1
|
Dong S, Zhang B, Huang K, Ying M, Yan J, Niu F, Hu H, Dunn DW, Ren Y, Li B, Zhang P. Balancing selection shapes population differentiation of major histocompatibility complex genes in wild golden snub-nosed monkeys. Curr Zool 2024; 70:596-606. [PMID: 39463695 PMCID: PMC11502152 DOI: 10.1093/cz/zoad043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2024] Open
Abstract
Small and isolated populations face several intrinsic risks, such as genetic drift, inbreeding depression, and reduced gene flow. Thus, patterns of genetic diversity and differentiation have become an important focus of conservation genetics research. The golden snub-nosed monkey Rhinopithecus roxellana, an endangered species endemic to China, has experienced rapid reduction in population size and severe population fragmentation over the past few decades. We measured the patterns of genetic diversity and population differentiation using both neutral microsatellites and adaptive major histocompatibility complex (MHC) genes in 2 R. roxellana populations (DPY and GNG) distributed on the northern and southern slopes of the Qinling Mountains, respectively. Eight MHC-linked haplotypes formed by 5 DQA1 alleles, 5 DQB1 alleles, 5 DRB1 alleles, and 4 DRB2 alleles were detected in the 2 populations. The larger GNG population showed higher genetic variation for both MHC and microsatellites than the smaller DPY population, suggesting an effect of genetic drift on genetic variation. Genetic differentiation index (F ST) outlier analyses, principal coordinate analysis (PCoA), and inferred population genetic structure showed lower genetic differentiation in the MHC variations than microsatellites, suggesting that pathogen-mediated balancing selection, rather than local adaptation, homogenized the MHC genes of both populations. This study indicates that both balancing selection and genetic drift may shape genetic variation and differentiation in small and fragmented populations.
Collapse
Affiliation(s)
- Shixuan Dong
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Bingyi Zhang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Kang Huang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Meijing Ying
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Jibing Yan
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Fei Niu
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Hanyu Hu
- Education Department, Xi’an Gaoxin No. 5 High School, Xi’an 710404, China
| | - Derek W Dunn
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Yi Ren
- Shaanxi Key Laboratory for Animal Conservation, Shaanxi Institute of Zoology, Xi’an 710032, China
| | - Baoguo Li
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Pei Zhang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| |
Collapse
|
2
|
He K, Liang C, Ma S, Liu H, Zhu Y. Copy number and selection of MHC genes in ruminants are related to habitat, average life span and diet. Gene 2024; 904:148179. [PMID: 38242373 DOI: 10.1016/j.gene.2024.148179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
The ruminants, as the main group of livestock, have been extensively studied in terms of their physiology, endocrinology, biochemistry, genetics, and nutrition. Despite the wide geographic distribution and habitat diversity of animals in this group, their ecology and evolution remain poorly understood. In this study, we analyzed the gene copy number, selection, and ecological and evolutionary processes that have affected the evolution of major histocompatibility complex (MHC) genes across ruminant lineages based on available genomic data. The 51 species analyzed represented all six families of ruminants. Our finding indicated that the architecture of the MHC region is conserved in ruminants, but with variable copy numbers of MHC-I, MHC-IIA, and MHC-IIB genes. No lineage-specific gene duplication was observed in the MHC genes. The phylogenetic generalized least squares regression (PGLS) model revealed association between ecological and biological factors (habitat and lifespan) and gene duplication in DQA and DQB, but not in DRB. The selection pressure of DQA and DQB were related with lifespan, diet, and the ratio of genetic repeat elements. These results suggest that the MHC evolution in ruminants, including copy number and selection, has been influenced by genetic repeat elements, pathogen exposure risk, and intrinsic cost of possessing multiple MHC genes.
