1
|
Bordin F, Terriaca G, Apostolico A, Di Fiore A, Mir FT, Bellardinelli S, Bufalieri F, Bordone R, Bellardinilli F, Giannini G, Canettieri G, Di Marcotullio L, Ferretti E, Moretti M, De Smaele E. SMURF1 and SMURF2 directly target GLI1 for ubiquitination and proteasome-dependent degradation. Cell Death Discov 2024; 10:498. [PMID: 39695131 DOI: 10.1038/s41420-024-02260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
The transcription factor GLI1 is the main and final effector of the Hedgehog signaling pathway, which is involved in embryonic development, cell proliferation and stemness. Whether activated through canonical or non-canonical mechanisms, GLI1 aberrant activity is associated with Hedgehog-dependent cancers, including medulloblastoma, as well as other tumoral contexts. Notwithstanding a growing body of evidence, which have highlighted the potential role of post translational modifications of GLI1, the complex mechanisms modulating GLI1 stability and activity have not been fully elucidated. Here, we present a novel role played by SMURF1 and SMURF2 in the suppression of the Hedgehog/GLI signaling pathway through a direct targeting of GLI1. Indeed, the two SMURFs can interact with GLI1, exploiting the proline rich regions present on GLI1 protein, and trigger its polyubiquitination and proteasomal degradation, leading to a suppression of the Hedgehog pathway activity and a reduction of Hh-dependent tumor cell proliferation. Overall, this study adds new relevance to a tumor suppressive role of SMURFs on the Hedgehog pathway and confers upon them the status of potential therapeutic tools, either in canonical or non-canonical Hedgehog pathway aberrant activation.
Collapse
Affiliation(s)
- Fabio Bordin
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Gloria Terriaca
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Adriano Apostolico
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Annamaria Di Fiore
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Faranak Taj Mir
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Sara Bellardinelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Rosa Bordone
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Marta Moretti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
2
|
Masciale V, Banchelli F, Grisendi G, Samarelli AV, Raineri G, Rossi T, Zanoni M, Cortesi M, Bandini S, Ulivi P, Martinelli G, Stella F, Dominici M, Aramini B. The molecular features of lung cancer stem cells in dedifferentiation process-driven epigenetic alterations. J Biol Chem 2024; 300:107994. [PMID: 39547513 DOI: 10.1016/j.jbc.2024.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Cancer stem cells (CSCs) may be dedifferentiated somatic cells following oncogenic processes, representing a subpopulation of cells able to promote tumor growth with their capacities for proliferation and self-renewal, inducing lineage heterogeneity, which may be a main cause of resistance to therapies. It has been shown that the "less differentiated process" may have an impact on tumor plasticity, particularly when non-CSCs may dedifferentiate and become CSC-like. Bidirectional interconversion between CSCs and non-CSCs has been reported in other solid tumors, where the inflammatory stroma promotes cell reprogramming by enhancing Wnt signaling through nuclear factor kappa B activation in association with intracellular signaling, which may induce cells' pluripotency, the oncogenic transformation can be considered another important aspect in the acquisition of "new" development programs with oncogenic features. During cell reprogramming, mutations represent an initial step toward dedifferentiation, in which tumor cells switch from a partially or terminally differentiated stage to a less differentiated stage that is mainly manifested by re-entry into the cell cycle, acquisition of a stem cell-like phenotype, and expression of stem cell markers. This phenomenon typically shows up as a change in the form, function, and pattern of gene and protein expression, and more specifically, in CSCs. This review would highlight the main epigenetic alterations, major signaling pathways and driver mutations in which CSCs, in tumors and specifically, in lung cancer, could be involved, acting as key elements in the differentiation/dedifferentiation process. This would highlight the main molecular mechanisms which need to be considered for more tailored therapies.
Collapse
Affiliation(s)
- Valentina Masciale
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Federico Banchelli
- Department of Statistical Sciences "Paolo Fortunati", Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Anna Valeria Samarelli
- Laboratory of and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Giulia Raineri
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sara Bandini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Franco Stella
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy; Division of Oncology, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Aramini
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy.
| |
Collapse
|
3
|
Baran B, Derua R, Janssens V, Niewiadomski P. PP2A phosphatase regulatory subunit PPP2R3C is a new positive regulator of the hedgehog signaling pathway. Cell Signal 2024; 123:111352. [PMID: 39173855 DOI: 10.1016/j.cellsig.2024.111352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Cellular signaling pathways rely on posttranslational modifications (PTMs) to finely regulate protein functions, particularly transcription factors. The Hedgehog (Hh) signaling cascade, crucial for embryonic development and tissue homeostasis, is susceptible to aberrations that lead to developmental anomalies and various cancers. At the core of Hh signaling are Gli proteins, whose dynamic balance between activator (GliA) and repressor (GliR) states shapes cellular outcomes. Phosphorylation, orchestrated by multiple kinases, is pivotal in regulating Gli activity. While kinases in this context have been extensively studied, the role of protein phosphatases, particularly Protein Phosphatase 2A (PP2A), remains less explored. This study unveils a novel role for the B″gamma subunit of PP2A, PPP2R3C, in Hh signaling regulation. PPP2R3C interacts with Gli proteins, and its disruption reduces Hedgehog pathway activity as measured by reduced expression of Gli1/2 and Hh target genes upon Hh signaling activation, and reduced growth of a Hh signaling-dependent medulloblastoma cell line. Moreover, we establish an antagonistic connection between PPP2R3C and MEKK1 kinase in Gli protein phosphorylation, underscoring the intricate interplay between kinases and phosphatases in Hh signaling pathway. This study sheds light on the previously understudied role of protein phosphatases in Hh signaling and provides insights into their significance in cellular regulation.
Collapse
Affiliation(s)
- Brygida Baran
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; Faculty of Biology, University of Warsaw, 02-089 Warsaw, Poland.
| | - Rita Derua
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000 Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000 Leuven, Belgium
| | - Paweł Niewiadomski
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland.
| |
Collapse
|
4
|
Yang Q, Jiang P, Tang H, Wen J, Zhou L, Zhao Y, Wang L, Wang J, Yang Q. Shh regulates M2 microglial polarization and fibrotic scar formation after ischemic stroke. Neurochem Int 2024; 180:105862. [PMID: 39307461 DOI: 10.1016/j.neuint.2024.105862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Fibrotic scar formation is a critical pathological change impacting tissue reconstruction and functional recovery after ischemic stroke. The regulatory mechanisms behind fibrotic scarring in the central nervous system (CNS) remain largely unknown. While macrophages are known to play a role in fibrotic scar formation in peripheral tissues, the involvement of microglia, the resident immune cells of the CNS, in CNS fibrosis requires further exploration. The Sonic Hedgehog (Shh) signaling pathway, pivotal in embryonic development and tissue regeneration, is also crucial in modulating fibrosis in peripheral tissues. However, the impact and regulatory mechanisms of Shh on fibrotic scar formation post-ischemic stroke have not been thoroughly investigated. METHODS This study explores whether Shh can regulate fibrotic scar formation post-ischemic stroke and its underlying mechanisms through in vivo and in vitro manipulation of Shh expression. RESULTS Our results showed that Shh expression was upregulated in the serum of acute ischemic stroke patients, as well as in the serum, CSF, and ischemic regions of MCAO/R mice. Moreover, the upregulation of Shh expression was positively correlated with fibrotic scar formation and M2 microglial polarization. Shh knockdown inhibited fibrotic scar formation and M2 microglial polarization while aggravating neurological deficits in MCAO/R mice. In vitro, adenoviral knockdown or Smoothened Agonist (SAG) activation of Shh expression in BV2 cells following OGD/R regulated their polarization and influenced the expression of TGFβ1 and PDGFA, subsequently affecting fibroblast activation. CONCLUSION These results suggest that Shh regulates M2 microglial polarization and fibrotic scar formation after cerebral ischemia.
Collapse
Affiliation(s)
- Qinghuan Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peiran Jiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Zhao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiani Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Haque M, Shyanti RK, Mishra MK. Targeted therapy approaches for epithelial-mesenchymal transition in triple negative breast cancer. Front Oncol 2024; 14:1431418. [PMID: 39450256 PMCID: PMC11499239 DOI: 10.3389/fonc.2024.1431418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is distinguished by negative expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), making it an aggressive subtype of breast cancer and contributes to 15-20% of the total incidence. TNBC is a diverse disease with various genetic variations and molecular subtypes. The tumor microenvironment involves multiple cells, including immune cells, fibroblast cells, extracellular matrix (ECM), and blood vessels that constantly interact with tumor cells and influence each other. The ECM undergoes significant structural changes, leading to induced cell proliferation, migration, adhesion, invasion, and epithelial-to-mesenchymal transition (EMT). The involvement of EMT in the occurrence and development of tumors through invasion and metastasis in TNBC has been a matter of concern. Therefore, EMT markers could be prognostic predictors and potential therapeutic targets in TNBC. Chemotherapy has been one of the primary options for treating patients with TNBC, but its efficacy against TNBC is still limited. Targeted therapy is a critical emerging option with enhanced efficacy and less adverse effects on patients. Various targeted therapy approaches have been developed based on the specific molecules and the signaling pathways involved in TNBC. These include inhibitors of signaling pathways such as TGF-β, Wnt/β-catenin, Notch, TNF-α/NF-κB and EGFR, as well as immune checkpoint inhibitors, such as pembrolizumab, 2laparib, and talazoparib have been widely explored. This article reviews recent developments in EMT in TNBC invasion and metastasis and potential targeted therapy strategies.
Collapse
Affiliation(s)
| | | | - Manoj K. Mishra
- Cancer Research Center, Department of Biological Sciences, Alabama State
University, Montgomery, AL, United States
| |
Collapse
|
6
|
Uśpieński T, Niewiadomski P. The Proteasome and Cul3-Dependent Protein Ubiquitination Is Required for Gli Protein-Mediated Activation of Gene Expression in the Hedgehog Pathway. Cells 2024; 13:1496. [PMID: 39273066 PMCID: PMC11394618 DOI: 10.3390/cells13171496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Many cellular processes are regulated by proteasome-mediated protein degradation, including regulation of signaling pathways and gene expression. Among the pathways regulated by the ubiquitin-proteasome system is the Hedgehog pathway and its downstream effectors, the Gli transcription factors. Here we provide evidence that proteasomal activity is necessary for maintaining the activation of the Hedgehog pathway, and this crucial event takes place at the level of Gli proteins. We undertook extensive work to demonstrate the specificity of the observed phenomenon by ruling out the involvement of primary cilium, impaired nuclear import, failed dissociation from Sufu, microtubule stabilization, and stabilization of Gli repressor forms. Moreover, we showed that proteasomal-inhibition-mediated Hedgehog pathway downregulation is not restricted to the NIH-3T3 cell line. We demonstrated, using CRISPR/Ca9 mutagenesis, that neither Gli1, Gli2, nor Gli3 are solely responsible for the Hedgehog pathway downregulation upon proteasome inhibitor treatment, and that Cul3 KO renders the same phenotype. Finally, we report two novel E3 ubiquitin ligases, Btbd9 and Kctd3, known Cul3 interactors, as positive Hedgehog pathway regulators. Our data pave the way for a better understanding of the regulation of gene expression and the Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Tomasz Uśpieński
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Paweł Niewiadomski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
7
|
Wang X, Song X, Gao J, Xu G, Yan X, Yang J, Yang Y, Song G. Hedgehog/Gli2 signaling triggers cell proliferation and metastasis via EMT and wnt/β-catenin pathways in oral squamous cell carcinoma. Heliyon 2024; 10:e36516. [PMID: 39253258 PMCID: PMC11382060 DOI: 10.1016/j.heliyon.2024.e36516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is the most lethal oral malignant tumor, however, clinical outcomes remain unsatisfactory. The Hedgehog/Gli2 pathway plays a pivotal role in tumor progression, yet the regulatory mechanism governing its involvement in the malignant evolution process of OSCC remains elusive. Methods OSCC animal tissue samples were used to detect the activation of the Hedgehog/Gli2 pathway in OSCC. Based on the clinical information of oral cancer patients in TCGA database, the role of this pathway in patients was analyzed, and the activation status of this pathway was verified in human OSCC cells. After activating or inhibiting the Hedgehog pathway, the effects of this pathway on the biological function of OSCC cells and its regulatory mechanism were examined. Interfering the expression of Gli2, a key transcription factor in this pathway, revealed the role of Hedgehog/Gli2 pathway in the malignant evolution of OSCC cells. Results The Hedgehog pathway exhibits abnormal activation in animal models of OSCC. Clinical data from TCGA demonstrate a significant enrichment of the Hedgehog pathway in patients with OSCC, and Gli2, a key downstream factor of this pathway, is closely associated with the occurrence and progression of OSCC. Cellular studies have revealed aberrant activation of this pathway in human OSCC cells, which exerts its function by modulating the activation of epithelial-mesenchymal transition (EMT) and Wnt/β-catenin pathways. Subsequent investigations further confirm the pivotal involvement of Gli2 in the Hedgehog pathway activation, underscoring its potential as a therapeutic target for inhibiting malignant proliferation and metastasis of OSCC cells through modulation of EMT and Wnt/β-catenin pathways. Conclusion The Hedgehog/Gli2 pathway induces EMT and activates Wnt/β-catenin pathway to trigger the malignant proliferation and metastasis of OSCC cells, and Gli2 plays a key role in this process, which suggests that targeting Gli2 may be a promising therapeutic strategy for inhibiting the proliferation and metastasis of OSCC.
