1
|
Guiyedi K, Parquet M, Aoufouchi S, Chauzeix J, Rizzo D, Al Jamal I, Feuillard J, Gachard N, Peron S. Increased c-MYC Expression Associated with Active IGH Locus Rearrangement: An Emerging Role for c-MYC in Chronic Lymphocytic Leukemia. Cancers (Basel) 2024; 16:3749. [PMID: 39594704 PMCID: PMC11592262 DOI: 10.3390/cancers16223749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
This review examines the pivotal role of c-MYC in Chronic Lymphocytic Leukemia (CLL), focusing on how its overexpression leads to increased genetic instability, thereby accelerating disease progression. MYC, a major oncogene, encodes a transcription factor that regulates essential cellular processes, including cell cycle control, proliferation, and apoptosis. In CLL cases enriched with unmutated immunoglobulin heavy chain variable (IGHV) genes, MYC is significantly overexpressed and associated with active rearrangements in the IGH immunoglobulin heavy chain locus. This overexpression results in substantial DNA damage, including double-strand breaks, chromosomal translocations, and an increase in abnormal repair events. Consequently, c-MYC plays a dual role in CLL: it promotes aggressive cell proliferation while concurrently driving genomic instability through its involvement in genetic recombination. This dynamic contributes not only to CLL progression but also to the overall aggressiveness of the disease. Additionally, the review suggests that c-MYC's influence on genetic rearrangements makes it an attractive target for therapeutic strategies aimed at mitigating CLL malignancy. These findings underscore c-MYC's critical importance in advancing CLL progression, highlighting the need for further research to explore its potential as a target in future treatment approaches.
Collapse
Affiliation(s)
- Kenza Guiyedi
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7276/INSERM U1262, Université de Limoges, 87000 Limoges, France
| | - Milène Parquet
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7276/INSERM U1262, Université de Limoges, 87000 Limoges, France
| | - Said Aoufouchi
- Gustave Roussy, B-Cell and Genome Plasticity Team, CNRS UMR9019, Villejuif, France and Université Paris-Saclay, 91400 Orsay, France
| | - Jasmine Chauzeix
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7276/INSERM U1262, Université de Limoges, 87000 Limoges, France
- Laboratoire d’Hématologie Biologique, Centre Hospitalier Universitaire de Limoges, 87000 Limoges, France
| | - David Rizzo
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7276/INSERM U1262, Université de Limoges, 87000 Limoges, France
- Laboratoire d’Hématologie Biologique, Centre Hospitalier Universitaire de Limoges, 87000 Limoges, France
| | - Israa Al Jamal
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7276/INSERM U1262, Université de Limoges, 87000 Limoges, France
- Faculty of Sciences, GSBT Genomic Surveillance and Biotherapy Team, Mont Michel Campus, Lebanese University, Tripoli 1300, Lebanon
| | - Jean Feuillard
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7276/INSERM U1262, Université de Limoges, 87000 Limoges, France
- Laboratoire d’Hématologie Biologique, Centre Hospitalier Universitaire de Limoges, 87000 Limoges, France
| | - Nathalie Gachard
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7276/INSERM U1262, Université de Limoges, 87000 Limoges, France
- Laboratoire d’Hématologie Biologique, Centre Hospitalier Universitaire de Limoges, 87000 Limoges, France
| | - Sophie Peron
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7276/INSERM U1262, Université de Limoges, 87000 Limoges, France
| |
Collapse
|
2
|
Pernes JI, Alsayah A, Tucci F, Bashford-Rogers RJM. Unravelling B cell heterogeneity: insights into flow cytometry-gated B cells from single-cell multi-omics data. Front Immunol 2024; 15:1380386. [PMID: 38707902 PMCID: PMC11067501 DOI: 10.3389/fimmu.2024.1380386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction B cells play a pivotal role in adaptive immunity which has been extensively characterised primarily via flow cytometry-based gating strategies. This study addresses the discrepancies between flow cytometry-defined B cell subsets and their high-confidence molecular signatures using single-cell multi-omics approaches. Methods By analysing multi-omics single-cell data from healthy individuals and patients across diseases, we characterised the level and nature of cellular contamination within standard flow cytometric-based gating, resolved some of the ambiguities in the literature surrounding unconventional B cell subsets, and demonstrated the variable effects of flow cytometric-based gating cellular heterogeneity across diseases. Results We showed that flow cytometric-defined B cell populations are heterogenous, and the composition varies significantly between disease states thus affecting the implications of functional studies performed on these populations. Importantly, this paper draws caution on findings about B cell selection and function of flow cytometric-sorted populations, and their roles in disease. As a solution, we developed a simple tool to identify additional markers that can be used to increase the purity of flow-cytometric gated immune cell populations based on multi-omics data (AlliGateR). Here, we demonstrate that additional non-linear CD20, CD21 and CD24 gating can increase the purity of both naïve and memory populations. Discussion These findings underscore the need to reconsider B cell subset definitions within the literature and propose leveraging single-cell multi-omics data for refined characterisation. We show that single-cell multi-omics technologies represent a powerful tool to bridge the gap between surface marker-based annotations and the intricate molecular characteristics of B cell subsets.
