAUS5 expression, as well as the differences in gene mutations between the two groups. The proliferation changes of BRCA cells after knockdown of HAUS5 were evaluated by fluorescence cell counting and colony formation assay. Result HAUS5 is strongly expressed in most malignancies, and distinct associations exist between HAUS5 and prognosis in BRCA patients. Upregulated HAUS5 was associated with poor clinicopathological characteristics such as tumor T stage, ER, PR, and HER2 status. mitotic prometaphase, primary immunodeficiency, DNA replication, cell cycle related signaling pathways were all enriched in the presence of elevated HAUS5 expression, according to GSEA analysis. The BRCA microenvironment’s core gene, HAUS5, was shown to be related with invading immune cell subtypes and tumor cell stemness. TMB in the HAUS5-low expression group was significantly higher than that in the high expression group. The mutation frequency of 15 genes was substantially different in the high expression group compared to the low expression group. BRCA cells’ capacity to proliferate was decreased when HAUS5 was knocked down. Conclusion These findings show that HAUS5 is a positive regulator of BRCA progression that contributes to BRCA cells proliferation. As a result, HAUS5 might be a novel prognostic indicator and therapeutic target for BRCA patients.
Collapse
Affiliation(s)
- Zhijian Huang
- Breast Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Breast Surgical Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Jiasheng Yang
- School of Electrical and Information Engineering, Anhui University of Technology, Maanshan, China
| | - Wenjing Qiu
- School of Electrical and Information Engineering, Anhui University of Technology, Maanshan, China
| | - Jing Huang
- Department of Pharmacy, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Zhirong Chen
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Yuanyuan Han
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Changsheng Ye
- Breast Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Nasif D, Real S, Roqué M, Branham MT. CDC42 as an epigenetic regulator of ID4 in triple-negative breast tumors. Breast Cancer 2022; 29:562-573. [DOI: 10.1007/s12282-022-01334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 01/09/2022] [Indexed: 12/01/2022]
|
19
|
Kazmi N, Robinson T, Zheng J, Kar S, Martin RM, Ridley AJ. Rho GTPase gene expression and breast cancer risk: a Mendelian randomization analysis. Sci Rep 2022; 12:1463. [PMID: 35087170 PMCID: PMC8795400 DOI: 10.1038/s41598-022-05549-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 01/12/2022] [Indexed: 01/07/2023] Open
Abstract
The Rho GTPase family consists of 20 genes encoding intracellular signalling proteins that influence cytoskeletal dynamics, cell migration and cell cycle progression. They are implicated in breast cancer progression but their role in breast cancer aetiology is unknown. As aberrant Rho GTPase activity could be associated with breast cancer, we aimed to determine the potential for a causal role of Rho GTPase gene expression in breast cancer risk, using two-sample Mendelian randomization (MR). MR was undertaken in 122,977 breast cancer cases and 105,974 controls, including 69,501 estrogen receptor positive (ER+) cases and 105,974 controls, and 21,468 ER negative (ER-) cases and 105,974 controls. Single nucleotide polymorphisms (SNPs) underlying expression quantitative trait loci (eQTLs) obtained from normal breast tissue, breast cancer tissue and blood were used as genetic instruments for Rho GTPase expression. As a sensitivity analysis, we undertook co-localisation to examine whether findings reflected shared causal variants or genomic confounding. We identified genetic instruments for 14 of the 20 human Rho GTPases. Using eQTLs obtained from normal breast tissue and normal blood, we identified evidence of a causal role of RHOD in overall and ER+ breast cancers (overall breast cancer: odds ratio (OR) per standard deviation (SD) increase in expression level 1.06; (95% confidence interval (CI) 1.03, 1.09; P = 5.65 × 10-5) and OR 1.22 (95% CI 1.11, 1.35; P = 5.22 × 10-5) in normal breast tissue and blood respectively). There was a consistent direction of association for ER- breast cancer, although the effect-estimate was imprecisely estimated. Using eQTLs from breast cancer tissue and normal blood there was some evidence that CDC42 was negatively associated with overall and ER + breast cancer risk. The evidence from colocalization analyses strongly supported our MR results particularly for RHOD. Our study suggests a potential causal role of increased RHOD gene expression, and, although the evidence is weaker, a potential protective role for CDC42 gene expression, in overall and ER+ breast cancers. These finding warrant validation in independent samples and further biological investigation to assess whether they may be suitable targets for drug targeting.