Collapse
Affiliation(s)
- Ke He
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| | - Chunhong Liang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| | - Shujuan Ma
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Hongyi Liu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Ying Zhu
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China.
| |
Collapse
|
3
|
Liu D, Tong Y, Dong R, Ye X, Yu X. A Breeding Plumage in the Making: The Unique Process of Plumage Coloration in the Crested Ibis in Terms of Chemical Composition and Sex Hormones. Animals (Basel) 2023; 13:3820. [PMID: 38136856 PMCID: PMC10740519 DOI: 10.3390/ani13243820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/03/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The Crested Ibis (Nipponia nippon) has long fascinated ornithologists with its enigmatic plumage color change. After more than a century of curiosity, the mystery was finally unraveled in the 1970s, unveiling the mechanism behind this remarkable transformation. Unlike other bird species, the Crested Ibis achieves its nuptial plumage coloration through a unique daubing behavior. After a water-bathing, it applies a sticky black substance secreted by a patch of skin in the neck and throat region. However, the chemical components of this black substance have not been studied in detail until now. To address this issue, we conducted a study to detect the components of the black substance and explore the relationship between sex hormone levels and the secretion of the black substance. We used enzyme-linked immunosorbent assay (ELISA) to measure the monthly changes in steroid hormone levels (estradiol E2, testosterone T, and progesterone PROG) levels in feces. We also analyzed the correlation between sex hormone levels and daubing behavior. The results showed that the sex hormone levels are closely related to the secretion and application of the black substance. In addition, we qualitatively analyzed the chemical components of the black substance using gas chromatography-mass spectrometry (GC-MS), uncovering the presence of 117 distinct chemical components. We assume that the black coloration results from the polymerization of selected chemical constituents among these components. These findings provide a groundwork for further exploration into the biological significance of the black substance. Overall, our study detected components in the black substance and studied how sex hormone levels relate to its secretion. Understanding the hormone effects on coloration helps in precise habitat management, like wetland preservation, crucial for Crested Ibis survival. Implementing hormone-boosting measures during breeding seasons enhances reproduction and health, vital for their conservation.
Collapse
Affiliation(s)
- Danni Liu
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (D.L.); (Y.T.); (X.Y.)
| | - Yiwei Tong
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (D.L.); (Y.T.); (X.Y.)
| | - Rong Dong
- Research Center for Qinling Giant Panda, Shaanxi Academy of Foresty, Xi’an 710082, China;
| | - Xinping Ye
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (D.L.); (Y.T.); (X.Y.)
- Research Center for UAV Remote Sensing, Shaanxi Normal University, Xi’an 710119, China
| | - Xiaoping Yu
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (D.L.); (Y.T.); (X.Y.)
- Shaanxi Provincial Field Observation and Research Station for Golden Monkey, Giant Panda and Biodiversity, Xi’an 723400, China
| |
Collapse
|
4
|
Gong Y, Guo Y, He YM, Yuan Y, Yang BG, Duan XH, Liu CL, Zhang JH, Hong QH, Ma YH, Na RS, Han YG, Zeng Y, Huang YF, Zhao YJ, Zhao ZQ, E G. Comparative analysis of the genetic diversity of the neutral microsatellite loci and second exon of the goat MHC-DQB1 gene. Anim Biotechnol 2023; 34:85-92. [PMID: 34289783 DOI: 10.1080/10495398.2021.1935980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
This study compared and analyzed the genetic diversity and population structure of exon 2 of the DQB1 gene and 13 autosomal neutral microsatellite markers from 14 Chinese goat breeds to explore the potential evolutionary mechanism of the major histocompatibility complex (MHC). A total of 287 haplotypes were constructed from MHC-DQB1 exon 2 from 14 populations, and 82 nucleotide polymorphic sites (SNPs, 31.78%) and 172 heterozygous individuals (79.12%) were identified. The FST values of the microsatellites and MHC-DQB ranged between 0.01831-0.26907 and 0.00892-0.38871, respectively. Furthermore, 14 goat populations showed rich genetic diversity in the microsatellite loci and MHC-DQB1 exon 2. However, the population structure and phylogenetic relationship represented by the two markers were different. Positive selection and Tajima's D test results showed the occurrence of a diversified selection mechanism, which was primarily based on a positive and balancing selection in goat DQB. This study also found that the DQB sequences of bovines exhibited trans-species polymorphism (TSP) among species and families. In brief, this study indicated that positive and balancing selection played a major role in maintaining the genetic diversity of DQB, and TSP of MHC in bovines was common, which enhanced the understanding of the MHC evolution.