Collapse
Affiliation(s)
- Jane I. Pernes
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Atheer Alsayah
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Applied Genomic Technologies Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Felicia Tucci
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Oxford Cancer Centre, University of Oxford, Oxford, United Kingdom
| | - Rachael J. M. Bashford-Rogers
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Oxford Cancer Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Barboza BR, Thomaz SMDO, Junior ADC, Espreafico EM, Miyamoto JG, Tashima AK, Camacho MF, Zelanis A, Roque-Barreira MC, da Silva TA. ArtinM Cytotoxicity in B Cells Derived from Non-Hodgkin's Lymphoma Depends on Syk and Src Family Kinases. Int J Mol Sci 2023; 24:ijms24021075. [PMID: 36674590 PMCID: PMC9863955 DOI: 10.3390/ijms24021075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
Receptors on the immune cell surface have a variety of glycans that may account for the immunomodulation induced by lectins, which have a carbohydrate recognition domain (CRD) that binds to monosaccharides or oligosaccharides in a specific manner. ArtinM, a D-mannose-binding lectin obtained from Artocarpus heterophyllus, has affinity for the N-glycans core. Immunomodulation by ArtinM toward the Th1 phenotype occurs via its interaction with TLR2/CD14 N-glycans on antigen-presenting cells, as well as recognition of CD3γ N-glycans on murine CD4+ and CD8+ T cells. ArtinM exerts a cytotoxic effect on Jurkat human leukemic T-cell line and human myeloid leukemia cell line (NB4). The current study evaluated the effects of ArtinM on murine and human B cells derived from non-Hodgkin’s lymphoma. We found that murine B cells are recognized by ArtinM via the CRD, and the ArtinM stimulus did not augment the proliferation rate or production of IL-2. However, murine B cell incubation with ArtinM augmented the rate of apoptosis, and this cytotoxic effect of ArtinM was also seen in human B cell-lines sourced from non-Hodgkin’s lymphoma Raji cell line. This cytotoxic effect was inhibited by the phosphatase activity of CD45 on Lck, and the protein kinases of the Src family contribute to cell death triggered by ArtinM.