Collapse
Affiliation(s)
- Nabila Kazmi
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK.
| | - Tim Robinson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK.
| | - Jie Zheng
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Siddhartha Kar
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Richard M Martin
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
- National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals NHS Trust and University of Bristol, Bristol, UK
| | - Anne J Ridley
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
20
|
Song F, Li F. MicroRNA-29a suppresses the growth of human cervical cancer cells by targeting cell division cycle 42 (CDC42). JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2021. [DOI: 10.1080/16583655.2021.1991732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Fang Song
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Fengshuang Li
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
21
|
Salameh J, Cantaloube I, Benoit B, Poüs C, Baillet A. Cdc42 and its BORG2 and BORG3 effectors control the subcellular localization of septins between actin stress fibers and microtubules. Curr Biol 2021; 31:4088-4103.e5. [PMID: 34329591 DOI: 10.1016/j.cub.2021.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/28/2021] [Accepted: 07/02/2021] [Indexed: 01/22/2023]
Abstract
Cell resistance to taxanes involves several complementary mechanisms, among which septin relocalization from actin stress fibers to microtubules plays an early role. By investigating the molecular mechanism underlying this relocalization, we found that acute paclitaxel treatment triggers the release from stress fibers and subsequent proteasome-mediated degradation of binder of Rho GTPases 2 (BORG2)/Cdc42 effector protein 3 (Cdc42EP3) and to a lesser extent of BORG3/Cdc42EP5, two Cdc42 effectors that link septins to actin in interphase cells. BORG2 or BORG3 silencing not only caused septin detachment from stress fibers but also mimicked the effects of paclitaxel by triggering both septin relocalization to microtubules and significant drug resistance. Conversely, BORG2 or BORG3 overexpression retained septins on actin fibers even after paclitaxel treatment, without affecting paclitaxel sensitivity. We found that drug-induced inhibition of Cdc42 resulted in a drop in BORG2 level and in the relocalization of septins to microtubules. Accordingly, although septins relocalized when overexpressing an inactive mutant of Cdc42, the expression of a constitutively active mutant acted locally at actin stress fibers to prevent septin release, even after paclitaxel treatment. These findings reveal the role of Cdc42 upstream of BORG2 and BORG3 in controlling the interplay between septins, actin fibers, and microtubules in basal condition and in response to taxanes.
Collapse
Affiliation(s)
- Joëlle Salameh
- INSERM UMR-S 1193, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry, France
| | - Isabelle Cantaloube
- INSERM UMR-S 1193, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry, France
| | - Béatrice Benoit
- INSERM UMR-S 1193, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry, France
| | - Christian Poüs
- INSERM UMR-S 1193, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry, France; Laboratoire de Biochimie-Hormonologie, Hôpital Antoine Béclère, AP-HP, Clamart, France.
| | - Anita Baillet
- INSERM UMR-S 1193, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry, France.
| |
Collapse
|
22
|
Li K, Liu T. Evaluation of Oncogene NUP37 as a Potential Novel Biomarker in Breast Cancer. Front Oncol 2021; 11:669655. [PMID: 34386417 PMCID: PMC8353244 DOI: 10.3389/fonc.2021.669655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/12/2021] [Indexed: 11/26/2022] Open
Abstract
Purpose There is an urgent need to identify oncogenes that may be beneficial to diagnose and develop target therapy for breast cancer. Methods Based on the GEO database, DECenter was used to screen the differentially overexpressed genes in breast cancer samples. Search Tool for the Retrieval of Interacting Genes and Cytoscape were performed to construct the PPI network to predict the hub gene. Functional and pathway enrichment were performed based on GO analysis. GEO2R, Oncomine, human tissue microarray staining, and western blot were applied to confirm the expression of NUP37. The association between NUP37 expression and prognosis in patients with breast cancer were assessed using the Kaplan–Meier plotter online tool and OncoLnc. siRNAs were used to knock down NUP37 and evaluate proliferation, migration, and stemness in breast cancer cells. Results We found that 138 genes were differentially upregulated in breast cancer samples, mainly comprising components of the nucleus and involved in the cell cycle process. NUP37 was identified as a hub gene that is upregulated in breast cancer patients related to a significantly worse survival rate. Furthermore, we confirmed that the downregulation of NUP37 in breast cancer cells results in the inhibition of cell growth, migration, and stemness. Conclusions High expression of NUP37 in breast cancer patients is associated with a poorer prognosis and promotion of cell growth, migration, and stemness. The multiple bioinformatics and experimental analysis help provide a comprehensive understanding of the roles of NUP37 as a potential marker for diagnosis and prognosis and as a novel therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Kangdi Li