Collapse
Affiliation(s)
- Ying Gong
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Yi Guo
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Yong-Meng He
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Ying Yuan
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Bai-Gao Yang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Xing-Hai Duan
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Cheng-Li Liu
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Jia-Hua Zhang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Qiong-Hua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Yue-Hui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ri-Su Na
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Yan-Guo Han
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Yan Zeng
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Yong-Fu Huang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Yong-Ju Zhao
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Zhong-Quan Zhao
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Guangxin E
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| |
Collapse
|
5
|
He K, Zhu Y, Yang SC, Ye Q, Fang SG, Wan QH. Major histocompatibility complex genomic investigation of endangered Chinese alligator provides insights into the evolution of tetrapod major histocompatibility complex and survival of critically bottlenecked species. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1078058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BackgroundThe major histocompatibility complex (MHC) gene family, a vital immune gene family in vertebrates, helps animals defend against pathogens. The polymorphism of MHC genes is important for a species and is considered to be caused by the numerous alleles of MHC antigen-presenting genes. However, the mechanism of this process is unclear due to the lack of data on the MHC structure. The evolutionary trajectories of the tetrapod MHC are also unclear because of insufficient studies on the reptile MHC architecture. Here, we studied the Chinese alligator (Alligator sinensis), which experienced a population bottleneck, but the population increased rapidly in the past 30 years and is proposed to have a unique MHC system to face pathogenic challenges.ResultsWe successfully constructed a 2 Mb MHC region using bacterial artificial chromosome (BAC) library and genome data of the Chinese alligator and checked the antigen-presenting genes using transcriptome data and the rapid amplification of cDNA ends (RACE) technique. The MHC architecture reported here uncovers adjacent Class I and Class II subregions and a unique CD1 subregion. This newly added information suggested that the Class I-II structure pattern was more ancient in tetrapods and helped reconstruct the evolution of the MHC region architecture. We also found multiple groups of MHC class I (MHC-I) (12 duplicated loci, belonging to three groups, two of which were novel) and MHC class II (MHC-II) (11 duplicated loci, belonging to two groups) inside the 2 Mb MHC region, and there were three more duplicated MHC-I loci outside it. These highly duplicated antigen-presenting loci had differences in expression, amino acid length of antigen-presenting exons, and splice signal of exon and intron, which together promoted the polymorphism of duplicated genes. Although the MHC antigen-presenting genes were identified as monomorphic or oligomorphic in our previous population study, the loci with high copy numbers and many differences can make up for this loss, presenting another mechanism for polymorphism in antigen presentation. These MHC-I and MHC-IIB loci with low polymorphism for each locus, but high numbers in all, may also contribute to MHC antigen-presenting binding variability in a population.ConclusionTo summarize, the fine MHC region architecture of reptiles presented in this study completes the evolutionary trajectories of the MHC structure in tetrapods, and these distinctive MHC gene groups in the Chinese alligator may have helped this species to expand rapidly in the past recent years.
Collapse
|
6
|
Li M, Dong R, Tuohetahong Y, Li X, Zhang H, Ye X, Yu X. Impact of Allee effects on the establishment of reintroduction populations of endangered species: The case of the Crested Ibis. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
7
|
Xu N, Ye W, Sun C, He K, Zhu Y, Lan H, Lu C, Liu H. Genetic Diversity and Differentiation of MHC Class I Genes in Red-Crowned Crane Populations. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.898581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The red-crowned crane (Grus japonensis) has been demoted to “vulnerable species” because its populations have apparently stabilized in Japan and Korea. Low variation and genetic drift may cause damage to the nascent recovery of the G. japonensis population. The major histocompatibility complex (MHC) is one of the most polymorphic gene families in the vertebrate genome and can reflect information on the adaptive evolution of endangered species. In this study, variations in MHC I exon 3 of captive G. japonensis in China were assessed and compared with those in cranes from Japan. Forty MHC alleles of 274 base pairs were isolated from 32 individuals from two captive populations in China. There was high variability in the nucleotide and amino acid composition, showing the proportion of polymorphic sites of 18.98 and 32.97%, respectively. Comparative analyses of the Chinese and Japanese populations based on 222 base pair sequences revealed more alleles and higher variation in the Chinese population. The lack of significant geographical differentiation of G. japonensis was supported by the genetic differentiation coefficient (0.04506) between the Chinese and Japanese populations. Positive selection of antigen-binding sites was observed, which contributed to maintaining the diversity of MHC class I genes. Phylogenetic analysis suggested the persistence of trans-species polymorphisms among MHC class I genes in Gruidae species. Our results may contribute to optimizing the management of G. japonensis populations and population recovery of this threatened species.