Collapse
Affiliation(s)
- Bruno Rafael Barboza
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirao Preto 14049-900, SP, Brazil
| | - Sandra Maria de Oliveira Thomaz
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirao Preto 14049-900, SP, Brazil
| | - Airton de Carvalho Junior
- Laboratory of Cell and Molecular Biology of Cancer, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirao Preto 14049-900, SP, Brazil
| | - Enilza Maria Espreafico
- Laboratory of Cell and Molecular Biology of Cancer, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirao Preto 14049-900, SP, Brazil
| | - Jackson Gabriel Miyamoto
- Department of Biochemistry, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), Sao Paulo 04021-001, SP, Brazil
| | - Alexandre Keiji Tashima
- Department of Biochemistry, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), Sao Paulo 04021-001, SP, Brazil
| | - Maurício Frota Camacho
- Functional Proteomics Laboratory, Department of Science and Technology, Federal University of São Paulo (ICT-UNIFESP), São José dos Campos 04021-001, SP, Brazil
| | - André Zelanis
- Functional Proteomics Laboratory, Department of Science and Technology, Federal University of São Paulo (ICT-UNIFESP), São José dos Campos 04021-001, SP, Brazil
| | - Maria Cristina Roque-Barreira
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirao Preto 14049-900, SP, Brazil
| | - Thiago Aparecido da Silva
- Laboratory of Immunotherapy of Invasive Fungal Infections, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirao Preto 14049-900, SP, Brazil
- Correspondence: or ; Tel.: +55-16-3315-3049
| |
Collapse
|
4
|
Lacroix M, Beauchemin H, Khandanpour C, Möröy T. The RNA helicase DDX3 and its role in c-MYC driven germinal center-derived B-cell lymphoma. Front Oncol 2023; 13:1148936. [PMID: 37035206 PMCID: PMC10081492 DOI: 10.3389/fonc.2023.1148936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
DDX3X is an RNA helicase with many functions in RNA metabolism such as mRNA translation, alternative pre-mRNA splicing and mRNA stability, but also plays a role as a regulator of transcription as well as in the Wnt/beta-catenin- and Nf-κB signaling pathways. The gene encoding DDX3X is located on the X-chromosome, but escapes X-inactivation. Hence females have two active copies and males only one. However, the Y chromosome contains the gene for the male DDX3 homologue, called DDX3Y, which has a very high sequence similarity and functional redundancy with DDX3X, but shows a more restricted protein expression pattern than DDX3X. High throughput sequencing of germinal center (GC)-derived B-cell malignancies such as Burkitt Lymphoma (BL) and Diffuse large B-cell lymphoma (DLBCL) samples showed a high frequency of loss-of-function (LOF) mutations in the DDX3X gene revealing several features that distinguish this gene from others. First, DDX3X mutations occur with high frequency particularly in those GC-derived B-cell lymphomas that also show translocations of the c-MYC proto-oncogene, which occurs in almost all BL and a subset of DLBCL. Second, DDX3X LOF mutations occur almost exclusively in males and is very rarely found in females. Third, mutations in the male homologue DDX3Y have never been found in any type of malignancy. Studies with human primary GC B cells from male donors showed that a loss of DDX3X function helps the initial process of B-cell lymphomagenesis by buffering the proteotoxic stress induced by c-MYC activation. However, full lymphomagenesis requires DDX3 activity since an upregulation of DDX3Y expression is invariably found in GC derived B-cell lymphoma with DDX3X LOF mutation. Other studies with male transgenic mice that lack Ddx3x, but constitutively express activated c-Myc transgenes in B cells and are therefore prone to develop B-cell malignancies, also showed upregulation of the DDX3Y protein expression during the process of lymphomagenesis. Since DDX3Y is not expressed in normal human cells, these data suggest that DDX3Y may represent a new cancer cell specific target to develop adjuvant therapies for male patients with BL and DLBCL and LOF mutations in the DDX3X gene.