Collapse
Affiliation(s)
- Xiaotang Wang
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, China
- Department of Basic Medical Sciences, Shanxi Medical University, No 56, Xinjian South Rd, Taiyuan 030001, China
| | - Xiaona Song
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, China
- Department of Basic Medical Sciences, Shanxi Medical University, No 56, Xinjian South Rd, Taiyuan 030001, China
| | - Jiping Gao
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, China
| | - Guoqiang Xu
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, China
- Department of Basic Medical Sciences, Shanxi Medical University, No 56, Xinjian South Rd, Taiyuan 030001, China
| | - Xiaoru Yan
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, China
- Department of Basic Medical Sciences, Shanxi Medical University, No 56, Xinjian South Rd, Taiyuan 030001, China
| | - Junting Yang
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, China
- Department of Basic Medical Sciences, Shanxi Medical University, No 56, Xinjian South Rd, Taiyuan 030001, China
| | - Yiyan Yang
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, China
- Department of Basic Medical Sciences, Shanxi Medical University, No 56, Xinjian South Rd, Taiyuan 030001, China
| | - Guohua Song
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, China
- Department of Basic Medical Sciences, Shanxi Medical University, No 56, Xinjian South Rd, Taiyuan 030001, China
| |
Collapse
|
8
|
Casey MJ, Chan PP, Li Q, Zu JF, Jette CA, Kohler M, Myers BR, Stewart RA. A simple and scalable zebrafish model of Sonic hedgehog medulloblastoma. Cell Rep 2024; 43:114559. [PMID: 39078737 PMCID: PMC11404834 DOI: 10.1016/j.celrep.2024.114559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/10/2024] [Accepted: 07/15/2024] [Indexed: 08/07/2024] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children and is stratified into three major subgroups. The Sonic hedgehog (SHH) subgroup represents ∼30% of all MB cases and has significant survival disparity depending upon TP53 status. Here, we describe a zebrafish model of SHH MB using CRISPR to create mutant ptch1, the primary genetic driver of human SHH MB. In these animals, tumors rapidly arise in the cerebellum and resemble human SHH MB by histology and comparative onco-genomics. Similar to human patients, MB tumors with loss of both ptch1 and tp53 have aggressive tumor histology and significantly worse survival outcomes. The simplicity and scalability of the ptch1-crispant MB model makes it highly amenable to CRISPR-based genome-editing screens to identify genes required for SHH MB tumor formation in vivo, and here we identify the gene encoding Grk3 kinase as one such target.
Collapse
Affiliation(s)
- Mattie J Casey
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Priya P Chan
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; Primary Children's Hospital, Salt Lake City, UT 84113, USA
| | - Qing Li
- High-Throughput Genomics and Cancer Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Ju-Fen Zu
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Cicely A Jette
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Missia Kohler
- Department of Anatomic Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Benjamin R Myers
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Rodney A Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
9
|
Nazari MHD, Heidarian R, Masoudnia M, Dastjerdi RA, Talkhounche PG, Taleahmad S. Targeting GLI1 and BAX by nanonoscapine could impede prostate adenocarcinoma progression. Sci Rep 2024; 14:18977. [PMID: 39152150 PMCID: PMC11329793 DOI: 10.1038/s41598-024-65968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/25/2024] [Indexed: 08/19/2024] Open
Abstract
Prostate cancer as a critical global health issue, requires the exploration of a novel therapeutic approach. Noscapine, an opium-derived phthalide isoquinoline alkaloid, has shown promise in cancer treatment thanks to its anti-tumorigenic properties. However, limitations such as low bioavailability and potential side effects have hindered its clinical application. This study introduces nanonoscapine as a novel medication to overcome these challenges, leveraging the advantages of improved drug delivery and efficacy achieved in nanotechnology. We monitored the effects of nanonoscapine on the androgen-sensitive human prostate adenocarcinoma cell line, LNCaP, investigating its impact on GLI1 and BAX genes' expressions, crucial regulators of cell cycle and apoptosis. Our findings, from MTT assays, flow cytometry, and gene expression analyses, have demonstrated that nanonoscapine effectively inhibits prostate cancer cell proliferation by inducing G2/M phase arrest and apoptosis. Furthermore, through bioinformatics and computational analyses, we have revealed the underlying molecular mechanisms, underscoring the therapeutic potential of nanonoscapine in enhancing patient outcomes. This study highlights the significance of nanonoscapine as an alternative or adjunct treatment to conventional chemotherapy, warranting further investigation in clinical settings.
Collapse
Affiliation(s)
- Mohammad Hossein Derakhshan Nazari
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ronak Heidarian
- Department of Developmental Biology, Kharazmi University, Tehran, Iran
| | - Mina Masoudnia
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rana Askari Dastjerdi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Parnian Ghaedi Talkhounche
- Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Sara Taleahmad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
10
|
Yoshida S, Kawamura A, Aoki K, Wiriyasermkul P, Sugimoto S, Tomiyoshi J, Tajima A, Ishida Y, Katoh Y, Tsukada T, Tsuneoka Y, Yamada K, Nagamori S, Nakayama K, Yoshida K. Positive regulation of Hedgehog signaling via phosphorylation of GLI2/GLI3 by DYRK2 kinase. Proc Natl Acad Sci U S A 2024; 121:e2320070121. [PMID: 38968120 PMCID: PMC11252808 DOI: 10.1073/pnas.2320070121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/02/2024] [Indexed: 07/07/2024] Open
Abstract
Hedgehog (Hh) signaling, an evolutionarily conserved pathway, plays an essential role in development and tumorigenesis, making it a promising drug target. Multiple negative regulators are known to govern Hh signaling; however, how activated Smoothened (SMO) participates in the activation of downstream GLI2 and GLI3 remains unclear. Herein, we identified the ciliary kinase DYRK2 as a positive regulator of the GLI2 and GLI3 transcription factors for Hh signaling. Transcriptome and interactome analyses demonstrated that DYRK2 phosphorylates GLI2 and GLI3 on evolutionarily conserved serine residues at the ciliary base, in response to activation of the Hh pathway. This phosphorylation induces the dissociation of GLI2/GLI3 from suppressor, SUFU, and their translocation into the nucleus. Loss of Dyrk2 in mice causes skeletal malformation, but neural tube development remains normal. Notably, DYRK2-mediated phosphorylation orchestrates limb development by controlling cell proliferation. Taken together, the ciliary kinase DYRK2 governs the activation of Hh signaling through the regulation of two processes: phosphorylation of GLI2 and GLI3 downstream of SMO and cilia formation. Thus, our findings of a unique regulatory mechanism of Hh signaling expand understanding of the control of Hh-associated diseases.
Collapse
Affiliation(s)
- Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Akira Kawamura
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Katsuhiko Aoki
- Radioisotope Research Facilities, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Pattama Wiriyasermkul
- Center for Stable Isotope Medical Research, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Shinya Sugimoto
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Laboratory of Amyloid Regulation, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Junnosuke Tomiyoshi
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Ayasa Tajima
- Center for Stable Isotope Medical Research, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Department of Molecular Biology, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Yamato Ishida
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan
| | - Takehiro Tsukada
- Department of Biomolecular Science, Toho University, Chiba274-8510, Japan
| | - Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo143-8540, Japan
| | - Kohji Yamada
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Shushi Nagamori
- Center for Stable Isotope Medical Research, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo105-8461, Japan
| |
Collapse
|
11
|
Abu Rabe D, Chdid L, Lamson DR, Laudeman CP, Tarpley M, Elsayed N, Smith GR, Zheng W, Dixon MS, Williams KP. Identification of Novel GANT61 Analogs with Activity in Hedgehog Functional Assays and GLI1-Dependent Cancer Cells. Molecules 2024; 29:3095. [PMID: 38999049 PMCID: PMC11243198 DOI: 10.3390/molecules29133095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Aberrant activation of hedgehog (Hh) signaling has been implicated in various cancers. Current FDA-approved inhibitors target the seven-transmembrane receptor Smoothened, but resistance to these drugs has been observed. It has been proposed that a more promising strategy to target this pathway is at the GLI1 transcription factor level. GANT61 was the first small molecule identified to directly suppress GLI-mediated activity; however, its development as a potential anti-cancer agent has been hindered by its modest activity and aqueous chemical instability. Our study aimed to identify novel GLI1 inhibitors. JChem searches identified fifty-two compounds similar to GANT61 and its active metabolite, GANT61-D. We combined high-throughput cell-based assays and molecular docking to evaluate these analogs. Five of the fifty-two GANT61 analogs inhibited activity in Hh-responsive C3H10T1/2 and Gli-reporter NIH3T3 cellular assays without cytotoxicity. Two of the GANT61 analogs, BAS 07019774 and Z27610715, reduced Gli1 mRNA expression in C3H10T1/2 cells. Treatment with BAS 07019774 significantly reduced cell viability in Hh-dependent glioblastoma and lung cancer cell lines. Molecular docking indicated that BAS 07019774 is predicted to bind to the ZF4 region of GLI1, potentially interfering with its ability to bind DNA. Our findings show promise in developing more effective and potent GLI inhibitors.
Collapse
Affiliation(s)
- Dina Abu Rabe
- INBS PhD Program, North Carolina Central University, Durham, NC 27707, USA
| | - Lhoucine Chdid
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - David R Lamson
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Christopher P Laudeman
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Michael Tarpley
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Naglaa Elsayed
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Ginger R Smith
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Weifan Zheng
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Maria S Dixon
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Kevin P Williams
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
12
|
Le AD, Fu M, Kumar R, Zacharias G, Garcia ADR. Astrocyte modulation of synaptic plasticity mediated by activity-dependent Sonic hedgehog signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588352. [PMID: 38915525 PMCID: PMC11195099 DOI: 10.1101/2024.04.05.588352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The influence of neural activity on astrocytes and their reciprocal interactions with neurons has emerged as an important modulator of synapse function. Astrocytes exhibit activity-dependent changes in gene expression, yet the molecular mechanisms by which they accomplish this have remained largely unknown. The molecular signaling pathway, Sonic hedgehog (Shh), mediates neuron-astrocyte communication and regulates the organization of cortical synapses. Here, we demonstrate that neural activity stimulates Shh signaling in cortical astrocytes and upregulates expression of Hevin and SPARC, astrocyte derived molecules that modify synapses. Whisker stimulation and chemogenetic activation both increase Shh activity in deep layers of the somatosensory cortex, where neuron-astrocyte Shh signaling is predominantly found. Experience-dependent Hevin and SPARC require intact Shh signaling and selective loss of pathway activity in astrocytes occludes experience-dependent structural plasticity. Taken together, these data identify Shh signaling as an activity-dependent, neuronal derived cue that stimulates astrocyte interactions with synapses and promotes synaptic plasticity.