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Liu
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Aikemu B, Shao Y, Yang G, Ma J, Zhang S, Yang X, Hong H, Yesseyeva G, Huang L, Jia H, Wang C, Zang L, Sun J, Zheng M. NDRG1 regulates Filopodia-induced Colorectal Cancer invasiveness via modulating CDC42 activity. Int J Biol Sci 2021; 17:1716-1730. [PMID: 33994856 PMCID: PMC8120473 DOI: 10.7150/ijbs.56694] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
N-myc downstream regulated gene-1 (NDRG1) has been identified as a putative metastasis suppressor gene and proved to be a key player in cancer spreading and proliferation in our previous work. However, the effects of NDRG1 on tumor invasion and the mechanisms behind it are rarely understood. Here we provided in silico evidence that NDRG1 plays a crucial role in actin reorganization in colorectal cancer (CRC). Through in vitro experiments, we next observed filopodia formation was altered in NDRG1-modified cell lines, while cell division cycle-42 (CDC42) displayed excessive activation in NDRG1-silenced cells. Mechanistically, NDRG1 loss disrupts the binding between RhoGDIα and CDC42 and triggers the activation of CDC42 and the downstream cascades PAK1/Cofilin, thereby promotes the formation of filopodia and invasiveness of CRC. The knockdown of NDRG1 led to enhanced dissemination of CRC cells in vivo and correlates with active CDC42 expression. Using clinical sample analysis, we found an elevated level of active CDC42 in patients with advanced T stage, and it was negatively related to NDRG1 expression. In sum, these results uncover a mechanism utilized by NDRG1 to regulate CDC42 activity in coordinating cytoskeleton reorganization, which was crucial in cancer invasion.
Collapse
Affiliation(s)
- Batuer Aikemu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanfei Shao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjun Ma
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hiju Hong
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Galiya Yesseyeva
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Huang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongtao Jia
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenxing Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Zang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Liu D, Tian X, Liu Y, Song H, Cheng X, Zhang X, Yan C, Han Y. CREG ameliorates the phenotypic switching of cardiac fibroblasts after myocardial infarction via modulation of CDC42. Cell Death Dis 2021; 12:355. [PMID: 33824277 PMCID: PMC8024263 DOI: 10.1038/s41419-021-03623-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022]
Abstract
Phenotype switching of cardiac fibroblasts into myofibroblasts plays important role in cardiac fibrosis following myocardial infarction (MI). Cellular repressor of E1A-stimulated genes (CREG) protects against vascular and cardiac remodeling induced by angiotensin-II. However, the effects and mechanisms of CREG on phenotype switching of cardiac fibroblasts after MI are unknown. This study aimed to investigate the role of CREG on the phenotype switching of cardiac fibroblasts following MI and its mechanism. Our findings demonstrated that, compared with littermate control mice, cardiac function was deteriorated in CREG+/- mice on day 14 post-MI. Fibrosis size, αSMA, and collagen-1 expressions were increased in the border regions of CREG+/- mice on day 14 post-MI. Conversely, exogenous CREG protein significantly improved cardiac function, inhibited fibrosis, and reduced the expressions of αSMA and collagen-1 in the border regions of C57BL/6J mice on day 14. In vitro, CREG recombinant protein inhibited αSMA and collagen-1 expression and blocked the hypoxia-induced proliferation and migration of cardiac fibroblasts, which was mediated through the inhibition of cell division control protein 42 (CDC42) expression. Our findings could help in establishing new strategies based on the clarification of the role of the key molecule CREG in phenotype switching of cardiac fibroblasts following MI.