Collapse
Affiliation(s)
- Marion Lacroix
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Hugues Beauchemin
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, QC, Canada
| | - Cyrus Khandanpour
- Klinik für Hämatologie und Onkologie, University Hospital Schleswig Holstein, University Lübeck, Lübeck, Germany
- *Correspondence: Tarik Möröy, ; Cyrus Khandanpour,
| | - Tarik Möröy
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Tarik Möröy, ; Cyrus Khandanpour,
| |
Collapse
|
5
|
Han X, Tian R, Wang C, Li Y, Song X. CircRNAs: Roles in regulating head and neck squamous cell carcinoma. Front Oncol 2022; 12:1026073. [PMID: 36483049 PMCID: PMC9723173 DOI: 10.3389/fonc.2022.1026073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/31/2022] [Indexed: 09/15/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), the most common head and neck malignant tumor, with only monotherapy, is characterized by poor prognosis, and low 5-year survival rate. Due to the lack of therapeutic targets, the targeted drugs for HNSCC are rare. Therefore, exploring the regulation mechanism of HNSCC and identifying effective therapeutic targets will be beneficial to its treatment of. Circular RNA (CircRNA) is a class of RNA molecules with a circular structure, which is widely expressed in human body. CircRNAs regulate gene expression by exerting the function as a miRNA sponge, thereby mediating the occurrence and development of HNSCC cell proliferation, apoptosis, migration, invasion, and other processes. In addition, circRNAs are also involved in the regulation of tumor sensitivity to chemical drugs and other biological functions. In this review, we systematically listed the functions of circRNAs and explored the regulatory mechanisms of circRNAs in HNSCC from the aspects of tumor growth, cell death, angiogenesis, tumor invasion and metastasis, tumor stem cell regulation, tumor drug resistance, immune escape, and tumor microenvironment. It will assist us in discovering new diagnostic markers and therapeutic targets, while encourage new ideas for the diagnosis and treatment of HNSCC.
Collapse
Affiliation(s)
- Xiao Han
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Ruxian Tian
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Cai Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Yumei Li
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Xicheng Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| |
Collapse
|
6
|
Pathobiology and Therapeutic Relevance of GSK-3 in Chronic Hematological Malignancies. Cells 2022; 11:cells11111812. [PMID: 35681507 PMCID: PMC9180032 DOI: 10.3390/cells11111812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 12/10/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is an evolutionarily conserved, ubiquitously expressed, multifunctional serine/threonine protein kinase involved in the regulation of a variety of physiological processes. GSK-3 comprises two isoforms (α and β) which were originally discovered in 1980 as enzymes involved in glucose metabolism via inhibitory phosphorylation of glycogen synthase. Differently from other proteins kinases, GSK-3 isoforms are constitutively active in resting cells, and their modulation mainly involves inhibition through upstream regulatory networks. In the early 1990s, GSK-3 isoforms were implicated as key players in cancer cell pathobiology. Active GSK-3 facilitates the destruction of multiple oncogenic proteins which include β-catenin and Master regulator of cell cycle entry and proliferative metabolism (c-Myc). Therefore, GSK-3 was initially considered to be a tumor suppressor. Consistently, GSK-3 is often inactivated in cancer cells through dysregulated upstream signaling pathways. However, over the past 10–15 years, a growing number of studies highlighted that in some cancer settings GSK-3 isoforms inhibit tumor suppressing pathways and therefore act as tumor promoters. In this article, we will discuss the multiple and often enigmatic roles played by GSK-3 isoforms in some chronic hematological malignancies (chronic myelogenous leukemia, chronic lymphocytic leukemia, multiple myeloma, and B-cell non-Hodgkin’s lymphomas) which are among the most common blood cancer cell types. We will also summarize possible novel strategies targeting GSK-3 for innovative therapies of these disorders.
Collapse
|
7
|
Wang H, Wang Y, Wang Y. MiR-222-3p inhibits formation of medulloblastoma stem-like cells by targeting Notch2/c-myc signaling pathway. Immunopharmacol Immunotoxicol 2022; 44:548-555. [PMID: 35379056 DOI: 10.1080/08923973.2022.2062381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Medulloblastoma (MB) is an embryonal tumor of the cerebellum, which commonly occurs in childhood. Herein, we investigated the effects of miR-222-3p on the formation of MB stem-like cells via the Notch2/c-myc pathway. METHODS Quantitative real-time PCR (qRT-PCR) or western blotting was performed to determine the expression of miR-222-3p and Notch2, c-myc, proliferating cell nuclear antigen (PCNA), and caspase-3. Luciferase reporter gene, RNA immunoprecipitation (RIP), and RNA pull-down assay were applied to confirm the interaction between miR-222-3p and Notch2. Cell growth was examined by Cell Counting Kit-8. Cell cycle distribution and the number of stem cell marker CD133+ cells were examined using flow cytometry. The sphere formation assay was performed. RESULTS miR-222-3p expression was decreased and Notch2 expression was increased in human medulloblastoma cells. miR-222-3p overexpression inhibited cell viability and the sphere formation, induced cell cycle arrest, decreased the number of CD133+ cells, and up-regulated caspase-3 expression and down-regulated PCNA, Notch2, and c-myc expression. However, Notch2 overexpression counteracted these effects of miR-222-3p overexpression. Simultaneous overexpression of Notch2 and miR-222-3p increased the c-myc promoter luciferase activity which was decreased by miR-222-3p overexpression. Luciferase reporter gene, RIP, and RNA pull-down assay revealed that miR-222-3p targeted Notch2. CONCLUSION MiR-222-3p suppressed cell viability, altered cell cycle distribution, and inhibited the formation of MB stem-like cells via the Notch2/c-myc pathway.