Collapse
Affiliation(s)
- Anh Duc Le
- Department of Biology, Drexel University
| | - Marissa Fu
- Department of Biology, Drexel University
| | - Riya Kumar
- Department of Biology, Drexel University
| | | | - A Denise R Garcia
- Department of Neurobiology and Anatomy, Drexel University College of Medicine
| |
Collapse
|
13
|
Nguyen CDK, Colón-Emeric BA, Murakami S, Shujath MNY, Yi C. PRMT1 promotes epigenetic reprogramming associated with acquired chemoresistance in pancreatic cancer. Cell Rep 2024; 43:114176. [PMID: 38691454 PMCID: PMC11238875 DOI: 10.1016/j.celrep.2024.114176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/01/2023] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) carries a dismal prognosis due to therapeutic resistance. We show that PDAC cells undergo global epigenetic reprogramming to acquire chemoresistance, a process that is driven at least in part by protein arginine methyltransferase 1 (PRMT1). Genetic or pharmacological PRMT1 inhibition impairs adaptive epigenetic reprogramming and delays acquired resistance to gemcitabine and other common chemo drugs. Mechanistically, gemcitabine treatment induces translocation of PRMT1 into the nucleus, where its enzymatic activity limits the assembly of chromatin-bound MAFF/BACH1 transcriptional complexes. Cut&Tag chromatin profiling of H3K27Ac, MAFF, and BACH1 suggests a pivotal role for MAFF/BACH1 in global epigenetic response to gemcitabine, which is confirmed by genetically silencing MAFF. PRMT1 and MAFF/BACH1 signature genes identified by Cut&Tag analysis distinguish gemcitabine-resistant from gemcitabine-sensitive patient-derived xenografts of PDAC, supporting the PRMT1-MAFF/BACH1 epigenetic regulatory axis as a potential therapeutic avenue for improving the efficacy and durability of chemotherapies in patients of PDAC.
Collapse
Affiliation(s)
- Chan D K Nguyen
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Benjamín A Colón-Emeric
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Shigekazu Murakami
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Mia N Y Shujath
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Chunling Yi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
14
|
Li J, Zuo L, Tang L, Yan X, Chen S. Duodenal Soft Tissue Sarcoma with GLI1 Gene Rearrangement: A Case Report and Literature Review. AMERICAN JOURNAL OF CASE REPORTS 2024; 25:e943271. [PMID: 38778503 PMCID: PMC11129663 DOI: 10.12659/ajcr.943271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/04/2024] [Accepted: 03/27/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Soft tissue tumors have various subtypes, among which sarcomas exhibit high malignant potential and poor prognosis. Malignant epithelioid tumor with GLI1 alterations was originally found in myopericytoma with t(7;12) translocation. However, recent studies indicated that it is a distinct tumor type characterized by multiple nodular distributions of oval or round epithelioid cells with a rich capillary network and a lack of specific immunophenotype. There are only a few cases reported worldwide and the optimal treatment is still being explored. CASE REPORT We report the case of a 31-year-old patient who presented with severe anemia and a large soft tissue mass in the duodenum. The patient underwent surgical resection with a negative margin, and none of the 15 lymph nodes tested positive for the tumor. Postoperative pathology and FISH testing further confirmed the presence of GLI1 disruption and S-100 and SMA negativity. Genetic testing revealed the ACTB-GLI1 fusion. No specific medication was offered after the surgery. No tumor recurrence was found during the 23-month follow-up period. The patient's quality of life is currently satisfactory. CONCLUSIONS Soft tissue sarcomas characterized by GLI1 gene rearrangement have a relatively less aggressive and metastatic nature, with the solid mass spreading minimally even as it grows. Patients can benefit from surgical resection, resulting in a relatively long period of tumor-free survival.
Collapse
Affiliation(s)
- Jinghe Li
- Department of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, PR China
| | - Ling Zuo
- Department of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, PR China
| | - Li Tang
- Department of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, PR China
| | - Xiaochu Yan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, PR China
| | - Shengkai Chen
- Department of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, PR China
| |
Collapse
|
15
|
Wu JW, Liu Y, Dai XJ, Liu HM, Zheng YC, Liu HM. CD155 as an emerging target in tumor immunotherapy. Int Immunopharmacol 2024; 131:111896. [PMID: 38518596 DOI: 10.1016/j.intimp.2024.111896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/08/2024] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
CD155 is an immunoglobulin-like protein overexpressed in almost all the tumor cells, which not only promotes proliferation, adhesion, invasion, and migration of tumor cells, but also regulates immune responses by interacting with TIGIT, CD226 or CD96 receptors expressed on several immune cells, thereby modulating the functionality of these cellular subsets. As a novel immune checkpoint, the inhibition of CD155/TIGIT, either as a standalone treatment or in conjunction with other immune checkpoint inhibitors, has demonstrated efficacy in managing advanced solid malignancies. In this review, we summarize the intricate relationship between on tumor surface CD155 and its receptors, with further discussion on how they regulate the occurrence of tumor immune escape. In addition, novel therapeutic strategies and clinical trials targeting CD155 and its receptors are summarized, providing a strong rationale and way forward for the development of next-generation immunotherapies.
Collapse
Affiliation(s)
- Jiang-Wan Wu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ying Liu
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China
| | - Xing-Jie Dai
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Hui-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
16
|
Thazhackavayal Baby B, Kulkarni AM, Gayam PKR, Harikumar KB, Aranjani JM. Beyond cyclopamine: Targeting Hedgehog signaling for cancer intervention. Arch Biochem Biophys 2024; 754:109952. [PMID: 38432565 DOI: 10.1016/j.abb.2024.109952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Hedgehog (Hh) signaling plays a significant role in embryogenesis and several physiological processes, such as wound healing and organ homeostasis. In a pathological setting, it is associated with oncogenesis and is responsible for disease progression and poor clinical outcomes. Hedgehog signaling mediates downstream actions via Glioma Associated Oncogene Homolog (GLI) transcription factors. Inhibiting Hh signaling is an important oncological strategy in which inhibitors of the ligands SMO or GLI have been looked at. This review briefly narrates the Hh ligands, signal transduction, the target genes involved and comprehensively describes the numerous inhibitors that have been evaluated for use in various neoplastic settings.
Collapse
Affiliation(s)
- Beena Thazhackavayal Baby
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Aniruddha Murahar Kulkarni
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Prasanna Kumar Reddy Gayam
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Kuzhuvelil B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala State, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India.
| |
Collapse
|
17
|
Wu Y, Guo W, Wang T, Liu Y, Mullor MDMR, Rodrìguez RA, Zhao S, Wei R. The comprehensive landscape of prognosis, immunity, and function of the GLI family by pan-cancer and single-cell analysis. Aging (Albany NY) 2024; 16:5123-5148. [PMID: 38498906 PMCID: PMC11006459 DOI: 10.18632/aging.205630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/02/2024] [Indexed: 03/20/2024]
Abstract
The Hedgehog (Hh) signaling pathway has been implicated in the pathogenesis of various cancers. However, the roles of the downstream GLI family (GLI1, GLI2, and GLI3) in tumorigenesis remain elusive. This study aimed to unravel the genetic alterations of GLI1/2/3 in cancer and their association with the immune microenvironment and related signaling pathways. Firstly, we evaluated the expression profiles of GLI1/2/3 in different cancer types, analyzed their prognostic and predictive values, and assessed their correlation with tumor-infiltrating immune cells. Secondly, we explored the relationships between GLI1/2/3 and genetic mutations, epigenetic modifications, and clinically relevant drugs. Finally, we performed enrichment analysis to decipher the underlying mechanisms of GLI1/2/3 in cancer initiation and progression. Our results revealed that the expression levels of GLI1/2/3 were positively correlated in most cancer tissues, suggesting a cooperative role of these factors in tumorigenesis. We also identified tissue-specific expression patterns of GLI1/2/3, which may reflect the distinct functions of these factors in different cell types. Furthermore, GLI1/2/3 expression displayed significant associations with poor prognosis in several cancers, indicating their potential as prognostic biomarkers and therapeutic targets. Importantly, we found that GLI1/2/3 modulated the immune microenvironment by regulating the recruitment, activation, and polarization of cancer-associated fibroblasts, endothelial cells, and macrophages. Additionally, functional enrichment analyses indicated that GLI1/2/3 are involved in the regulation of epithelial-mesenchymal transition (EMT). Together, our findings shed new light on the roles of GLI1/2/3 in tumorigenesis and provide a potential basis for the development of novel therapeutic strategies targeting GLI-mediated signaling pathways in cancer.
Collapse
Affiliation(s)
- Yinteng Wu
- Department of Orthopedic and Trauma Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Wenliang Guo
- Department of Rehabilitation Medicine, Guigang City People’s Hospital, Guigang, Guangxi 537100, China
| | - Tao Wang
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ying Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | | | | | - Shijian Zhao
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, Yunnan 650102, China
| | - Ruqiong Wei
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
18
|
Martínez-Campa C, Álvarez-García V, Alonso-González C, González A, Cos S. Melatonin and Its Role in the Epithelial-to-Mesenchymal Transition (EMT) in Cancer. Cancers (Basel) 2024; 16:956. [PMID: 38473317 DOI: 10.3390/cancers16050956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a cell-biological program that occurs during the progression of several physiological processes and that can also take place during pathological situations such as carcinogenesis. The EMT program consists of the sequential activation of a number of intracellular signaling pathways aimed at driving epithelial cells toward the acquisition of a series of intermediate phenotypic states arrayed along the epithelial-mesenchymal axis. These phenotypic features include changes in the motility, conformation, polarity and functionality of cancer cells, ultimately leading cells to stemness, increased invasiveness, chemo- and radioresistance and the formation of cancer metastasis. Amongst the different existing types of the EMT, type 3 is directly involved in carcinogenesis. A type 3 EMT occurs in neoplastic cells that have previously acquired genetic and epigenetic alterations, specifically affecting genes involved in promoting clonal outgrowth and invasion. Markers such as E-cadherin; N-cadherin; vimentin; and transcription factors (TFs) like Twist, Snail and ZEB are considered key molecules in the transition. The EMT process is also regulated by microRNA expression. Many miRNAs have been reported to repress EMT-TFs. Thus, Snail 1 is repressed by miR-29, miR-30a and miR-34a; miR-200b downregulates Slug; and ZEB1 and ZEB2 are repressed by miR-200 and miR-205, respectively. Occasionally, some microRNA target genes act downstream of the EMT master TFs; thus, Twist1 upregulates the levels of miR-10b. Melatonin is an endogenously produced hormone released mainly by the pineal gland. It is widely accepted that melatonin exerts oncostatic actions in a large variety of tumors, inhibiting the initiation, progression and invasion phases of tumorigenesis. The molecular mechanisms underlying these inhibitory actions are complex and involve a great number of processes. In this review, we will focus our attention on the ability of melatonin to regulate some key EMT-related markers, transcription factors and micro-RNAs, summarizing the multiple ways by which this hormone can regulate the EMT. Since melatonin has no known toxic side effects and is also known to help overcome drug resistance, it is a good candidate to be considered as an adjuvant drug to conventional cancer therapies.
Collapse
Affiliation(s)
- Carlos Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Virginia Álvarez-García
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Carolina Alonso-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Alicia González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| |
Collapse
|
19
|
Niedziółka SM, Datta S, Uśpieński T, Baran B, Skarżyńska W, Humke EW, Rohatgi R, Niewiadomski P. The exocyst complex and intracellular vesicles mediate soluble protein trafficking to the primary cilium. Commun Biol 2024; 7:213. [PMID: 38378792 PMCID: PMC10879184 DOI: 10.1038/s42003-024-05817-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 01/15/2024] [Indexed: 02/22/2024] Open
Abstract
The efficient transport of proteins into the primary cilium is a crucial step for many signaling pathways. Dysfunction of this process can lead to the disruption of signaling cascades or cilium assembly, resulting in developmental disorders and cancer. Previous studies on the protein delivery to the cilium were mostly focused on the membrane-embedded receptors. In contrast, how soluble proteins are delivered into the cilium is poorly understood. In our work, we identify the exocyst complex as a key player in the ciliary trafficking of soluble Gli transcription factors. In line with the known function of the exocyst in intracellular vesicle transport, we demonstrate that soluble proteins, including Gli2/3 and Lkb1, can use the endosome recycling machinery for their delivery to the primary cilium. Finally, we identify GTPases: Rab14, Rab18, Rab23, and Arf4 that are involved in vesicle-mediated Gli protein ciliary trafficking. Our data pave the way for a better understanding of ciliary transport and uncover transport mechanisms inside the cell.