Collapse
Affiliation(s)
- Dan Liu
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaoxiang Tian
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yanxia Liu
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Haixu Song
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaoli Cheng
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaolin Zhang
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chenghui Yan
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China.
| | - Yaling Han
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China.
| |
Collapse
|
25
|
Rho GTPase Signaling in Health and Disease: A Complex Signaling Network. Cells 2021; 10:cells10020401. [PMID: 33669198 PMCID: PMC7919817 DOI: 10.3390/cells10020401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/03/2023] Open
|
26
|
Castelli V, Catanesi M, Alfonsetti M, Laezza C, Lombardi F, Cinque B, Cifone MG, Ippoliti R, Benedetti E, Cimini A, d’Angelo M. PPARα-Selective Antagonist GW6471 Inhibits Cell Growth in Breast Cancer Stem Cells Inducing Energy Imbalance and Metabolic Stress. Biomedicines 2021; 9:biomedicines9020127. [PMID: 33525605 PMCID: PMC7912302 DOI: 10.3390/biomedicines9020127] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the most frequent cancer and the second leading cause of death among women. Triple-negative breast cancer is the most aggressive subtype of breast cancer and is characterized by the absence of hormone receptors and human epithelial growth factor receptor 2. Cancer stem cells (CSCs) represent a small population of tumor cells showing a crucial role in tumor progression, metastasis, recurrence, and drug resistance. The presence of CSCs can explain the failure of conventional therapies to completely eradicate cancer. Thus, to overcome this limit, targeting CSCs may constitute a promising approach for breast cancer treatment, especially in the triple-negative form. To this purpose, we isolated and characterized breast cancer stem cells from a triple-negative breast cancer cell line, MDA-MB-231. The obtained mammospheres were then treated with the specific PPARα antagonist GW6471, after which, glucose, lipid metabolism, and invasiveness were analyzed. Notably, GW6471 reduced cancer stem cell viability, proliferation, and spheroid formation, leading to apoptosis and metabolic impairment. Overall, our findings suggest that GW6471 may be used as a potent adjuvant for gold standard therapies for triple-negative breast cancer, opening the possibility for preclinical and clinical trials for this class of compounds.
Collapse
Affiliation(s)
- Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Margherita Alfonsetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology G. Salvatore, CNR, 80131 Naples, Italy;
| | - Francesca Lombardi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Benedetta Cinque
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Maria Grazia Cifone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, PA 19122, USA
- Correspondence: (A.C.); (M.d.)
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
- Correspondence: (A.C.); (M.d.)
| |
Collapse
|
27
|
Zhang Y, Chen D, Zhang G, Wu X, Zhou L, Lin Y, Ding J, An F, Zhan Q. MicroRNA-23b-3p promotes pancreatic cancer cell tumorigenesis and metastasis via the JAK/PI3K and Akt/NF-κB signaling pathways. Oncol Lett 2020; 20:160. [PMID: 32934728 PMCID: PMC7471709 DOI: 10.3892/ol.2020.12021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNA (miR)-23b-3p plays an important role in tumor growth, proliferation, invasion and migration in pancreatic cancer (PC). However, the function and mechanistic role of miR-23b-3p in the development of PC remains largely unknown. In the present study, the miR-23b-3p levels in the serum of patients with PC were found to be elevated, and the phosphorylation levels of Janus kinase (JAK)2, PI3K, Akt and NF-κВ were found to be upregulated. In addition, miR-23b-3p was induced in response to interleukin-6 (IL-6), which is known to be involved in the progression of PC. Overexpression of miR-23b-3p, on the other hand, activated the JAK/PI3K and Akt/NF-κB signaling pathways in PC cells, as evidenced by miR-23b-3p-induced upregulation of phosphorylated (p-)JAK2, p-PI3K, p-Akt and p-NF-κВ, as well as the downregulation of PTEN; and these effects were found to be reversible by miR-23b-3p inhibition. Furthermore, miR-23b-3p was found to downregulate PTEN by directly targeting the 3′-untranslated region of PTEN mRNA. Notably, in an in vivo xenograft mouse model, overexpression of miR-23b-3p accelerated PC cell-derived tumor growth, activated the JAK/Akt/NF-κВ signaling pathway and promoted liver metastasis. In contrast, knockdown of miR-23b-3p suppressed tumor growth and metastasis as well as JAK/Akt/NF-κВ signaling activity. In vivo imaging of the mice further confirmed the metastasis promoting role of miR-23b-3p in PC. These results suggested that miR-23b-3p enhances PC cell tumorigenesis and metastasis, at least, partially via the JAK/PI3K and Akt/NF-κB signaling pathways. Therefore, targeting miR-23b-3p or the JAK/PI3K and Akt/NF-κB signalings may be potential therapeutic strategy against PC.