Collapse
|
8
|
He K, Liang CH, Zhu Y, Dunn P, Zhao A, Minias P. Reconstructing Macroevolutionary Patterns in Avian MHC Architecture With Genomic Data. Front Genet 2022; 13:823686. [PMID: 35251132 PMCID: PMC8893315 DOI: 10.3389/fgene.2022.823686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/25/2022] [Indexed: 12/28/2022] Open
Abstract
The Major Histocompatibility Complex (MHC) is a hyper-polymorphic genomic region, which forms a part of the vertebrate adaptive immune system and is crucial for intra- and extra-cellular pathogen recognition (MHC-I and MHC-IIA/B, respectively). Although recent advancements in high-throughput sequencing methods sparked research on the MHC in non-model species, the evolutionary history of MHC gene structure is still poorly understood in birds. Here, to explore macroevolutionary patterns in the avian MHC architecture, we retrieved contigs with antigen-presenting MHC and MHC-related genes from available genomes based on third-generation sequencing. We identified: 1) an ancestral avian MHC architecture with compact size and tight linkage between MHC-I, MHC-IIA/IIB and MHC-related genes; 2) three major patterns of MHC-IIA/IIB unit organization in different avian lineages; and 3) lineage-specific gene translocation events (e.g., separation of the antigen-processing TAP genes from the MHC-I region in passerines), and 4) the presence of a single MHC-IIA gene copy in most taxa, showing evidence of strong purifying selection (low dN/dS ratio and low number of positively selected sites). Our study reveals long-term macroevolutionary patterns in the avian MHC architecture and provides the first evidence of important transitions in the genomic arrangement of the MHC region over the last 100 million years of bird evolution.
Collapse
Affiliation(s)
- Ke He
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
- *Correspondence: Ke He, ; Piotr Minias,
| | - Chun-hong Liang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| | - Ying Zhu
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Peter Dunn
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Ayong Zhao
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| | - Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łodz, Łódź, Poland
- *Correspondence: Ke He, ; Piotr Minias,
| |
Collapse
|
9
|
Pikus E, Włodarczyk R, Jedlikowski J, Minias P. Urbanization processes drive divergence at the major histocompatibility complex in a common waterbird. PeerJ 2021; 9:e12264. [PMID: 34707940 PMCID: PMC8500109 DOI: 10.7717/peerj.12264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/16/2021] [Indexed: 11/20/2022] Open
Abstract
Urban sprawl is one of the most common landscape alterations occurring worldwide, and there is a growing list of species that are recognised to have adapted to urban life. To be successful, processes of urban colonization by wildlife require a broad spectrum of phenotypic (e.g., behavioural or physiological) adjustments, but evidence for genetic adaptations is much scarcer. One hypothesis proposes that different pathogen-driven selective pressures between urban and non-urban landscapes leads to adaptations in host immune genes. Here, we examined urbanization-related differentiation at the key pathogen-recognition genes of vertebrate adaptive immunity-the major histocompatibility complex (MHC)-in a common waterbird, the Eurasian coot (Fulica atra). Samples were collected from an old urban population (established before the 1950s), a new urban population (established in the 2000s), and two rural populations from central Poland. We found strong significant divergence (as measured with Jost's D) at the MHC class II between the old urban population and the remaining (new urban and rural) populations. Also, there was a moderate, but significant divergence at the MHC between the new urban population and two rural populations, while no divergence was found between the two rural populations. The total number of MHC alleles and the number of private (population-specific) MHC alleles was lower in old urban populations, as compared to the rural ones. These patterns of differentiation at the MHC were not consistent with patterns found for neutral genetic markers (microsatellites), which showed few differences between the populations. Our results indicate that MHC allele composition depended on the level of anthropogenic disturbance and the time which passed since urban colonization, possibly due to the processes of genotype sorting and local adaptation. As such, our study contributes to the understanding of genetic mechanisms associated with urbanization processes in wildlife.