Collapse
Affiliation(s)
- Hongxin Wang
- Department of Clinical Laboratory, Henan Provincial People' s Hospital, Zhengzhou University People' s Hospital, Henan University People' s Hospital, Zhengzhou; 450003, China
| | - Yushe Wang
- Department of Neurosurgery, Henan Provincial People' s Hospital, Zhengzhou University People' s Hospital, Henan University People' s Hospital, Zhengzhou, China
| | - Yong Wang
- Department of Neurosurgery, Henan Provincial People' s Hospital, Zhengzhou University People' s Hospital, Henan University People' s Hospital, Zhengzhou, China
| |
Collapse
|
8
|
Deregulated miRNAs Contribute to Silencing of B-Cell Specific Transcription Factors and Activation of NF-κB in Classical Hodgkin Lymphoma. Cancers (Basel) 2021; 13:cancers13133131. [PMID: 34201504 PMCID: PMC8269295 DOI: 10.3390/cancers13133131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/28/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The role of transcriptionally deregulated miRNAs (microRNAs) in classical Hodgkin lymphoma (cHL) is still not fully understood. To address this issue, we have performed global miRNA expression profiling of commonly used cHL cell lines and we present a complete cHL miRNome (microRNome). Within this group, we identify miRNAs recurrently deregulated in cHL cell lines, and compare them to non-Hodgkin lymphoma cell lines and sorted normal CD77+ germinal centre B-cells. Moreover, we show that several of the recurrently overexpressed miRNAs in cHL cell lines, and also primary microdissected HRS (Hodgkin and Reed-Sternberg) cells, target known B-cell-related transcription factors and NF-κB inhibitors. These findings provide evidence that deregulated miRNAs contribute to the loss of B-cell phenotype and NF-κB activation observed in this lymphoma. Abstract A hallmark of classical Hodgkin lymphoma (cHL) is the attenuation of B-cell transcription factors leading to global transcriptional reprogramming. The role of miRNAs (microRNAs) involved in this process is poorly studied. Therefore, we performed global miRNA expression profiling using RNA-seq on commonly used cHL cell lines, non-Hodgkin lymphoma cell lines and sorted normal CD77+ germinal centre B-cells as controls and characterized the cHL miRNome (microRNome). Among the 298 miRNAs expressed in cHL, 56 were significantly overexpressed and 23 downregulated (p < 0.05) compared to the controls. Moreover, we identified five miRNAs (hsa-miR-9-5p, hsa-miR-24-3p, hsa-miR-196a-5p, hsa-miR-21-5p, hsa-miR-155-5p) as especially important in the pathogenesis of this lymphoma. Target genes of the overexpressed miRNAs in cHL were significantly enriched (p < 0.05) in gene ontologies related to transcription factor activity. Therefore, we further focused on selected interactions with the SPI1 and ELF1 transcription factors attenuated in cHL and the NF-ĸB inhibitor TNFAIP3. We confirmed the interactions between hsa-miR-27a-5p:SPI1, hsa-miR-330-3p:ELF-1, hsa-miR-450b-5p:ELF-1 and hsa-miR-23a-3p:TNFAIP3, which suggest that overexpression of these miRNAs contributes to silencing of the respective genes. Moreover, by analyzing microdissected HRS cells, we demonstrated that these miRNAs are also overexpressed in primary tumor cells. Therefore, these miRNAs play a role in silencing the B-cell phenotype in cHL.
