1
|
Hashemi E, Movahedin M, Ghiaseddin A, Aghamir SMK. In Vitro Spermatogenesis on Human Decellularized Testicular Matrix Plates Following Exosome Treatment in a Dynamic Culture System. Stem Cell Rev Rep 2024:10.1007/s12015-024-10818-z. [PMID: 39499446 DOI: 10.1007/s12015-024-10818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2024] [Indexed: 11/07/2024]
Abstract
Testicular tissue engineering for in vitro spermatogenesis aims to restore fertility, focusing on challenges like efficiency, ethical concerns, and the need for a deeper biological understanding. The use of decellularized scaffolds led to better cell seeding and differentiation, and exosomes led to enhanced spermatogenesis. Also, the dynamic culture systems are being explored to replicate in vivo conditions more accurately. In this study, we aimed to utilize a perfusion mini-bioreactor for the dynamic culture of mouse spermatogonial stem cells on decellularized testicular matrix plates supplemented with exosomes. Our goal was to assess the progression of the spermatogenesis process through histological, immunohistochemical, and molecular analyses over four weeks. Human testicular tissues were decellularized using 1% sodium dodecyl sulfate and were then fabricated into thin plates using a cryostat. Sertoli and spermatogonial stem cells were isolated from neonate mouse testis and seeded onto the decellularized testicular matrix plates. A mini-perfusion bioreactor was employed to create dynamic culture conditions. Also, MSCs-derived exosomes were introduced to the culture medium, alone or in combination with a spermatogenic medium containing numerous chemical factors. The histological, IHC, and molecular analyses were performed at the end of the experiment. Our decellularization procedure successfully preserved the ECM components, while eliminating native cells. The isolated cells expressed PLZF and VIMENTIN markers, confirming the presence of SSCs and Sertoli cells. The seeded scaffolds exhibited proper homing, viability, proliferation, and differentiation of the cells towards in vitro spermatogenesis. Also, exosome treatment is capable of enhancing the spermatogenic potential of SSCs. Our findings indicate that the dynamic culture system significantly promoted the proliferation and differentiation of SSCs into mature spermatozoa. The use of exosomes further enhanced these effects, as evidenced by improved cellular viability, reduced apoptosis, and advanced spermatogenesis to the elongated spermatid stage. The combined treatment of exosomes and spermatogenic medium showed a synergistic effect, yielding superior outcomes in terms of sperm cell maturity and functionality. This study underscores the potential of combining decellularized testicular matrices with exosome therapy in a dynamic culture set up to advance the field of reproductive biology and fertility restoration.
Collapse
Affiliation(s)
- Elham Hashemi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mansoureh Movahedin
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ali Ghiaseddin
- Chemistry Department, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
2
|
Kim SY, Ha SM, Kim DU, Park J, Park S, Hyun KA, Jung HI. Modularized dynamic cell culture platform for efficient production of extracellular vesicles and sequential analysis. LAB ON A CHIP 2023; 23:1852-1864. [PMID: 36825402 DOI: 10.1039/d2lc01129h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Extracellular vesicles (EVs) are nanometer-sized particles naturally secreted by cells for intercellular communication that encapsulate bioactive cargo, such as proteins and RNA, with a lipid bilayer. Tumor cell-derived EVs (tdEVs) are particularly promising biomarkers for cancer research because their contents reflect the cell of origin. In most studies, tdEVs have been obtained from cancer cells cultured under static conditions, thus lacking the ability to recapitulate the microenvironment of cells in vivo. Recent developments in perfusable cell culture systems have allowed oxygen and a nutrient gradient to mimic the physiological and cellular microenvironment. However, as these systems are perfused by circulating the culture medium within the unified structure, independently harvesting cells and EVs at each time point for analysis presents a limitation. In this study, a modularized cell culture system is designed for the perfusion and real-time collection of EVs. The system consists of three detachable chambers, one each for fresh medium, cell culture, and EV collection. The fresh medium flows from the medium chamber to the culture chamber at a flow rate controlled by the hydraulic pressure injected with a syringe pump. When the culture medium containing EVs exceeds a certain volume within the chamber, it overflows into the collection chamber to harvest EVs. The compact and modularized chambers are highly interoperable with conventional cell culture modalities used in the laboratory, thus enabling various EV-based assays.
Collapse
Affiliation(s)
- Seo Yeon Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea.
| | - Seong Min Ha
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea.
| | - Dong-Uk Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea.
| | - Junhyun Park
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea.
| | - Sunyoung Park
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea.
- The DABOM Inc., 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Kyung-A Hyun
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea.
| | - Hyo-Il Jung
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea.
- The DABOM Inc., 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| |
Collapse
|
3
|
Grubb ML, Caliari SR. Fabrication approaches for high-throughput and biomimetic disease modeling. Acta Biomater 2021; 132:52-82. [PMID: 33716174 PMCID: PMC8433272 DOI: 10.1016/j.actbio.2021.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022]
Abstract
There is often a tradeoff between in vitro disease modeling platforms that capture pathophysiologic complexity and those that are amenable to high-throughput fabrication and analysis. However, this divide is closing through the application of a handful of fabrication approaches-parallel fabrication, automation, and flow-driven assembly-to design sophisticated cellular and biomaterial systems. The purpose of this review is to highlight methods for the fabrication of high-throughput biomaterial-based platforms and showcase examples that demonstrate their utility over a range of throughput and complexity. We conclude with a discussion of future considerations for the continued development of higher-throughput in vitro platforms that capture the appropriate level of biological complexity for the desired application. STATEMENT OF SIGNIFICANCE: There is a pressing need for new biomedical tools to study and understand disease. These platforms should mimic the complex properties of the body while also permitting investigation of many combinations of cells, extracellular cues, and/or therapeutics in high-throughput. This review summarizes emerging strategies to fabricate biomimetic disease models that bridge the gap between complex tissue-mimicking microenvironments and high-throughput screens for personalized medicine.