Collapse
Affiliation(s)
- Ewa Pikus
- Department of Biodiversity Studies and Bioeducation, University of Łódź, Łódź, Poland
| | - Radosław Włodarczyk
- Department of Biodiversity Studies and Bioeducation, University of Łódź, Łódź, Poland
| | - Jan Jedlikowski
- Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Piotr Minias
- Department of Biodiversity Studies and Bioeducation, University of Łódź, Łódź, Poland
| |
Collapse
|
10
|
Cheng Y, Grueber C, Hogg CJ, Belov K. Improved high-throughput MHC typing for non-model species using long-read sequencing. Mol Ecol Resour 2021; 22:862-876. [PMID: 34551192 PMCID: PMC9293008 DOI: 10.1111/1755-0998.13511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 11/29/2022]
Abstract
The major histocompatibility complex (MHC) plays a critical role in the vertebrate immune system. Accurate MHC typing is critical to understanding not only host fitness and disease susceptibility, but also the mechanisms underlying host‐pathogen co‐evolution. However, due to the high degree of gene duplication and diversification of MHC genes, it is often technically challenging to accurately characterise MHC genetic diversity in non‐model species. Here we conducted a systematic review to identify common issues associated with current widely used MHC typing approaches. Then to overcome these challenges, we developed a long‐read based MHC typing method along with a new analysis pipeline. Our approach enables the sequencing of fully phased MHC alleles spanning all key functional domains and the separation of highly similar alleles as well as the removal of technical artefacts such as PCR heteroduplexes and chimeras. Using this approach, we performed population‐scale MHC typing in the Tasmanian devil (Sarcophilus harrisii), revealing previously undiscovered MHC functional diversity in this endangered species. Our new method provides a better solution for addressing research questions that require high MHC typing accuracy. Since the method is not limited by species or the number of genes analysed, it will be applicable for studying not only the MHC but also other complex gene families.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Catherine Grueber
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia.,San Diego Zoo Wildlife Alliance, San Diego, California, USA
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Surviving despite reduce MHC variation: selection patterns and genetic variation of the endangered Huillín (Lontra provocax). MAMMAL RES 2021. [DOI: 10.1007/s13364-021-00594-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Hybridization with mountain hares increases the functional allelic repertoire in brown hares. Sci Rep 2021; 11:15771. [PMID: 34349207 PMCID: PMC8338973 DOI: 10.1038/s41598-021-95357-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Brown hares (Lepus europaeus Pallas) are able to hybridize with mountain hares (L. timidus Linnaeus) and produce fertile offspring, which results in cross-species gene flow. However, not much is known about the functional significance of this genetic introgression. Using targeted sequencing of candidate loci combined with mtDNA genotyping, we found the ancestral genetic diversity in the Finnish brown hare to be small, likely due to founder effect and range expansion, while gene flow from mountain hares constitutes an important source of functional genetic variability. Some of this variability, such as the alleles of the mountain hare thermogenin (uncoupling protein 1, UCP1), might have adaptive advantage for brown hares, whereas immunity-related MHC alleles are reciprocally exchanged and maintained via balancing selection. Our study offers a rare example where an expanding species can increase its allelic variability through hybridization with a congeneric native species, offering a route to shortcut evolutionary adaptation to the local environmental conditions.