Collapse
Affiliation(s)
- S M Niedziółka
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - S Datta
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - T Uśpieński
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - B Baran
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - W Skarżyńska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - E W Humke
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- IGM Biosciences, Inc, Mountain View, CA, USA
| | - R Rohatgi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - P Niewiadomski
- Centre of New Technologies, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
20
|
Casey MJ, Chan PP, Li Q, Jette CA, Kohler M, Myers BR, Stewart RA. A Simple and Scalable Zebrafish Model of Sonic Hedgehog Medulloblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.577834. [PMID: 38370799 PMCID: PMC10871209 DOI: 10.1101/2024.02.03.577834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children and is stratified into three major subgroups. The Sonic hedgehog (SHH) subgroup represents ~30% of all MB cases and has significant survival disparity depending upon TP53 status. Here, we describe the first zebrafish model of SHH MB using CRISPR to mutate ptch1, the primary genetic driver in human SHH MB. These tumors rapidly arise adjacent to the valvula cerebelli and resemble human SHH MB by histology and comparative genomics. In addition, ptch1-deficient MB tumors with loss of tp53 have aggressive tumor histology and significantly worse survival outcomes, comparable to human patients. The simplicity and scalability of the ptch1 MB model makes it highly amenable to CRISPR-based genome editing screens to identify genes required for SHH MB tumor formation in vivo, and here we identify the grk3 kinase as one such target.
Collapse
Affiliation(s)
- Mattie J. Casey
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Priya P. Chan
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
- Primary Children’s Hospital, Salt Lake City, UT 84113, USA
| | - Qing Li
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Cicely A. Jette
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Missia Kohler
- Department of Anatomic Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Benjamin R. Myers
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Rodney A. Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Lead contact
| |
Collapse
|
21
|
Rico-Fuentes C, López-Pulido EI, Pérez-Guerrero EE, Godínez-Rubí M, Villegas-Pineda JC, Villanueva-Pérez MA, Sierra-Díaz E, Zepeda-Nuño JS, Pereira-Suárez AL, Ramírez-de-Arellano A. Positive correlation between the nuclear expression of GPER and pGLI3 in prostate cancer tissues from patients with different Gleason scores. Front Endocrinol (Lausanne) 2024; 15:1333284. [PMID: 38370352 PMCID: PMC10870147 DOI: 10.3389/fendo.2024.1333284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/11/2024] [Indexed: 02/20/2024] Open
Abstract
Prostate cancer (PCa) is the most prevalent cause of death in the male population worldwide. The G Protein-Coupled Estrogen Receptor (GPER) has been gaining relevance in the development of PCa. Hedgehog (Hh) pathway activation is associated with aggressiveness, metastasis, and relapse in PCa patients. To date, no studies have evaluated the crosstalk between the GPER and the Hh pathway along different group grades in PCa. We conducted an analysis of paraffin-embedded tissues derived from patients with different prognostic grade of PCa using immunohistochemistry. Expression and correlation between GPER and glioma associated oncogene homologue (GLI) transcriptional factors in the parenchyma and stroma of PCa tumors were evaluated. Our results indicate that GPER is highly expressed in the nucleus and increases with higher grade groups. Additionally, GPER's expression correlates with pGLI3 nuclear expression across different grade groups in PCa tissues; however, whether the receptor induces the activation of GLI transcriptional factors, or the latter modulate the expression of GPER is yet to be discovered, as well as the functional consequence of this correlation.
Collapse
Affiliation(s)
- Cecilia Rico-Fuentes
- Doctorado en Biociencias, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, Mexico
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Edgar Iván López-Pulido
- Doctorado en Biociencias, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, Mexico
| | - Edsaúl Emilio Pérez-Guerrero
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Marisol Godínez-Rubí
- Laboratorio de Patología Diagnóstica e Inmunohistoquimica, Centro de Investigación y Diagnóstico en Patología, Departamento de Microbiología y Patologia, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
- Departamento de Morfología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Julio César Villegas-Pineda
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | | | - Erick Sierra-Díaz
- Departamento de Salud Pública, Centro Universitario de Ciencias de la Salud, División de Epidemiología, Unidad Médica de Alta Especialidad, Hospital de Especialidades, Centro Médico Nacional de Occidente, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - José Sergio Zepeda-Nuño
- Laboratorio de Patología Diagnóstica e Inmunohistoquimica, Centro de Investigación y Diagnóstico en Patología, Departamento de Microbiología y Patologia, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Ana Laura Pereira-Suárez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
- Laboratorio de Patología Diagnóstica e Inmunohistoquimica, Centro de Investigación y Diagnóstico en Patología, Departamento de Microbiología y Patologia, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
22
|
Huang A, Xu T, Lu X, Ma L, Ma H, Yu Y, Yao L. Shh-Gli2-Runx2 inhibits vascular calcification. Nephrol Dial Transplant 2024; 39:305-316. [PMID: 37451818 DOI: 10.1093/ndt/gfad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND In patients with chronic kidney disease (CKD), vascular calcification (VC) is common and is associated with a higher risk of all-cause mortality. Shh, one ligand for Hedgehog (Hh) signaling, participates in osteogenesis and several cardiovascular diseases. However, it remains unclear whether Shh is implicated in the development of VC. METHODS Inorganic phosphorus 2.6 mM was used to induce vascular smooth muscle cells (VSMCs) calcification. Mice were fed with adenine diet supplement with 1.2% phosphorus to induce VC. RESULTS Shh was decreased in VSMCs exposed to inorganic phosphorus, calcified arteries in mice fed with an adenine diet, as well as radial arteries from patients with CKD presenting VC. Overexpression of Shh inhibited VSMCs ostosteoblastic differentiation and calcification, whereas its silencing accelerated these processes. Likewise, mice treated with smoothened agonist (SAG; Hh signaling agonist) showed alleviated VC, and mice treated with cyclopamine (CPN; Hh signaling antagonist) exhibited severe VC. Additionally, overexpression of Gli2 significantly reversed the pro-calcification effect of Shh silencing on VSMCs, suggesting that Shh inhibited VC via Gli2. Mechanistically, Gli2 interacted with Runx2 and promoted its ubiquitin proteasomal degradation, therefore protecting against VC. Of interest, the pro-degradation effect of Gli2 on Runx2 was independent of Smurf1 and Cullin4B. CONCLUSIONS Our study provided deeper insight to the pathogenesis of VC, and Shh might be a novel potential target for VC treatment.
Collapse
Affiliation(s)
- Aoran Huang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Tianhua Xu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Xiaomei Lu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Ling Ma
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Haiying Ma
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yanqiu Yu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, China
- Shenyang Engineering Technology R&D Center of Cell Therapy Co. Ltd, Shenyang, China
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
23
|
Wang Y, Yao H, Zhang Y, Mu N, Lu T, Du Z, Wu Y, Li X, Su M, Shao M, Sun X, Su L, Liu X. TMEM216 promotes primary ciliogenesis and Hedgehog signaling through the SUFU-GLI2/GLI3 axis. Sci Signal 2024; 17:eabo0465. [PMID: 38261656 DOI: 10.1126/scisignal.abo0465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/04/2024] [Indexed: 01/25/2024]
Abstract
Primary cilia are enriched in signaling receptors, and defects in their formation or function can induce conditions such as polycystic kidney disease, postaxial hexadactyly, and microphthalmia. Mammalian Hedgehog (Hh) signaling is important in the development of primary cilia, and TMEM216, a transmembrane protein that localizes to the base of cilia, is also implicated in ciliogenesis in zebrafish. Here, we found that Tmem216-deficient mice had impaired Hh signaling and displayed typical ciliopathic phenotypes. These phenomena were also observed in cells deficient in TMEM216. Furthermore, TMEM216 interacted with core Hh signaling proteins, including SUFU, a negative regulator of Hh, and GLI2/GLI3, transcription factors downstream of Hh. The competition between TMEM216 and SUFU for binding to GLI2/GLI3 inhibited the cleavage of GLI2/GLI3 into their repressor forms, which resulted in the nuclear accumulation of full-length GLI2 and the decreased nuclear localization of cleaved GLI3, ultimately leading to the activation of Hh signaling. Together, these data suggest that the TMEM216-SUFU-GLI2/GLI3 axis plays a role in TMEM216 deficiency-induced ciliopathies and Hh signaling abnormalities.
Collapse
Affiliation(s)
- Yingying Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Huili Yao
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yu Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Ning Mu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Tong Lu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhiyuan Du
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yingdi Wu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiaopeng Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Min Su
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Ming Shao
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiaoyang Sun
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Ling Su
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiangguo Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| |
Collapse
|
24
|
Kondoh H. The Significance of Repressive Processes in Developmental Regulation. Results Probl Cell Differ 2024; 72:127-142. [PMID: 38509256 DOI: 10.1007/978-3-031-39027-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Encountering a developmental process confined to a limited time window or a restricted embryonic area, one may deem that the mechanism to activate the process occurs with such precision in temporal and spatial terms. However, in many instances, the activation mechanism is initiated in a broad time and space, but the mechanism is actuated only when repressive mechanisms are lifted. Thus, the operation of repressive processes is essential for precise developmental regulation. Repressive regulations occur at various levels. The following representative repressive regulations and their consequences at various levels will be discussed: intercellular signaling, epigenetic regulation, transcriptional regulation, and posttranscriptional regulation.
Collapse
Affiliation(s)
- Hisato Kondoh
- Osaka University, Suita, Osaka, Japan
- Biohistory Research Hall, Takatsuki, Osaka, Japan
| |
Collapse
|
25
|
Ali S, Abrar M, Hussain I, Batool F, Raza RZ, Khatoon H, Zoia M, Visel A, Shubin NH, Osterwalder M, Abbasi AA. Identification of ancestral gnathostome Gli3 enhancers with activity in mammals. Dev Growth Differ 2024; 66:75-88. [PMID: 37925606 PMCID: PMC10841732 DOI: 10.1111/dgd.12901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/01/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
Abnormal expression of the transcriptional regulator and hedgehog (Hh) signaling pathway effector Gli3 is known to trigger congenital disease, most frequently affecting the central nervous system (CNS) and the limbs. Accurate delineation of the genomic cis-regulatory landscape controlling Gli3 transcription during embryonic development is critical for the interpretation of noncoding variants associated with congenital defects. Here, we employed a comparative genomic analysis on fish species with a slow rate of molecular evolution to identify seven previously unknown conserved noncoding elements (CNEs) in Gli3 intronic intervals (CNE15-21). Transgenic assays in zebrafish revealed that most of these elements drive activities in Gli3 expressing tissues, predominantly the fins, CNS, and the heart. Intersection of these CNEs with human disease associated SNPs identified CNE15 as a putative mammalian craniofacial enhancer, with conserved activity in vertebrates and potentially affected by mutation associated with human craniofacial morphology. Finally, comparative functional dissection of an appendage-specific CNE conserved in slowly evolving fish (elephant shark), but not in teleost (CNE14/hs1586) indicates co-option of limb specificity from other tissues prior to the divergence of amniotes and lobe-finned fish. These results uncover a novel subset of intronic Gli3 enhancers that arose in the common ancestor of gnathostomes and whose sequence components were likely gradually modified in other species during the process of evolutionary diversification.