Collapse
Affiliation(s)
- Yunan Zhang
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Dayang Chen
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Guoqiang Zhang
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Xiongbo Wu
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Liangyun Zhou
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Yexin Lin
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Junli Ding
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Fangmei An
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Qiang Zhan
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| |
Collapse
|
28
|
Hormones Secretion and Rho GTPases in Neuroendocrine Tumors. Cancers (Basel) 2020; 12:cancers12071859. [PMID: 32664294 PMCID: PMC7408961 DOI: 10.3390/cancers12071859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroendocrine tumors (NETs) belong to a heterogeneous group of neoplasms arising from hormone secreting cells. These tumors are often associated with a dysfunction of their secretory activity. Neuroendocrine secretion occurs through calcium-regulated exocytosis, a process that is tightly controlled by Rho GTPases family members. In this review, we compiled the numerous mutations and modification of expression levels of Rho GTPases or their regulators (Rho guanine nucleotide-exchange factors and Rho GTPase-activating proteins) that have been identified in NETs. We discussed how they might regulate neuroendocrine secretion.
Collapse
|
29
|
Joseph C, Alsaleem M, Orah N, Narasimha PL, Miligy IM, Kurozumi S, Ellis IO, Mongan NP, Green AR, Rakha EA. Elevated MMP9 expression in breast cancer is a predictor of shorter patient survival. Breast Cancer Res Treat 2020; 182:267-282. [PMID: 32445177 PMCID: PMC7297818 DOI: 10.1007/s10549-020-05670-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE MMP9 is a matricellular protein associated with extracellular matrix (ECM) remodelling, that promotes tumour progression, and modulates the activity of cell adhesion molecules and cytokines. This study aims to assess the prognostic value of MMP9 and its association with cytoskeletal modulators in early-stage invasive breast cancer (BC). METHODS MMP9 expression was evaluated by immunohistochemistry using a well-characterised series of primary BC patients with long-term clinical follow-up. Association with clinicopathological factors, patient outcome and ECM remodelling BC-biomarkers were investigated. METABRIC dataset, BC-GenExMiner v4.0 and TCGA were used for the external validation of MMP9 expression. GSEA gene enrichment analyses were used to evaluate MMP9 associated pathways. RESULTS MMP9 immunopositivity was observed in the stroma and cytoplasm of BC cells. Elevated MMP9 protein levels were associated with high tumour grade, high Nottingham Prognostic Index, and hormonal receptor negativity. Elevated MMP9 protein expression correlated significantly with cytokeratin 17 (Ck17), Epidermal Growth Factor Receptor (EGFR), proliferation (Ki67) biomarkers, cell surface adhesion receptor (CD44) and cell division control protein 42 (CDC42). Cytoplasmic MMP9 expression was an independent prognostic factor associated with shorter BC-specific survival. In the external validation cohorts, MMP9 expression was also associated with poor patients' outcome. Transcriptomic analysis confirmed a positive association between MMP9 and ECM remodelling biomarkers. GSEA analysis supports MMP9 association with ECM and cytoskeletal pathways. CONCLUSION This study provides evidence for the prognostic value of MMP9 in BC. Further functional studies to decipher the role of MMP9 and its association with cytoskeletal modulators in BC progression are warranted.
Collapse
Affiliation(s)
- Chitra Joseph
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Mansour Alsaleem
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK.,Faculty of Applied Medical Sciences, Onizah Community College, Qassim University, Qassim, Saudi Arabia
| | - Nnamdi Orah
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Pavan L Narasimha
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Islam M Miligy
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Sasagu Kurozumi
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ian O Ellis
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Nigel P Mongan
- Department of Pharmacology, Weill Cornell Medicine, New York, 10065, USA.,Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK. .,Histopathology Department, Faculty of Medicine, Menoufia University, Shibin El Kom, Egypt. .,Division of Cancer and Stem Cells, Department of Histopathology, School of Medicine, The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, NG5 1PB, UK.