Collapse
|
9
|
Huang W, Song W, Jiang Y, Chen L, Lu H. c-Myc-induced circ-NOTCH1 promotes aggressive phenotypes of nasopharyngeal carcinoma cells by regulating the miR-34c-5p/c-Myc axis. Cell Biol Int 2021; 45:1436-1447. [PMID: 33675278 DOI: 10.1002/cbin.11582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/06/2021] [Accepted: 02/27/2021] [Indexed: 01/17/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is the subclass of head and neck cancer with the highest incidence among otolaryngology malignancies. A growing amount of evidence has proven that circular RNAs (circRNAs) play key roles in the progression of multiple cancers. It has been reported that circ-NOTCH1 is a novel circRNA and functions as an oncogene in gastric cancer, while the regulatory mechanism of circ-NOTCH1 in NPC remains unknown. In the present research, our findings revealed that circ-NOTCH1 was overexpressed in NPC tissues and cells. Circ-NOTCH1 knockdown suppressed NPC cell proliferation, invasion, and migration. Subsequently, we discovered that c-Myc can activate circ-NOTCH1 by binding to the NOTCH1 promoter. c-Myc functioned as a tumor promoter in NPC cells. Mechanistically, circ-NOTCH1 served as a competitive endogenous RNA to modulate c-Myc expression by sponging miR-34c-5p. Additionally, overexpression of c-Myc reversed the circ-NOTCH1 knockdown-mediated inhibition of NPC cellular progression. Overall, this study suggested that c-Myc-induced circ-NOTCH1 promoted malignant phenotypes of NPC cells by regulating the miR-34c-5p/c-Myc axis.
Collapse
Affiliation(s)
- Wei Huang
- Department of Radiation Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,School of Clinical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei Song
- Department of Radiation Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yunfei Jiang
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Lejun Chen
- School of Clinical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hong Lu
- Department of Radiation Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Ruiz-Ordoñez I, Piedrahita JM, Arévalo JA, Agualimpia A, Tobón GJ. Lymphomagenesis predictors and related pathogenesis. J Transl Autoimmun 2021; 4:100098. [PMID: 33889831 PMCID: PMC8050773 DOI: 10.1016/j.jtauto.2021.100098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 11/23/2022] Open
Abstract
Sjögren's syndrome (SS) is a systemic autoimmune disease characterised by a wide range of clinical manifestations and complications, including B-cell lymphoma. This study aims to describe the predictors associated with lymphomagenesis in patients with Sjögren's syndrome, emphasising the pathophysiological bases that support this association. We performed a review of the literature published through a comprehensive search strategy in PubMed/MEDLINE, Scopus, and Web of science. Forty publications describing a total of 45,208 patients with SS were retrieved. The predictors were grouped according to their pathophysiological role in the lymphoproliferation process. Also, some new biomarkers such as MicroRNAs, P2X7 receptor-NLRP3 inflammasome, Thymic stromal lymphopoietin, and Three-prime repair exonuclease 1 (TREX1) were identified. The knowledge of the pathophysiology allows the discrimination of markers that participate in the initial stages. Considering that the lymphoproliferation process includes the progression of lymphoma towards more aggressive subtypes, it is essential to recognise biomarkers associated with a worse prognosis.