Collapse
Affiliation(s)
- Shahid Ali
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Muhammad Abrar
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
| | - Irfan Hussain
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
| | - Fatima Batool
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
| | - Rabail Zehra Raza
- Department of Biological Sciences, Faculty of Multidisciplinary Studies, National University of Medical Sciences Rawalpindi, Pakistan
| | - Hizran Khatoon
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
| | - Matteo Zoia
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Axel Visel
- Environmental Genomics and System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA 94720, USA
- School of Natural Sciences, University of California, Merced, Merced, CA 95343, USA
| | - Neil H. Shubin
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Marco Osterwalder
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Amir Ali Abbasi
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
| |
Collapse
|
26
|
Tosa M, Abe Y, Egawa S, Hatakeyama T, Iwaguro C, Mitsugi R, Moriyama A, Sano T, Ogawa R, Tanaka N. The HEDGEHOG-GLI1 pathway is important for fibroproliferative properties in keloids and as a candidate therapeutic target. Commun Biol 2023; 6:1235. [PMID: 38062202 PMCID: PMC10703807 DOI: 10.1038/s42003-023-05561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Keloids are benign fibroproliferative skin tumors caused by aberrant wound healing that can negatively impact patient quality of life. The lack of animal models has limited research on pathogenesis or developing effective treatments, and the etiology of keloids remains unknown. Here, we found that the characteristics of stem-like cells from keloid lesions and the surrounding dermis differ from those of normal skin. Furthermore, the HEDGEHOG (HH) signal and its downstream transcription factor GLI1 were upregulated in keloid patient-derived stem-like cells. Inhibition of the HH-GLI1 pathway reduced the expression of genes involved in keloids and fibrosis-inducing cytokines, including osteopontin. Moreover, the HH signal inhibitor vismodegib reduced keloid reconstituted tumor size and keloid-related gene expression in nude mice and the collagen bundle and expression of cytokines characteristic for keloids in ex vivo culture of keloid tissues. These results implicate the HH-GLI1 pathway in keloid pathogenesis and suggest therapeutic targets of keloids.
Collapse
Affiliation(s)
- Mamiko Tosa
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Yoshinori Abe
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Seiko Egawa
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Tomoka Hatakeyama
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Chihiro Iwaguro
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Ryotaro Mitsugi
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Ayaka Moriyama
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Takumi Sano
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Nobuyuki Tanaka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
27
|
Mazarei M, Shahabi Rabori V, Ghasemi N, Salehi M, Rayatpisheh N, Jahangiri N, Saberiyan M. LncRNA MALAT1 signaling pathway and clinical applications in overcome on cancers metastasis. Clin Exp Med 2023; 23:4457-4472. [PMID: 37695391 DOI: 10.1007/s10238-023-01179-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023]
Abstract
In spite of its high mortality rate and difficulty in finding a cure, scientific advancements have contributed to a reduction in cancer-related fatalities. Aberrant gene expression during carcinogenesis emphasizes the importance of targeting the signaling networks that control gene expression in cancer treatment. Long noncoding RNAs (lncRNAs), which are transcribed RNA molecules that play a role in gene expression regulation, are a recent innovative therapeutic approach for diagnosing and treating malignancies. MALAT1, a well-known lncRNA, functions in gene expression, RNA processing, and epigenetic control. High expression levels of MALAT1 are associated with several human disorders, including metastasis, invasion, autophagy, and proliferation of cancer cells. MALAT1 affects various signaling pathways and microRNAs (miRNAs), and this study aims to outline its functional roles in cancer metastasis and its interactions with cellular signaling pathways. Moreover, MALAT1 and its interactions with signaling pathways can be promising target for cancer treatment.
Collapse
Affiliation(s)
- Madineh Mazarei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Nazila Ghasemi
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Mehrnaz Salehi
- School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Najmeh Rayatpisheh
- School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Negin Jahangiri
- Department of Biology, Faculty of Basic Sciences and Engineering, Gonbad Kavous University, Gonbad-e Kavus, Iran
| | - Mohammadreza Saberiyan
- Department of Medical Genetics, Faculty of Medicine, School of Medical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
28
|
Mannan A, Dhiamn S, Garg N, Singh TG. Pharmacological modulation of Sonic Hedgehog signaling pathways in Angiogenesis: A mechanistic perspective. Dev Biol 2023; 504:58-74. [PMID: 37739118 DOI: 10.1016/j.ydbio.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
The Sonic hedgehog (SHh) signaling pathway is an imperative operating network that helps in regulates the critical events during the development processes like multicellular embryo growth and patterning. Disruptions in SHh pathway regulation can have severe consequences, including congenital disabilities, stem cell renewal, tissue regeneration, and cancer/tumor growth. Activation of the SHh signal occurs when SHh binds to the receptor complex of Patch (Ptc)-mediated Smoothened (Smo) (Ptc-smo), initiating downstream signaling. This review explores how pharmacological modulation of the SHh pathway affects angiogenesis through canonical and non-canonical pathways. The canonical pathway for angiogenesis involves the activation of angiogenic cytokines such as fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), placental growth factor (PGF), hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), stromal cell-derived factor 1α, transforming growth factor-β1 (TGF-β1), and angiopoietins (Ang-1 and Ang-2), which facilitate the process of angiogenesis. The Non-canonical pathway includes indirect activation of certain pathways like iNOS/Netrin-1/PKC, RhoA/Rock, ERK/MAPK, PI3K/Akt, Wnt/β-catenin, Notch signaling pathway, and so on. This review will provide a better grasp of the mechanistic approach of SHh in mediating angiogenesis, which can aid in the suppression of certain cancer and tumor growths.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Sonia Dhiamn
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
29
|
Patel HV, Joshi JS, Shah FD. A clinicopathological exploration of Hedgehog signaling: implications in oral carcinogenesis. J Cancer Res Clin Oncol 2023; 149:16525-16535. [PMID: 37712962 DOI: 10.1007/s00432-023-05383-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Hedgehog Signaling, a basic cancer stem cell pathway, plays a major role during the embryonic development, is known to play a quiescent role in adults. However, aberrant activation of Hedgehog signaling in adults is known to play a role in cancer development. Hence, the aim of the study was to identify the role of Hedgehog signaling pathway in the Oral cancers. MATERIALS AND METHODS The expression of Hedgehog signaling pathway was evaluated in 124 patients through the quantitative real-time PCR. The association between the gene expression and clinico-pathological parameters were analyzed using the Pearson chi-square test and survival analysis was carried out using Kaplan-Meier analysis. RESULTS SHH and GLI1 was found to be significantly associated with the Lymph Node Status and SUFU was significantly associated with the Age. SMO and SUFU were found to have a worse prognosis in oral cancer patients. According to our findings, IHH plays a critical role in the activation of the HH signaling pathway in oral cancer. CONCLUSION These findings back up the use of the Hedgehog signaling pathway as a biomarker for early disease prediction in oral cancer, as well as its role in tumor aggressiveness and invasiveness.
Collapse
Affiliation(s)
- Hitarth V Patel
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, 380016, India
| | - Jigna S Joshi
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, 380016, India
| | - Franky D Shah
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, 380016, India.
| |
Collapse
|
30
|
Hoffmann F, Bolz S, Junger K, Klose F, Stehle IF, Ueffing M, Boldt K, Beyer T. Paralog-specific TTC30 regulation of Sonic hedgehog signaling. Front Mol Biosci 2023; 10:1268722. [PMID: 38074101 PMCID: PMC10701685 DOI: 10.3389/fmolb.2023.1268722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/09/2023] [Indexed: 02/12/2024] Open
Abstract
The intraflagellar transport (IFT) machinery is essential for cilia assembly, maintenance, and trans-localization of signaling proteins. The IFT machinery consists of two large multiprotein complexes, one of which is the IFT-B. TTC30A and TTC30B are integral components of this complex and were previously shown to have redundant functions in the context of IFT, preventing the disruption of IFT-B and, thus, having a severe ciliogenesis defect upon loss of one paralog. In this study, we re-analyzed the paralog-specific protein complexes and discovered a potential involvement of TTC30A or TTC30B in ciliary signaling. Specifically, we investigated a TTC30A-specific interaction with protein kinase A catalytic subunit α, a negative regulator of Sonic hedgehog (Shh) signaling. Defects in this ciliary signaling pathway are often correlated to synpolydactyly, which, intriguingly, is also linked to a rare TTC30 variant. For an in-depth analysis of this unique interaction and the influence on Shh, TTC30A or B single- and double-knockout hTERT-RPE1 were employed, as well as rescue cells harboring wildtype TTC30 or the corresponding mutation. We could show that mutant TTC30A inhibits the ciliary localization of Smoothened. This observed effect is independent of Patched1 but associated with a distinct phosphorylated PKA substrate accumulation upon treatment with forskolin. This rather prominent phenotype was attenuated in mutant TTC30B. Mass spectrometry analysis of wildtype versus mutated TTC30A or TTC30B uncovered differences in protein complex patterns and identified an impaired TTC30A-IFT57 interaction as the possible link leading to synpolydactyly. We could observe no impact on cilia assembly, leading to the hypothesis that a slight decrease in IFT-B binding can be compensated, but mild phenotypes, like synpolydactyly, can be induced by subtle signaling changes. Our systematic approach revealed the paralog-specific influence of TTC30A KO and mutated TTC30A on the activity of PRKACA and the uptake of Smoothened into the cilium, resulting in a downregulation of Shh. This downregulation, combined with interactome alterations, suggests a potential mechanism of how mutant TTC30A is linked to synpolydactyly.
Collapse
Affiliation(s)
- Felix Hoffmann
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | - Tina Beyer
- *Correspondence: Felix Hoffmann, ; Tina Beyer,
| |
Collapse
|
31
|
Kotulak-Chrzaszcz A, Kiezun J, Czajkowski M, Matuszewski M, Klacz J, Krazinski BE, Godlewski J, Kmiec Z, Wierzbicki PM. The immunoreactivity of GLI1 and VEGFA is a potential prognostic factor in kidney renal clear cell carcinoma. BMC Cancer 2023; 23:1110. [PMID: 37964226 PMCID: PMC10647108 DOI: 10.1186/s12885-023-11622-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) is the most common type of kidney cancer and its pathogenesis is strongly associated with VHL-HIF-VEGF signaling. SHH ligand is the upstream SHH pathway regulator, while GLI1 is its major effector that stimulates as a transcription factor, i.a. expression of VEGFA gene. The aim of present study was to assess the prognostic significance of SHH, GLI1 and VEGFA immunoreactivity in KIRC tissues. The analysis included paired tumor and normal samples from 34 patients with KIRC. The immunoreactivity of SHH, GLI1 and VEGFA proteins was determined by immunohistochemical (IHC) renal tissues staining. The IHC staining results were assessed using the immunoreactive score (IRS) method which takes into account the number of cells showing a positive reaction and the intensity of the reaction. Increased GLI1 protein immunoreactivity was observed in KIRC tissues, especially in early-stage tumors, according to the TNM classification. Elevated expression of the VEGFA protein was noted primarily in high-grade KIRC samples according to the Fuhrman/WHO/ISUP scale. Moreover, a directly proportional correlation was observed between SHH and VEGFA immunoreactivity in TNM 3 + 4 and Fuhrman/ISUP/WHO 3 + 4 tumor tissues as well as in samples of patients with shorter survival. We also observed an association between shorter patient survival as well as increased and decreased immunoreactivity, of the VEGFA and GLI1, respectively. The aforementioned findings suggest that the expression pattern of SHH, GLI1 and VEGFA demonstrates prognostic potential in KIRC.