Collapse
|
13
|
Kulski JK, Suzuki S, Shiina T. Haplotype Shuffling and Dimorphic Transposable Elements in the Human Extended Major Histocompatibility Complex Class II Region. Front Genet 2021; 12:665899. [PMID: 34122517 PMCID: PMC8193847 DOI: 10.3389/fgene.2021.665899] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
The major histocompatibility complex (MHC) on chromosome 6p21 is one of the most single-nucleotide polymorphism (SNP)-dense regions of the human genome and a prime model for the study and understanding of conserved sequence polymorphisms and structural diversity of ancestral haplotypes/conserved extended haplotypes. This study aimed to follow up on a previous analysis of the MHC class I region by using the same set of 95 MHC haplotype sequences downloaded from a publicly available BioProject database at the National Center for Biotechnology Information to identify and characterize the polymorphic human leukocyte antigen (HLA)-class II genes, the MTCO3P1 pseudogene alleles, the indels of transposable elements as haplotypic lineage markers, and SNP-density crossover (XO) loci at haplotype junctions in DNA sequence alignments of different haplotypes across the extended class II region (∼1 Mb) from the telomeric PRRT1 gene in class III to the COL11A2 gene at the centromeric end of class II. We identified 42 haplotypic indels (20 Alu, 7 SVA, 13 LTR or MERs, and 2 indels composed of a mosaic of different transposable elements) linked to particular HLA-class II alleles. Comparative sequence analyses of 136 haplotype pairs revealed 98 unique XO sites between SNP-poor and SNP-rich genomic segments with considerable haplotype shuffling located in the proximity of putative recombination hotspots. The majority of XO sites occurred across various regions including in the vicinity of MTCO3P1 between HLA-DQB1 and HLA-DQB3, between HLA-DQB2 and HLA-DOB, between DOB and TAP2, and between HLA-DOA and HLA-DPA1, where most XOs were within a HERVK22 sequence. We also determined the genomic positions of the PRDM9-recombination suppression sequence motif ATCCATG/CATGGAT and the PRDM9 recombination activation partial binding motif CCTCCCCT/AGGGGAG in the class II region of the human reference genome (NC_ 000006) relative to published meiotic recombination positions. Both the recombination and anti-recombination PRDM9 binding motifs were widely distributed throughout the class II genomic regions with 50% or more found within repeat elements; the anti-recombination motifs were found mostly in L1 fragmented repeats. This study shows substantial haplotype shuffling between different polymorphic blocks and confirms the presence of numerous putative ancestral recombination sites across the class II region between various HLA class II genes.
Collapse
Affiliation(s)
- Jerzy K Kulski
- Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia.,Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Shingo Suzuki
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Takashi Shiina
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
14
|
Chen Y, Sun Y, Atzeni L, Gibson L, Hua M, Li K, Shi K, Dudgeon D. Anthropogenic pressures increase extinction risk of an isolated Asian elephant (Elephas maximus) population in southwestern China, as revealed by a combination of molecular- and landscape-scale approaches. Integr Zool 2021; 17:1078-1094. [PMID: 33728791 DOI: 10.1111/1749-4877.12534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Identification of the effect of anthropogenic threats on ecosystem is crucial. We used molecular tools and remote sensing to evaluate the population status of an isolated Asian elephant population in southwestern China in response to changes in habitat suitability between 1989 and 2019. A total of 22 unique genotypes were identified from 117 dung samples collected between March and June 2018 using microsatellite DNA analysis, including 13 males and 9 females. Based on the size of fecal boli, 1 animal was a juvenile, 9 were subadults, and 12 were adults, indicating that recruitment was limited. The effective population size was small (15.3) but there was no signature of a recent population bottleneck. We observed a low genetic diversity (He = 0.46 ± 0.05) and a high level of inbreeding (Fis of 0.43 ± 0.11), suggesting low population viability and high risk of extinction. In total, these elephants lost nearly two thirds (62%) of their habitat in 3 decades. The expansion of agriculture and rubber plantations followed by an increase in human settlements after 1989 increased the isolation of this population. We recommend that resettlement of 800 inhabitants of 2 villages and the abandonment of associated farmland and rubber plantations would make an additional 20 km2 of suitable habitat available. This could allow a population increase of 14 elephants, possibly by translocating individuals from elsewhere in China. Our findings can be applied to the management and conservation of other fragmented populations in China or in other range countries of Asian elephants.