| |
Collapse
|
30
|
Rho GTPases in Gynecologic Cancers: In-Depth Analysis toward the Paradigm Change from Reactive to Predictive, Preventive, and Personalized Medical Approach Benefiting the Patient and Healthcare. Cancers (Basel) 2020; 12:cancers12051292. [PMID: 32443784 PMCID: PMC7281750 DOI: 10.3390/cancers12051292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/24/2022] Open
Abstract
Rho guanosine triphospatases (GTPases) resemble a conserved family of GTP-binding proteins regulating actin cytoskeleton dynamics and several signaling pathways central for the cell. Rho GTPases create a so-called Ras-superfamily of GTPases subdivided into subgroups comprising at least 20 members. Rho GTPases play a key regulatory role in gene expression, cell cycle control and proliferation, epithelial cell polarity, cell migration, survival, and apoptosis, among others. They also have tissue-related functions including angiogenesis being involved in inflammatory and wound healing processes. Contextually, any abnormality in the Rho GTPase function may result in severe consequences at molecular, cellular, and tissue levels. Rho GTPases also play a key role in tumorigenesis and metastatic disease. Corresponding mechanisms include a number of targets such as kinases and scaffold/adaptor-like proteins initiating GTPases-related signaling cascades. The accumulated evidence demonstrates the oncogenic relevance of Rho GTPases for several solid malignancies including breast, liver, bladder, melanoma, testicular, lung, central nervous system (CNS), head and neck, cervical, and ovarian cancers. Furthermore, Rho GTPases play a crucial role in the development of radio- and chemoresistance e.g. under cisplatin-based cancer treatment. This article provides an in-depth overview on the role of Rho GTPases in gynecological cancers, highlights relevant signaling pathways and pathomechanisms, and sheds light on their involvement in tumor progression, metastatic spread, and radio/chemo resistance. In addition, insights into a spectrum of novel biomarkers and innovative approaches based on the paradigm shift from reactive to predictive, preventive, and personalized medicine are provided.
Collapse
|
31
|
Lemsara A, Ouadfel S, Fröhlich H. PathME: pathway based multi-modal sparse autoencoders for clustering of patient-level multi-omics data. BMC Bioinformatics 2020; 21:146. [PMID: 32299344 PMCID: PMC7161108 DOI: 10.1186/s12859-020-3465-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/23/2020] [Indexed: 02/08/2023] Open
Abstract
Background Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as cancer on a molecular system level. In addition, multi-omics data increase the chance to robustly identify molecular patient sub-groups and hence open the door towards a better personalized treatment of diseases. Several methods have been proposed for unsupervised clustering of multi-omics data. However, a number of challenges remain, such as the magnitude of features and the large difference in dimensionality across different omics data sources. Results We propose a multi-modal sparse denoising autoencoder framework coupled with sparse non-negative matrix factorization to robustly cluster patients based on multi-omics data. The proposed model specifically leverages pathway information to effectively reduce the dimensionality of omics data into a pathway and patient specific score profile. In consequence, our method allows us to understand, which pathway is a feature of which particular patient cluster. Moreover, recently proposed machine learning techniques allow us to disentangle the specific impact of each individual omics feature on a pathway score. We applied our method to cluster patients in several cancer datasets using gene expression, miRNA expression, DNA methylation and CNVs, demonstrating the possibility to obtain biologically plausible disease subtypes characterized by specific molecular features. Comparison against several competing methods showed a competitive clustering performance. In addition, post-hoc analysis of somatic mutations and clinical data provided supporting evidence and interpretation of the identified clusters. Conclusions Our suggested multi-modal sparse denoising autoencoder approach allows for an effective and interpretable integration of multi-omics data on pathway level while addressing the high dimensional character of omics data. Patient specific pathway score profiles derived from our model allow for a robust identification of disease subgroups.
Collapse
Affiliation(s)
- Amina Lemsara
- Computer Science Department, University of Constantine 2, 25016, Constantine, Algeria
| | - Salima Ouadfel
- Computer Science Department, University of Constantine 2, 25016, Constantine, Algeria
| | - Holger Fröhlich
- University of Bonn, Bonn-Aachen, International Center for IT, 53115, Bonn, Germany. .,Fraunhofer Institute for, Algorithms and Scientific, Computing (SCAI), 53754, Sankt, Augustin, Germany.