Collapse
Affiliation(s)
- Anna Kotulak-Chrzaszcz
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, 1 Debinki Street, Gdansk, 80211, Poland.
| | - Jacek Kiezun
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, 10082, Poland
| | - Mateusz Czajkowski
- Department of Urology, Faculty of Medicine, Medical University of Gdansk, Gdansk, 80402, Poland
| | - Marcin Matuszewski
- Department of Urology, Faculty of Medicine, Medical University of Gdansk, Gdansk, 80402, Poland
| | - Jakub Klacz
- Department of Urology, Faculty of Medicine, Medical University of Gdansk, Gdansk, 80402, Poland
| | - Bartlomiej E Krazinski
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, 10082, Poland
| | - Janusz Godlewski
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, 10082, Poland
| | - Zbigniew Kmiec
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, 1 Debinki Street, Gdansk, 80211, Poland
| | - Piotr M Wierzbicki
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, 1 Debinki Street, Gdansk, 80211, Poland
| |
Collapse
|
32
|
Zhang L, Zhang Y, Li K, Xue S. Hedgehog signaling and the glioma-associated oncogene in cancer radioresistance. Front Cell Dev Biol 2023; 11:1257173. [PMID: 38020914 PMCID: PMC10679362 DOI: 10.3389/fcell.2023.1257173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Tumor radioresistance remains a key clinical challenge. The Hedgehog (HH) signaling pathway and glioma-associated oncogene (GLI) are aberrantly activated in several cancers and are thought to contribute to cancer radioresistance by influencing DNA repair, reactive oxygen species production, apoptosis, autophagy, cancer stem cells, the cell cycle, and the tumor microenvironment. GLI is reported to activate the main DNA repair pathways, to interact with cell cycle regulators like Cyclin D and Cyclin E, to inhibit apoptosis via the activation of B-cell lymphoma-2, Forkhead Box M1, and the MYC proto-oncogene, to upregulate cell stemness related genes (Nanog, POU class 5 homeobox 1, SRY-box transcription factor 2, and the BMI1 proto-oncogene), and to promote cancer stem cell transformation. The inactivation of Patched, the receptor of HH, prevents caspase-mediated apoptosis. This causes some cancer cells to survive while others become cancer stem cells, resulting in cancer recurrence. Combination treatment using HH inhibitors (including GLI inhibitors) and conventional therapies may enhance treatment efficacy. However, the clinical use of HH signaling inhibitors is associated with toxic side effects and drug resistance. Nevertheless, selective HH agonists, which may relieve the adverse effects of inhibitors, have been developed in mouse models. Combination therapy with other pathway inhibitors or immunotherapy may effectively overcome resistance to HH inhibitors. A comprehensive cancer radiotherapy with HH or GLI inhibitor is more likely to enhance cancer treatment efficacy while further studies are still needed to overcome its adverse effects and drug resistance.
Collapse
Affiliation(s)
- Li Zhang
- Nephrology Department, The 1st Hospital of Jilin University, Changchun, China
| | - Yuhan Zhang
- General Surgery Center, Department of Thyroid Surgery, The 1st Hospital of Jilin University, Changchun, China
| | - Kaixuan Li
- General Surgery Center, Department of Thyroid Surgery, The 1st Hospital of Jilin University, Changchun, China
| | - Shuai Xue
- General Surgery Center, Department of Thyroid Surgery, The 1st Hospital of Jilin University, Changchun, China
| |
Collapse
|
33
|
Hu L, Gao M, Jiang H, Zhuang L, Jiang Y, Xie S, Zhang H, Wang Q, Chen Q. Triptolide inhibits epithelial ovarian tumor growth by blocking the hedgehog/Gli pathway. Aging (Albany NY) 2023; 15:11131-11151. [PMID: 37851362 PMCID: PMC10637820 DOI: 10.18632/aging.205110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023]
Abstract
Epithelial ovarian cancer (EOC), the most predominant subtype of ovarian cancer (OC), involves poor prognosis and exhibits high aggression. Triptolide (TPL), like other Chinese herbs, has historically played a significant role in modern medicine. The screening system based on Gli-dependent luciferase reporter activity assessed the effects of over 800 natural medicinal materials on hedgehog (Hh) signaling pathway activity and discovered that TPL had an excellent inhibitory effect on Hh signaling pathway activity. However, the significance and mechanism of TPL involvement in regulating the Hh pathway have not been well explored. Thus, this work aimed to understand better how TPL affects the Hh pathway activity, which, in turn, influences the biological behavior of EOC. Our findings observed that Smo agonist SAG-induced EOC cell proliferation, migration, and invasion were drastically reversed by TPL in a concentration-dependent pattern. Further evidence suggested that TPL promotes the degradation of Gli1 and Gli2 to inhibit the activity of the Hh signaling pathway by relying on Gli1 and Gli2 ubiquitination. Our in vivo studies also confirmed that TPL could significantly inhibit the tumor growth of EOC. Taken together, our results revealed that one of the antitumor mechanisms of TPL was the targeted inhibition of the Hh/Gli pathway.
Collapse
Affiliation(s)
- Lanyan Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Mai Gao
- Huankui Academy of Nanchang University, Nanchang 330036, Jiangxi, P.R. China
| | - Huifu Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Lingling Zhuang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Ying Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Siqi Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Hong Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Qian Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Qi Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| |
Collapse
|
34
|
Maresca L, Crivaro E, Migliorini F, Anichini G, Giammona A, Pepe S, Poggialini F, Vagaggini C, Giannini G, Sestini S, Borgognoni L, Lapucci A, Dreassi E, Taddei M, Manetti F, Petricci E, Stecca B. Targeting GLI1 and GLI2 with small molecule inhibitors to suppress GLI-dependent transcription and tumor growth. Pharmacol Res 2023; 195:106858. [PMID: 37473878 DOI: 10.1016/j.phrs.2023.106858] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Aberrant activation of Hedgehog (HH) signaling in cancer is the result of genetic alterations of upstream pathway components (canonical) or other oncogenic mechanisms (noncanonical), that ultimately concur to activate the zinc-finger transcription factors GLI1 and GLI2. Therefore, inhibition of GLI activity is a good therapeutic option to suppress both canonical and noncanonical activation of the HH pathway. However, only a few GLI inhibitors are available, and none of them have the profile required for clinical development due to poor metabolic stability and aqueous solubility, and high hydrophobicity. Two promising quinoline inhibitors of GLI were selected by virtual screening and subjected to hit-to-lead optimization, thus leading to the identification of the 4-methoxy-8-hydroxyquinoline derivative JC19. This molecule impaired GLI1 and GLI2 activities in several cellular models interfering with the binding of GLI1 and GLI2 to DNA. JC19 suppressed cancer cell proliferation by enhancing apoptosis, inducing a strong anti-tumor response in several cancer cell lines in vitro. Specificity towards GLI1 and GLI2 was demonstrated by lower activity of JC19 in GLI1- or GLI2-depleted cancer cells. JC19 showed excellent metabolic stability and high passive permeability. Notably, JC19 inhibited GLI1-dependent melanoma xenograft growth in vivo, with no evidence of toxic effects in mice. These results highlight the potential of JC19 as a novel anti-cancer agent targeting GLI1 and GLI2.
Collapse
Affiliation(s)
- Luisa Maresca
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Florence, Italy
| | - Enrica Crivaro
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Florence, Italy; Dept. of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Francesca Migliorini
- Dept. of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Giulia Anichini
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Florence, Italy
| | - Alessandro Giammona
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Florence, Italy
| | - Sara Pepe
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Florence, Italy
| | - Federica Poggialini
- Dept. of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Chiara Vagaggini
- Dept. of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | | | - Serena Sestini
- Plastic and Reconstructive Surgery Unit Regional Melanoma Referral Center and Melanoma & Skin Cancer Unit, Santa Maria Annunziata Hospital, Florence, Italy
| | - Lorenzo Borgognoni
- Plastic and Reconstructive Surgery Unit Regional Melanoma Referral Center and Melanoma & Skin Cancer Unit, Santa Maria Annunziata Hospital, Florence, Italy
| | - Andrea Lapucci
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Elena Dreassi
- Dept. of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Maurizio Taddei
- Dept. of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Fabrizio Manetti
- Dept. of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy.
| | - Elena Petricci
- Dept. of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy.
| | - Barbara Stecca
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Florence, Italy.
| |
Collapse
|
35
|
Li X, Sun R, Wu H, Zheng C, Long YQ. Targeting the Hedgehog pathway with novel Gli1 hydrophobic tagging degraders. Bioorg Chem 2023; 138:106649. [PMID: 37307715 DOI: 10.1016/j.bioorg.2023.106649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023]
Abstract
The Hedgehog/Glioma-associated oncogene (Hh/Gli) signaling pathway plays an essential role in embryonic development and tissue homeostasis. Aberrant regulation of this pathway has been linked to various human malignancies. Gli1, the downstream transcription factor of the Hh pathway, is the ultimate effector of the canonical Hh pathway and has been identified as a common regulator of several tumorigenic pathways prevalent in Hh-independent cancers. Thus Gli1 represents a unique and promising drug target for a wide range of cancers. However, the identification and development of small molecules that directly target Gli1 protein have progressed slowly, due to an insufficient efficacy and selectivity. Herein, we developed novel small-molecule Gli1 degraders based on the hydrophobic tagging (HyT) strategy. The Gli1 HyT degrader 8e potently inhibited the proliferation of Gli1-overexpressed HT29 colorectal cancer cells, induced Gli1 degradation with a DC50 value of 5.4 μM in HT29 and achieved 70% degradation at 7.5 μM in MEFPTCH1-/- and MEFSUFU-/-cell lines, via proteasome pathway. Compared to the canonical Hh antagonist Vismodegib, 8e exhibited much stronger potency in suppressing the mRNA expression of Hh target genes in Hh-overactivated MEFPTCH1-/- and Vismodegib resistant MEFSUFU-/- cells. Our study provides small molecule Gli1 degraders effectively interfering with both canonical and noncanonical Hh signaling and overcoming current Smoothened (SMO) antagonists resistance, which might pave a new avenue for developing therapeutic modalities targeting Hh/Gli1 signaling pathway.
Collapse
Affiliation(s)
- Xiangyang Li
- Laboratory of Medicinal Chemical Biology, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Rui Sun
- Laboratory of Medicinal Chemical Biology, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Hao Wu
- Department of Pharmacology, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Chaonan Zheng
- Department of Pharmacology, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
| | - Ya-Qiu Long
- Laboratory of Medicinal Chemical Biology, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China.
| |
Collapse
|
36
|
Jing J, Wu Z, Wang J, Luo G, Lin H, Fan Y, Zhou C. Hedgehog signaling in tissue homeostasis, cancers, and targeted therapies. Signal Transduct Target Ther 2023; 8:315. [PMID: 37596267 PMCID: PMC10439210 DOI: 10.1038/s41392-023-01559-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/05/2023] [Indexed: 08/20/2023] Open
Abstract
The past decade has seen significant advances in our understanding of Hedgehog (HH) signaling pathway in various biological events. HH signaling pathway exerts its biological effects through a complex signaling cascade involved with primary cilium. HH signaling pathway has important functions in embryonic development and tissue homeostasis. It plays a central role in the regulation of the proliferation and differentiation of adult stem cells. Importantly, it has become increasingly clear that HH signaling pathway is associated with increased cancer prevalence, malignant progression, poor prognosis and even increased mortality. Understanding the integrative nature of HH signaling pathway has opened up the potential for new therapeutic targets for cancer. A variety of drugs have been developed, including small molecule inhibitors, natural compounds, and long non-coding RNA (LncRNA), some of which are approved for clinical use. This review outlines recent discoveries of HH signaling in tissue homeostasis and cancer and discusses how these advances are paving the way for the development of new biologically based therapies for cancer. Furthermore, we address status quo and limitations of targeted therapies of HH signaling pathway. Insights from this review will help readers understand the function of HH signaling in homeostasis and cancer, as well as opportunities and challenges of therapeutic targets for cancer.