Collapse
Affiliation(s)
- Ying Chen
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China.,School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Yakuan Sun
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China.,Eco-Bridge Continental, Beijing, China
| | - Luciano Atzeni
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Luke Gibson
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Mei Hua
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Keyu Li
- School of Earth Sciences, Yunnan University, Kunming, China
| | - Kun Shi
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China.,Eco-Bridge Continental, Beijing, China
| | - David Dudgeon
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
He K, Minias P, Dunn PO. Long-Read Genome Assemblies Reveal Extraordinary Variation in the Number and Structure of MHC Loci in Birds. Genome Biol Evol 2021; 13:evaa270. [PMID: 33367721 PMCID: PMC7875000 DOI: 10.1093/gbe/evaa270] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2020] [Indexed: 12/31/2022] Open
Abstract
Our knowledge of the Major Histocompatibility Complex (MHC) in birds is limited because it often consists of numerous duplicated genes within individuals that are difficult to assemble with short read sequencing technology. Long-read sequencing provides an opportunity to overcome this limitation because it allows the assembly of long regions with repetitive elements. In this study, we used genomes based on long-read sequencing to predict the number and location of MHC loci in a broad range of bird taxa. From the long-read-based genomes of 34 species, we found that there was extremely large variation in the number of MHC loci between species. Overall, there were greater numbers of both class I and II loci in passerines than nonpasserines. The highest numbers of loci (up to 193 class II loci) were found in manakins (Pipridae), which had previously not been studied at the MHC. Our results provide the first direct evidence from passerine genomes of this high level of duplication. We also found different duplication patterns between species. In some species, both MHC class I and II genes were duplicated together, whereas in most species they were duplicated independently. Our study shows that the analysis of long-read-based genomes can dramatically improve our knowledge of MHC structure, although further improvements in chromosome level assembly are needed to understand the evolutionary mechanisms producing the extraordinary interspecific variation in the architecture of the MHC region.
Collapse
Affiliation(s)
- Ke He
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łodz, Poland
| | - Peter O Dunn
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łodz, Poland
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, WI, USA
| |
Collapse
|
16
|
Genomic Diversity of the Major Histocompatibility Complex in Health and Disease. Cells 2019; 8:cells8101270. [PMID: 31627481 PMCID: PMC6830316 DOI: 10.3390/cells8101270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022] Open
|
17
|
Sun L, Zhou T, Stone GN, Wan QH, Fang SG. Seeing-good-gene-based mate choice: From genes to behavioural preferences. J Anim Ecol 2019; 88:1708-1719. [PMID: 31332779 PMCID: PMC6899946 DOI: 10.1111/1365-2656.13071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/17/2019] [Indexed: 01/22/2023]
Abstract
Although vertebrates have been reported to gain higher reproductive outputs by choosing mates, few studies have been conducted on threatened species. However, species recovery should benefit if natural mate choice could improve reproductive output (i.e. pair performance related to offspring number, such as increased clutch size, numbers of fertilized egg and fledglings). We assessed the evidence for major histocompatibility complex (MHC)‐based mate preference in the endangered crested ibis (Nipponia nippon) and quantified the impacts of such choice on reproductive output. We tested the hypothesis that crested ibis advertise “good genes” through external traits, by testing whether nuptial plumage characteristics and body morphology mediate mate choice for underlying genetic MHC variation. We found differences between males and females in preferred MHC genotypes, external traits used in mate choice and contributions to reproductive outputs. Females preferred MHC‐heterozygous males, which had darker [i.e. lower total reflectance and ultraviolet (UV) reflectance] nuptial plumage. Males preferred females lacking the DAB*d allele at the MHC class II DAB locus, which had higher average body mass. DAB*d‐free females yielded heavier eggs and more fledglings, while MHC‐heterozygous males contributed to more fertilized eggs and fledglings. Fledging rate was highest when both parents had the preferred MHC genotypes (i.e. MHC‐heterozygous father and DAB*d‐free mother). Comparisons showed that free‐mating wild and semi‐natural pairs yielded more fertilized eggs and more fledglings, with a higher fledging rate, than captive pairs matched artificially based on pedigree. Conservation programmes seldom apply modern research results to population management, which could hinder recovery of threatened species. Our results show that mate choice can play an important role in improving reproductive output, with an example in which an endangered bird selects mates using UV visual capability. Despite the undoubted importance of pedigree‐based matching of mates in conservation programmes, we show that free mating can be a better alternative strategy.
Collapse
Affiliation(s)
- Li Sun
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Tong Zhou
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
| | | | - Qiu-Hong Wan
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Sheng-Guo Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|