Collapse
Affiliation(s)
- Mackenzie L Grubb
- Department of Biomedical Engineering, University of Virginia, Unites States
| | - Steven R Caliari
- Department of Biomedical Engineering, University of Virginia, Unites States; Department of Chemical Engineering, University of Virginia, Unites States.
| |
Collapse
|
4
|
Lindner M, Laporte A, Block S, Elomaa L, Weinhart M. Physiological Shear Stress Enhances Differentiation, Mucus-Formation and Structural 3D Organization of Intestinal Epithelial Cells In Vitro. Cells 2021; 10:2062. [PMID: 34440830 PMCID: PMC8391940 DOI: 10.3390/cells10082062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) mucus plays a pivotal role in the tissue homoeostasis and functionality of the gut. However, due to the shortage of affordable, realistic in vitro GI models with a physiologically relevant mucus layer, studies with deeper insights into structural and compositional changes upon chemical or physical manipulation of the system are rare. To obtain an improved mucus-containing cell model, we developed easy-to-use, reusable culture chambers that facilitated the application of GI shear stresses (0.002-0.08 dyn∙cm-2) to cells on solid surfaces or membranes of cell culture inserts in bioreactor systems, thus making them readily accessible for subsequent analyses, e.g., by confocal microscopy or transepithelial electrical resistance (TEER) measurement. The human mucus-producing epithelial HT29-MTX cell-line exhibited superior reorganization into 3-dimensional villi-like structures with highly proliferative tips under dynamic culture conditions when compared to static culture (up to 180 vs. 80 µm in height). Additionally, the median mucus layer thickness was significantly increased under flow (50 ± 24 vs. 29 ± 14 µm (static)), with a simultaneous accelerated maturation of the cells into a goblet-like phenotype. We demonstrated the strong impact of culture conditions on the differentiation and reorganization of HT29-MTX cells. The results comprise valuable advances towards the improvement of existing GI and mucus models or the development of novel systems using our newly designed culture chambers.
Collapse
Affiliation(s)
- Marcus Lindner
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (M.L.); (S.B.); (L.E.)
| | - Anna Laporte
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, 30167 Hannover, Germany;
| | - Stephan Block
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (M.L.); (S.B.); (L.E.)
| | - Laura Elomaa
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (M.L.); (S.B.); (L.E.)
| | - Marie Weinhart
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (M.L.); (S.B.); (L.E.)
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, 30167 Hannover, Germany;
| |
Collapse
|
5
|
Fabrication of Adhesive Substrate for Incorporating Hydrogels to Investigate the Influence of Stiffness on Cancer Cell Behavior. Methods Mol Biol 2021; 2174:277-297. [PMID: 32813257 DOI: 10.1007/978-1-0716-0759-6_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stiffness control of cell culture platforms provides researchers in cell biology with the ability to study different experimental models in conditions of mimicking physiological or pathological microenvironments. Nevertheless, the signal transduction pathways and drug sensibility of cancer cells have been poorly characterized widely using biomimetic platforms because the limited experience of cancer cell biology groups about handling substrates with specific mechanical properties. The protein cross-linking and stiffening control are crucial checkpoints that could strongly affect cell adhesion and spreading, misrepresenting the data acquired, and also generating inaccurate cellular models. Here, we introduce a simple method to adhere to polyacrylamide (PAA) hydrogels on glass coverslips without any special treatment for mechanics studies in cancer cell biology. By using a commercial photosensitive glue, Loctite 3525, it is possible to polymerize PAA hydrogels directly on glass surfaces. Furthermore, we describe a cross-linking reaction method to attach proteins to PAA as an alternative method to Sulfo-SANPAH cross-linking, which is sometimes difficult to implement and reproduce. In this chapter, we describe a reliable procedure to fabricate ECM protein-cross-linked PAA hydrogels for mechanotransduction studies on cancer cells.
Collapse
|
6
|
Nie Y, Xu X, Wang W, Ma N, Lendlein A. The effects of oscillatory temperature on HaCaT keratinocyte behaviors. Clin Hemorheol Microcirc 2020; 76:317-327. [PMID: 32925012 DOI: 10.3233/ch-209208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Keratinocytes are exposed to a thermal gradient throughout epidermal layers in human skin depending on environmental temperatures. OBJECTIVE Here, the effect of cyclic temperature changes (ΔT) on HaCaT cell behaviors was explored. METHODS HaCaT cells were cultured at constant temperature (37 °C or 25 °C) or under ΔT conditions. The morphology, mechanics, cell cycle progression, proliferation, and lipid synthesis of HaCaT cells were determined. RESULTS ΔT conditions led to the inhomogeneous arrangement of the cytoskeleton in HaCaT cells, which resulted in enlarged size, rounder shape, and increased stiffness. Accumulation in the G2/M phase in the cell cycle, a decreased proliferation rate, and a delayed lipogenesis were detected in HaCaT cells cultured under ΔT conditions. CONCLUSIONS ΔT conditions resulted in the re-arrangement of the cytoskeleton in HaCaT cells, which showed similarity to the temperature-induced disassemble and re-assemble of cytoskeletons in keratinocyte in vivo. The altered cytoskeleton arrangement resulted in the cell enlargement and stiffening, which reflected the changes in cellular functions. The application of oscillatory temperature in the in vitro culture of keratinocytes provides a way to gain more insights into the role of skin in response to environmental stimuli and maintaining its homeostasis in vivo.
Collapse
Affiliation(s)
- Yan Nie
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Xun Xu
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Weiwei Wang
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Nan Ma
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|