Collapse
Affiliation(s)
- Junjun Jing
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhuoxuan Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiahe Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Guowen Luo
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hengyi Lin
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
37
|
Paradise BD, Gainullin VG, Almada LL, Sigafoos AN, Sen S, Vera RE, Raja Arul GL, Toruner M, Pease DR, Gonzalez AL, Mentucci FM, Grasso DH, Fernandez-Zapico ME. SUFU promotes GLI activity in a Hedgehog-independent manner in pancreatic cancer. Biochem J 2023; 480:1199-1216. [PMID: 37477952 DOI: 10.1042/bcj20220439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/22/2023]
Abstract
Aberrant activation of the Hedgehog (Hh) signaling pathway, through which the GLI family of transcription factors (TF) is stimulated, is commonly observed in cancer cells. One well-established mechanism of this increased activity is through the inactivation of Suppressor of Fused (SUFU), a negative regulator of the Hh pathway. Relief from negative regulation by SUFU facilitates GLI activity and induction of target gene expression. Here, we demonstrate a novel role for SUFU as a promoter of GLI activity in pancreatic ductal adenocarcinoma (PDAC). In non-ciliated PDAC cells unresponsive to Smoothened agonism, SUFU overexpression increases GLI transcriptional activity. Conversely, knockdown (KD) of SUFU reduces the activity of GLI in PDAC cells. Through array PCR analysis of GLI target genes, we identified B-cell lymphoma 2 (BCL2) among the top candidates down-regulated by SUFU KD. We demonstrate that SUFU KD results in reduced PDAC cell viability, and overexpression of BCL2 partially rescues the effect of reduced cell viability by SUFU KD. Further analysis using as a model GLI1, a major TF activator of the GLI family in PDAC cells, shows the interaction of SUFU and GLI1 in the nucleus through previously characterized domains. Chromatin immunoprecipitation (ChIP) assay shows the binding of both SUFU and GLI1 at the promoter of BCL2 in PDAC cells. Finally, we demonstrate that SUFU promotes GLI1 activity without affecting its protein stability. Through our findings, we propose a novel role of SUFU as a positive regulator of GLI1 in PDAC, adding a new mechanism of Hh/GLI signaling pathway regulation in cancer cells.
Collapse
Affiliation(s)
- Brooke D Paradise
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, U.S.A
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, U.S.A
| | | | - Luciana L Almada
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, U.S.A
| | - Ashley N Sigafoos
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, U.S.A
| | - Sandhya Sen
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, U.S.A
| | - Renzo E Vera
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, U.S.A
| | - Glancis Luzeena Raja Arul
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, U.S.A
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, U.S.A
| | - Murat Toruner
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, U.S.A
| | - David R Pease
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, U.S.A
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, U.S.A
| | - Alina L Gonzalez
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa - Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), La Pampa 6300, Argentina
| | | | - Daniel H Grasso
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), Escuela de Farmacia y Bioquimica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1113, Argentina
| | | |
Collapse
|
38
|
Derderian C, Canales GI, Reiter JF. Seriously cilia: A tiny organelle illuminates evolution, disease, and intercellular communication. Dev Cell 2023; 58:1333-1349. [PMID: 37490910 PMCID: PMC10880727 DOI: 10.1016/j.devcel.2023.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/18/2023] [Accepted: 06/30/2023] [Indexed: 07/27/2023]
Abstract
The borders between cell and developmental biology, which have always been permeable, have largely dissolved. One manifestation is the blossoming of cilia biology, with cell and developmental approaches (increasingly complemented by human genetics, structural insights, and computational analysis) fruitfully advancing understanding of this fascinating, multifunctional organelle. The last eukaryotic common ancestor probably possessed a motile cilium, providing evolution with ample opportunity to adapt cilia to many jobs. Over the last decades, we have learned how non-motile, primary cilia play important roles in intercellular communication. Reflecting their diverse motility and signaling functions, compromised cilia cause a diverse range of diseases collectively called "ciliopathies." In this review, we highlight how cilia signal, focusing on how second messengers generated in cilia convey distinct information; how cilia are a potential source of signals to other cells; how evolution may have shaped ciliary function; and how cilia research may address thorny outstanding questions.
Collapse
Affiliation(s)
- Camille Derderian
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Gabriela I Canales
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
39
|
Lear JT, Morris LM, Ness DB, Lewis LD. Pharmacokinetics and pharmacodynamics of Hedgehog pathway inhibitors used in the treatment of advanced or treatment-refractory basal cell carcinoma. Expert Rev Clin Pharmacol 2023; 16:1211-1220. [PMID: 37975712 DOI: 10.1080/17512433.2023.2285849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Sonidegib and vismodegib are currently the only US Food and Drug Administration and European Medicines Agency-approved small-molecule Hedgehog pathway inhibitors (HHIs)for treating adults with advanced or refractory basal cell carcinoma (BCC) that is not amenable to conventional surgery or radiotherapy. At this time, there are no head-to-head clinical trials comparing these two HHIs for efficacy and safety to assist clinicians with determining which HHI may be best suited for their patients. AREAS COVERED This review briefly describes the pathogenesis of BCC, provides a detailed overview of the key pharmacokinetic profile differences between sonidegib and vismodegib, explains their pharmacodynamics, and highlights the therapeutic considerations when either HHI is used to treat special patient populations. EXPERT OPINION Although both HHIs act at the same molecular target in the Hedgehog pathway, there are significant differences in their pharmacokinetic profiles that may play a potential role in their efficacy and safety. Evidence-based recommendations serve to inform clinicians until direct comparative clinical trials of sonidegib versus vismodegib are conducted to determine the clinical relevance of the reported differences in their pharmacokinetic properties.
Collapse
Affiliation(s)
- John T Lear
- Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Dermatology Center, Salford Royal NHS Foundation Trust, Salford, UK
| | - Linda M Morris
- Department of Medicine, The Geisel School of Medicine & The Dartmouth Cancer Center, Lebanon, NH, USA
| | - Dylan B Ness
- Department of Medicine, The Geisel School of Medicine & The Dartmouth Cancer Center, Lebanon, NH, USA
| | - Lionel D Lewis
- Department of Medicine, The Geisel School of Medicine & The Dartmouth Cancer Center, Lebanon, NH, USA
| |
Collapse
|
40
|
Mohan M, Mannan A, Singh TG. Therapeutic implication of Sonic Hedgehog as a potential modulator in ischemic injury. Pharmacol Rep 2023:10.1007/s43440-023-00505-0. [PMID: 37347388 DOI: 10.1007/s43440-023-00505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Sonic Hedgehog (SHh) is a homology protein that is involved in the modeling and development of embryonic tissues. As SHh plays both protective and harmful roles in ischemia, any disruption in the transduction and regulation of the SHh signaling pathway causes ischemia to worsen. The SHh signal activation occurs when SHh binds to the receptor complex of Ptc-mediated Smoothened (Smo) (Ptc-smo), which initiates the downstream signaling cascade. This article will shed light on how pharmacological modifications to the SHh signaling pathway transduction mechanism alter ischemic conditions via canonical and non-canonical pathways by activating certain downstream signaling cascades with respect to protein kinase pathways, angiogenic cytokines, inflammatory mediators, oxidative parameters, and apoptotic pathways. The canonical pathway includes direct activation of interleukins (ILs), angiogenic cytokines like hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and hypoxia-inducible factor alpha (HIF-), which modulate ischemia. The non-canonical pathway includes indirect activation of certain pathways like mTOR, PI3K/Akt, MAPK, RhoA/ROCK, Wnt/-catenin, NOTCH, Forkhead box protein (FOXF), Toll-like receptors (TLR), oxidative parameters such as GSH, SOD, and CAT, and some apoptotic parameters such as Bcl2. This review provides comprehensive insights that contribute to our knowledge of how SHh impacts the progression and outcomes of ischemic injuries.
Collapse
Affiliation(s)
- Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
41
|
Fushimi T, Kobayashi T, Itoh H. CEP164-GLI2 association ensures the hedgehog signaling in pancreatic cancer cells. Biochem Biophys Res Commun 2023; 666:179-185. [PMID: 37199136 DOI: 10.1016/j.bbrc.2023.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Hedgehog (Hh) signaling is involved in multiple biological events including development and cancers. It is processed through primary cilia, which are assembled from the mother centriole in most mammalian cells. Pancreatic ductal adenocarcinoma (PDAC) cells generally lose their primary cilia; thus, the Hh signaling pathway is postulated to be independent of the organelle in PDAC. We previously reported that the mother centriole-specific protein, centrosomal protein 164 (CEP164), is required for centriolar localization of the GLI2 transcription factor in Hh signaling and for suppressing the expression of Hh-target genes. In this study, we demonstrated the physical interaction between CEP164 and GLI2, and delineated their binding modes at the mother centriole. The ectopically expressed GLI2-binding region of CEP164 reduced the centriolar GLI2 localization and enhanced the expression of Hh-target genes in PDAC cells. Furthermore, similar phenotypes were observed in PDAC cells lacking primary cilia. These results suggest that the CEP164-GLI2 association at the mother centriole is responsible for controlling Hh signaling, independent of primary cilia in PDAC cells.
Collapse
Affiliation(s)
- Toshihiko Fushimi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Tetsuo Kobayashi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Department of Pathology and Oncology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
| | - Hiroshi Itoh
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| |
Collapse
|
42
|
Prajapati A, Mehan S, Khan Z. The role of Smo-Shh/Gli signaling activation in the prevention of neurological and ageing disorders. Biogerontology 2023:10.1007/s10522-023-10034-1. [PMID: 37097427 DOI: 10.1007/s10522-023-10034-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023]
Abstract
Sonic hedgehog (Shh) signaling is an essential central nervous system (CNS) pathway involved during embryonic development and later life stages. Further, it regulates cell division, cellular differentiation, and neuronal integrity. During CNS development, Smo-Shh signaling is significant in the proliferation of neuronal cells such as oligodendrocytes and glial cells. The initiation of the downstream signalling cascade through the 7-transmembrane protein Smoothened (Smo) promotes neuroprotection and restoration during neurological disorders. The dysregulation of Smo-Shh is linked to the proteolytic cleavage of GLI (glioma-associated homolog) into GLI3 (repressor), which suppresses target gene expression, leading to the disruption of cell growth processes. Smo-Shh aberrant signalling is responsible for several neurological complications contributing to physiological alterations like increased oxidative stress, neuronal excitotoxicity, neuroinflammation, and apoptosis. Moreover, activating Shh receptors in the brain promotes axonal elongation and increases neurotransmitters released from presynaptic terminals, thereby exerting neurogenesis, anti-oxidation, anti-inflammatory, and autophagy responses. Smo-Shh activators have been shown in preclinical and clinical studies to help prevent various neurodegenerative and neuropsychiatric disorders. Redox signalling has been found to play a critical role in regulating the activity of the Smo-Shh pathway and influencing downstream signalling events. In the current study ROS, a signalling molecule, was also essential in modulating the SMO-SHH gli signaling pathway in neurodegeneration. As a result of this investigation, dysregulation of the pathway contributes to the pathogenesis of various neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD).Thus, Smo-Shh signalling activators could be a potential therapeutic intervention to treat neurocomplications of brain disorders.
Collapse
Affiliation(s)
- Aradhana Prajapati
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
43
|
Mohebbi A. Ligand-based 3D pharmacophore modeling, virtual screening, and molecular dynamic simulation of potential smoothened inhibitors. J Mol Model 2023; 29:143. [PMID: 37062794 DOI: 10.1007/s00894-023-05532-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 03/27/2023] [Indexed: 04/18/2023]
Abstract
CONTEXT The Hedgehog (Hh) signaling pathway is a crucial regulator of various cellular processes. Dysregulated activation of the Smoothened (SMO) oncoprotein, a key component of the Hh pathway, has been implicated in several types of cancer. Although SMO inhibitors are important anti-cancer therapeutics, drug-resistant SMO mutants have emerged, limiting their efficacy. This study aimed to discover stable SMO inhibitors for both wild-type and mutant SMOs, using a 12-feature pharmacophore model validated for virtual screening. One lead compound, LCT10312, was identified with high affinity to SMO and showed a significant conformational change in the SMO structure upon binding. Molecular dynamic simulation revealed stable interaction of LCT10312 with SMO and large atom motions, indicating SMO structural fluctuation. The lead compound showed high predicted binding scores to several clinically relevant SMO mutants. METHODS A ligand-based pharmacophore model was developed from 25 structurally clustered SMO inhibitors using LigandScout v3.12 software and virtually screened for hit identification from a library of 511,878 chemicals. Molecular docking was employed to identify potential leads based on SMO affinities. Molecular dynamic simulation (MDS) with GROMACS v5.1.4 was performed to analyze the structural changes of SMO oncoprotein upon binding lead compound(s) and cyclopamine as the control for 100 ns. The binding affinity of lead compound(s) was predicted on clinical and laboratory SMO mutants.