| |
Collapse
|
32
|
Guo J, Cai Y, Ye X, Ma N, Wang Y, Yu B, Wan J. MiR-409-5p as a Regulator of Neurite Growth Is Down Regulated in APP/PS1 Murine Model of Alzheimer's Disease. Front Neurosci 2019; 13:1264. [PMID: 31849582 PMCID: PMC6892840 DOI: 10.3389/fnins.2019.01264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a heterogeneous neurodegenerative disease. Recent studies suggest that miRNA expression changes are associated with the development of AD. Our previous study showed that the expression level of miR-409-5p was stably downregulated in the early stage of APP/PS1 double transgenic mice model of AD. We now report that miR-409-5p impairs neurite outgrowth, decreases neuronal viability, and accelerates the progression of Aβ1–42-induced pathologies. In this study, we found that Aβ1–42 peptide significantly decreased the expression of miR-409-5p, which was consistent with the expression profile of miR-409-5p in the APP/PS1 mice cortexes. Plek was confirmed to be a potential regulatory target of miR-409-5p by luciferase assay and Western blotting. Overexpression of miR-409-5p has an obvious neurotoxicity in neuronal cell viability and differentiation, whereas Plek overexpression could partially rescue neurite outgrowth from this toxicity. Some cytoskeleton regulatory proteins have been found to be related to AD pathogenesis. Our data show some clues that cytoskeletal reorganization may play roles in AD pathology. The early downregulation of miR-409-5p in AD progression might be a self-protective reaction to alleviate the synaptic damage induced by Aβ, which may be used as a potential early biomarker of AD.
Collapse
Affiliation(s)
- Jing Guo
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Yifei Cai
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xiaoyang Ye
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Nana Ma
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Yuan Wang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Bo Yu
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jun Wan
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
33
|
Research Progress of the Functional Role of ACK1 in Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1018034. [PMID: 31772931 PMCID: PMC6854235 DOI: 10.1155/2019/1018034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/13/2019] [Indexed: 01/25/2023]
Abstract
ACK1 is a nonreceptor tyrosine kinase with a unique structure, which is tightly related to the biological behavior of tumors. Previous studies have demonstrated that ACK1 was involved with multiple signaling pathways of tumor progression. Its crucial role in tumor cell proliferation, apoptosis, invasion, and metastasis was tightly related to the prognosis and clinicopathology of cancer. ACK1 has a unique way of regulating cellular pathways, different from other nonreceptor tyrosine kinases. As an oncogenic kinase, recent studies have shown that ACK1 plays a critical regulatory role in the initiation and progression of tumors. In this review, we will be summarizing the structural characteristics, activation, and regulation of ACK1 in breast cancer, aiming to deeply understand the functional and mechanistic role of ACK1 and provide novel therapeutic strategies for breast cancer treatment.
Collapse
|
34
|
Zhang Y, Xie ZY, Guo XT, Xiao XH, Xiong LX. Notch and breast cancer metastasis: Current knowledge, new sights and targeted therapy. Oncol Lett 2019; 18:2743-2755. [PMID: 31452752 PMCID: PMC6704289 DOI: 10.3892/ol.2019.10653] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common type of invasive cancer in females and metastasis is one of the major causes of breast cancer-associated mortality. Following detachment from the primary site, disseminated tumor cells (DTCs) enter the bloodstream and establish secondary colonies during the metastatic process. An increasing amount of studies have elucidated the importance of Notch signaling in breast cancer metastasis; therefore, the present review focuses on the mechanisms by which Notch contributes to the occurrence of breast cancer DTCs, increases their motility, establishes interactions with the tumor microenvironment, protects DTCs from host surveillance and finally facilitates secondary colonization. Identification of the underlying mechanisms of Notch-associated breast cancer metastasis will provide additional insights that may contribute towards the development of novel Notch-targeted therapeutic strategies, which may aid in reducing metastasis, culminating in an improved patient prognosis.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zi-Yan Xie
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xuan-Tong Guo
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xing-Hua Xiao
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li-Xia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
35
|
Liu L, Jiang H, Zhao W, Meng Y, Li J, Huang T, Sun J. Cdc42-mediated supracellular cytoskeleton induced cancer cell migration under low shear stress. Biochem Biophys Res Commun 2019; 519:134-140. [PMID: 31477271 DOI: 10.1016/j.bbrc.2019.08.149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 01/29/2023]
Abstract
Tumor microenvironment is composed of biological, chemical and physical factors. Mechanical factors are more and more focused these years. Therefore, mimicking mechanical factors' contribution to cancer cell malignancy will greatly improve the advance in this field. Although the induced malignant behaviors are present under many stimuli such as growth or inflammatory factors, the cell key physical migration mechanisms are still missing. In this study, we identify that low shear stress significantly promotes the formation of needle-shaped membrane protrusions, which is called filopodia and important for the sense and interact of a cell with extracellular matrix in the tumor microenvironment. Under low shear stress, the migration is promoted while it is inhibited in the presence of ROCK inhibitor Y27632, which could abolish the F-actin network. Using cell imaging, we further unravel that key to these protrusions is Cell division cycle 42 (Cdc42) dependent. After Cdc42 activation, the filopodia is more and longer, acting as massagers to pass the information from a cell to the microenvironment for its malignant phenotype. In the Cdc42 inhibition, the filopodia is greatly reduced. Moreover, small GTPases Cdc42 rather than Rac1 and Rho directly controls the filopodia formation. Our work highlights that low shear stress and Cdc42 activation are sufficient to promote filopodia formation, it not only points out the novel structure for cancer progression but also provides the experimental physical basis for the efficient drug anti-cancer strategies.