Collapse
Affiliation(s)
- Alireza Mohebbi
- Stem Cell Research Center, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Vista Aria Rena Gene Inc., Gorgan, Iran.
| |
Collapse
|
44
|
Baran B, Kosieradzka K, Skarzynska W, Niewiadomski P. MRCKα/β positively regulates Gli protein activity. Cell Signal 2023; 107:110666. [PMID: 37019250 DOI: 10.1016/j.cellsig.2023.110666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
Posttranslational modifications (PTMs) are key regulatory events for the majority of signaling pathways. Transcription factors are often phosphorylated on multiple residues, which regulates their trafficking, stability, or transcriptional activity. Gli proteins, transcription factors that respond to the Hedgehog pathway, are regulated by phosphorylation, but the sites and the kinases involved have been only partially described. We identified three novel kinases: MRCKα, MRCKβ, and MAP4K5 which physically interact with Gli proteins and directly phosphorylate Gli2 on multiple sites. We established that MRCKα/β kinases regulate Gli proteins, which impacts the transcriptional output of the Hedgehog pathway. We showed that double knockout of MRCKα/β affects Gli2 ciliary and nuclear localization and reduces Gli2 binding to the Gli1 promoter. Our research fills a critical gap in our understanding of the regulation of Gli proteins by describing their activation mechanisms through phosphorylation.
Collapse
|
45
|
Kimura S, Morita T, Hosoba K, Itoh H, Yamamoto T, Miyamoto T. Cholesterol in the ciliary membrane as a therapeutic target against cancer. Front Mol Biosci 2023; 10:1160415. [PMID: 37006607 PMCID: PMC10060879 DOI: 10.3389/fmolb.2023.1160415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Primary cilium is a non-motile, antenna-like structure that develops in the quiescent G0 phase-cell surface. It is composed of an array of axonemal microtubules polymerized from the centrosome/basal body. The plasma membrane surrounding the primary cilium, which is called the ciliary membrane, contains a variety of receptors and ion channels, through which the cell receives extracellular chemical and physical stimuli to initiate signal transduction. In general, primary cilia disappear when cells receive the proliferative signals to re-enter the cell cycle. Primary cilia thus cannot be identified in many malignant and proliferative tumors. In contrast, some cancers, including basal cell carcinoma, medulloblastoma, gastrointestinal stromal tumor, and other malignancies, retain their primary cilia. Importantly, it has been reported that the primary cilia-mediated oncogenic signals of Hedgehog, Wnt, and Aurora kinase A are involved in the tumorigenesis and tumor progression of basal cell carcinoma and some types of medulloblastoma. It has also been demonstrated that cholesterol is significantly more enriched in the ciliary membrane than in the rest of the plasma membrane to ensure Sonic hedgehog signaling. A series of epidemiological studies on statin drugs (cholesterol-lowering medication) demonstrated that they prevent recurrence in a wide range of cancers. Taken together, ciliary cholesterol could be a potential therapeutic target in primary cilia-dependent progressive cancers.
Collapse
Affiliation(s)
- Sotai Kimura
- Department of Molecular Pathology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Tomoka Morita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Kosuke Hosoba
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Program of Mathematical and Life Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Itoh
- Department of Molecular Pathology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Takashi Yamamoto
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Program of Mathematical and Life Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Tatsuo Miyamoto
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
- *Correspondence: Tatsuo Miyamoto,
| |
Collapse
|
46
|
Wen J, Charan Dash R, Zaino AM, Harrahill NJ, Calhoun JT, Dusek CO, Morel SR, Russolillo M, Kyle Hadden M. 8-Hydroxyquinoline derivatives suppress GLI1-mediated transcription through multiple mechanisms. Bioorg Chem 2023; 132:106387. [PMID: 36724660 DOI: 10.1016/j.bioorg.2023.106387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Aberrant activation of the Hedgehog (Hh) signaling pathway has been observed in various human malignancies. Glioma-associated oncogene transcription factor 1 (GLI1) is the ultimate effector of the canonical Hh pathway and has also been identified as a common regulator of several tumorigenic pathways prevalent in Hh-independent cancers. The anti-cancer potential of GLI1 antagonism with small molecule inhibitors has demonstrated initial promise; however, the continued development of GLI1 inhibitors is still needed. We previously identified a scaffold containing an 8-hydroxyquinoline as a promising lead GLI1 inhibitor (compound 1). To further develop this scaffold, we performed a systematic structure-activity relationship study to map the structural requirements of GLI1 inhibition by this chemotype. A series of biophysical and cellular experiments identified compound 39 as an enhanced GLI1 inhibitor with improved activity. In addition, our studies on this scaffold suggest a potential role for SRC family kinases in regulating oncogenic GLI1 transcriptional activity.
Collapse
Affiliation(s)
- Jiachen Wen
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Rd, Unit 3092, Storrs, CT 06029-3092, United States
| | - Radha Charan Dash
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Rd, Unit 3092, Storrs, CT 06029-3092, United States
| | - Angela M Zaino
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Rd, Unit 3092, Storrs, CT 06029-3092, United States
| | - Noah J Harrahill
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Rd, Unit 3092, Storrs, CT 06029-3092, United States
| | - Jackson T Calhoun
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Rd, Unit 3092, Storrs, CT 06029-3092, United States
| | - Christopher O Dusek
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Rd, Unit 3092, Storrs, CT 06029-3092, United States
| | - Shana R Morel
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Rd, Unit 3092, Storrs, CT 06029-3092, United States
| | - Matthew Russolillo
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Rd, Unit 3092, Storrs, CT 06029-3092, United States
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Rd, Unit 3092, Storrs, CT 06029-3092, United States.
| |
Collapse
|
47
|
Preclinical and Clinical Trials of New Treatment Strategies Targeting Cancer Stem Cells in Subtypes of Breast Cancer. Cells 2023; 12:cells12050720. [PMID: 36899854 PMCID: PMC10001180 DOI: 10.3390/cells12050720] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
Breast cancer (BC) can be classified into various histological subtypes, each associated with different prognoses and treatment options, including surgery, radiation, chemotherapy, and endocrine therapy. Despite advances in this area, many patients still face treatment failure, the risk of metastasis, and disease recurrence, which can ultimately lead to death. Mammary tumors, like other solid tumors, contain a population of small cells known as cancer stem-like cells (CSCs) that have high tumorigenic potential and are involved in cancer initiation, progression, metastasis, tumor recurrence, and resistance to therapy. Therefore, designing therapies specifically targeting at CSCs could help to control the growth of this cell population, leading to increased survival rates for BC patients. In this review, we discuss the characteristics of CSCs, their surface biomarkers, and the active signaling pathways associated with the acquisition of stemness in BC. We also cover preclinical and clinical studies that focus on evaluating new therapy systems targeted at CSCs in BC through various combinations of treatments, targeted delivery systems, and potential new drugs that inhibit the properties that allow these cells to survive and proliferate.
Collapse
|
48
|
González-Rodríguez P, Cheray M, Keane L, Engskog-Vlachos P, Joseph B. ULK3-dependent activation of GLI1 promotes DNMT3A expression upon autophagy induction. Autophagy 2022; 18:2769-2780. [PMID: 35226587 PMCID: PMC9673947 DOI: 10.1080/15548627.2022.2039993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Macroautophagy/autophagy is a tightly regulated catabolic process, which contributes at baseline level to cellular homeostasis, and upon its stimulation to the adaptive cellular response to intra- and extracellular stress stimuli. Decrease of autophagy activity is occurring upon aging and thought to contribute to age-related-diseases. Recently, we uncovered, upon autophagy induction, the role of de novo DNMT3A (DNA methyltransferase 3 alpha)-mediated DNA methylation on expression of the MAP1LC3 (microtubule associated protein 1 light chain 3) proteins, core components of the autophagy pathway, which resulted in reduced baseline autophagy activity. Here, we report that serine/threonine kinase ULK3 (unc-51 like kinase 3)-dependent activation of GLI1 (GLI family zinc finger 1) contributes to the transcriptional upregulation of DNMT3A gene expression upon autophagy induction, thereby bringing additional understanding of the long-term effect of autophagy induction and a possible mechanism for its decline upon aging, pathological conditions, or in response to treatment interventions.Abbreviations: CBZ: carbamazepine; ChIP: chromatin immunoprecipitation; Clon: clonidine; DNMT3A: DNA methyltransferase 3 alpha; GLI1: GLI family zinc finger 1; GLI2: GLI family zinc finger 2; MAP1LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; PLA: proximity ligation assay; RT-qPCR: quantitative reverse transcription PCR; shRNA: small hairpin RNA; siRNA: small interfering RNA; Treh: trehalose; ULK3: unc-51 like kinase 3.
Collapse
Affiliation(s)
| | - Mathilde Cheray
- Institute of Environmental MedicineToxicology Unit, Karolinska Institutet, StockholmSweden
| | - Lily Keane
- Institute of Environmental MedicineToxicology Unit, Karolinska Institutet, StockholmSweden
| | | | - Bertrand Joseph
- Institute of Environmental MedicineToxicology Unit, Karolinska Institutet, StockholmSweden,Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway,CONTACT Bertrand Joseph Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm17177, Sweden; Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
49
|
Lex RK, Vokes SA. Timing is everything: Transcriptional repression is not the default mode for regulating Hedgehog signaling. Bioessays 2022; 44:e2200139. [PMID: 36251875 PMCID: PMC9691524 DOI: 10.1002/bies.202200139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022]
Abstract
Hedgehog (HH) signaling is a conserved pathway that drives developmental growth and is essential for the formation of most organs. The expression of HH target genes is regulated by a dual switch mechanism where GLI proteins function as bifunctional transcriptional activators (in the presence of HH signaling) and transcriptional repressors (in the absence of HH signaling). This results in a tight control of GLI target gene expression during rapidly changing levels of pathway activity. It has long been presumed that GLI proteins also repress target genes prior to the initial expression of HH in a given tissue. This idea forms the basis for the limb bud pre-patterning model for regulating digit number. Recent findings indicate that GLI repressor proteins are indeed present prior to HH signaling but contrary to this model, GLI proteins are inert as they do not regulate transcriptional responses or enhancer chromatin modifications at this time. These findings suggest that GLI transcriptional repressor activity is not a default state as assumed, but is itself regulated in an unknown fashion. We discuss these findings and their implications for understanding pre-patterning, digit regulation, and HH-driven disease.
Collapse
Affiliation(s)
- Rachel K. Lex
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109 USA
| | - Steven A. Vokes
- Department of Molecular Bioscienc es, University of Texas at Austin, 100 E 24th Street Stop A5000, Austin, TX 78712 USA
| |
Collapse
|
50
|
Chen C, Lu J, Wu H. Case Report: Submucosal gastroblastoma with a novel PTCH1::GLI2 gene fusion in a 58-year-old man. Front Oncol 2022; 12:935914. [PMID: 36147912 PMCID: PMC9487307 DOI: 10.3389/fonc.2022.935914] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Gastroblastoma is a rare biphasic tumor of the stomach that generally presents in young patients. MALAT1-GLI1 gene fusion was considered to be the characteristic molecular alteration of this tumor in previous reports. Herein, we described a 58-year-old man with a mass mainly located in the submucosa of the stomach. Microscopic examination showed a biphasic morphology with the same immunohistochemical phenotype as gastroblastoma. Interestingly, a novel PTCH1::GLI2 fusion rather than MALAT1-GLI1 fusion was detected in the tumor by RNA-based next generation sequencing (NGS). This was the first report that demonstrated a novel PTCH1::GLI2 gene fusion in gastroblastoma, and thus expanded the molecular spectrum of this tumor. The underlying pathogenesis merits further investigation.
Collapse
Affiliation(s)
- Cuimin Chen
- Department of Pathology, Shenzhen Hospital of Peking University, Shenzhen, China
| | - Junliang Lu
- Department of Pathology, Peking Union Medical College Hospital, Peking, China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Peking, China
- *Correspondence: Huanwen Wu,
| |
Collapse
|