Collapse
Affiliation(s)
- Lingling Liu
- School of Laboratory Medicine, Collaborative Innovation Center of Sichuan for Elderly Care and Health, Development and Regeneration Key Laboratory of Sichuan Province, Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Hua Jiang
- Department of Pediatrics, Department of Microbiology and Immunology, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Wei Zhao
- School of Laboratory Medicine, Collaborative Innovation Center of Sichuan for Elderly Care and Health, Development and Regeneration Key Laboratory of Sichuan Province, Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Yao Meng
- School of Laboratory Medicine, Collaborative Innovation Center of Sichuan for Elderly Care and Health, Development and Regeneration Key Laboratory of Sichuan Province, Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Ji Li
- Department of Clinical Laboratory, Sichuan GEM Flower Hospital, Chengdu, 610213, Sichuan, PR China
| | - Tongwei Huang
- Department of Blood Transfusion, Ziyang Hospital of Traditional Chinese Medicine, Ziyang, 641300, Sichuan, PR China
| | - Jinghui Sun
- School of Laboratory Medicine, Collaborative Innovation Center of Sichuan for Elderly Care and Health, Development and Regeneration Key Laboratory of Sichuan Province, Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
| |
Collapse
|
36
|
Involvement of Actin in Autophagy and Autophagy-Dependent Multidrug Resistance in Cancer. Cancers (Basel) 2019; 11:cancers11081209. [PMID: 31434275 PMCID: PMC6721626 DOI: 10.3390/cancers11081209] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 01/09/2023] Open
Abstract
Currently, autophagy in the context of cancer progression arouses a lot of controversy. It is connected with the possibility of switching the nature of this process from cytotoxic to cytoprotective and vice versa depending on the treatment. At the same time, autophagy of cytoprotective character may be one of the factors determining multidrug resistance, as intensification of the process is observed in patients with poorer prognosis. The exact mechanism of this relationship is not yet fully understood; however, it is suggested that one of the elements of the puzzle may be a cytoskeleton. In the latest literature reports, more and more attention is paid to the involvement of actin in the autophagy. The role of this protein is linked to the formation of autophagosomes, which are necessary element of the process. However, based on the proven effectiveness of manipulation of the actin pool, it seems to be an attractive alternative in breaking autophagy-dependent multidrug resistance in cancer.
Collapse
|
37
|
Yujia S, Tingting G, Jiaxin L, Saisai Z, Zhitai H, Qingnan T, Shoutao Z. Cdc42 regulate the apoptotic cell death required for planarian epidermal regeneration and homeostasis. Int J Biochem Cell Biol 2019; 112:107-113. [PMID: 31102665 DOI: 10.1016/j.biocel.2019.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
Rho GTPases have been shown previously to play important roles in several cellular processes by regulating the organization of the actin and microtubule cytoskeletons. However, the mechanisms of Rho GTPases that integrate the cellular responses during regeneration have not been thoroughly elucidated. The planarian flatworm, which contains a large number of adult somatic stem cells (neoblasts), is a unique model to study stem cell lineage development in vivo. Here, we focus on cdc42, which is an extensively characterized member among Rho GTPases. We found that cdc42 is required for the maintenance of epidermal lineage. Cdc42 RNAi induced a sustained increased of cell death and led to a loss of the mature epidermal cells but without affected cell division. Our results indicate that cdc42 function as an inhibitor to block the excessive apoptotic cell death in planarian epidermal regeneration and homeostasis.
Collapse
Affiliation(s)
- Sun Yujia
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Gao Tingting
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Li Jiaxin
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhang Saisai
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hao Zhitai
- Department of Biochemistry and Molecular Pharmacology, New York University, School of Medicine, NY, USA
| | - Tian Qingnan
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhang Shoutao
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, Henan, China.
| |
Collapse
|