Collapse
Affiliation(s)
- Ingrid Ruiz-Ordoñez
- Fundación Valle del Lili, Centro de Investigaciones Clínicas, Cra 98 No. 18-49, Cali, 760032, Colombia
- Universidad Icesi, Centro de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Cali, Colombia
| | - Juan-Manuel Piedrahita
- Universidad Icesi, Centro de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Cali, Colombia
- Universidad Icesi, Calle 18 No. 122-135, Cali, Colombia
| | - Javier-Andrés Arévalo
- Universidad Icesi, Centro de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Cali, Colombia
- Universidad Icesi, Calle 18 No. 122-135, Cali, Colombia
| | - Andrés Agualimpia
- Universidad Icesi, Centro de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Cali, Colombia
- Fundación Valle del Lili, Unidad de Reumatología, Cra 98 No. 18-49, Cali. 760032, Colombia
| | - Gabriel J Tobón
- Universidad Icesi, Centro de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Cali, Colombia
- Fundación Valle del Lili, Unidad de Reumatología, Cra 98 No. 18-49, Cali. 760032, Colombia
| |
Collapse
|
11
|
Pan S, Fan M, Liu Z, Li X, Wang H. Serine, glycine and one‑carbon metabolism in cancer (Review). Int J Oncol 2021; 58:158-170. [PMID: 33491748 PMCID: PMC7864012 DOI: 10.3892/ijo.2020.5158] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Serine/glycine biosynthesis and one‑carbon metabolism are crucial in sustaining cancer cell survival and rapid proliferation, and of high clinical relevance. Excessive activation of serine/glycine biosynthesis drives tumorigenesis and provides a single carbon unit for one‑carbon metabolism. One‑carbon metabolism, which is a complex cyclic metabolic network based on the chemical reaction of folate compounds, provides the necessary proteins, nucleic acids, lipids and other biological macromolecules to support tumor growth. Moreover, one‑carbon metabolism also maintains the redox homeostasis of the tumor microenvironment and provides substrates for the methylation reaction. The present study reviews the role of key enzymes with tumor‑promoting functions and important intermediates that are physiologically relevant to tumorigenesis in serine/glycine/one‑carbon metabolism pathways. The related regulatory mechanisms of action of the key enzymes and important intermediates in tumors are also discussed. It is hoped that investigations into these pathways will provide new translational opportunities for human cancer drug development, dietary interventions, and biomarker identification.
Collapse
Affiliation(s)
- Sijing Pan
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, Institute of Translational Medicine, School of Basic Medicine, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Ming Fan
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, Institute of Translational Medicine, School of Basic Medicine, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Zhangnan Liu
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, Institute of Translational Medicine, School of Basic Medicine, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Xia Li
- Correspondence to: Dr Huijuan Wang or Dr Xia Li, Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, Institute of Translational Medicine, School of Basic Medicine, Henan University, Jinming Road, Kaifeng, Henan 475004, P.R. China, E-mail: , E-mail:
| | - Huijuan Wang
- Correspondence to: Dr Huijuan Wang or Dr Xia Li, Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, Institute of Translational Medicine, School of Basic Medicine, Henan University, Jinming Road, Kaifeng, Henan 475004, P.R. China, E-mail: , E-mail:
| |
Collapse
|
12
|
Zakiryanova GK, Kustova E, Urazalieva NT, Baimukhametov ET, Makarov VA, Turaly GM, Shurin GV, Biyasheva ZM, Nakisbekov NN, Shurin MR. Notch signaling defects in NK cells in patients with cancer. Cancer Immunol Immunother 2020; 70:981-988. [PMID: 33083905 DOI: 10.1007/s00262-020-02763-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
Altered expressions of proto-oncogenes have been reported during normal lymphocytes mitogenesis and in T and B lymphocytes in patients with autoimmune diseases. We have recently demonstrated a significantly decreased expression of c-kit and c-Myc in NK cells isolated from patients with cancer, which might be related to the functional deficiency of NK cells in the tumor environment. Here, focusing on the regulatory mechanisms of this new clinical phenomenon, we determined expression of c-Myc, Notch1, Notch2, p-53, Cdk6, Rb and phosphorylated Rb in NK cells isolated from the healthy donors and cancer patients. The results of our study revealed a significant down-regulation of expression of Notch receptors and up-regulation of Cdk6 expression in NK cells in cancer, while no significant changes in the expression of p53 and Rb proteins were seen. These data revealed novel signaling pathways altered in NK cells in the tumor environment and support further investigation of the origin of deregulated expression of proto-oncogenes in NK cells patients with different types of cancer.
Collapse
Affiliation(s)
| | - Elena Kustova
- Laboratory of Immunology, Scientific Center of Pediatric and Children Surgery, Almaty, Kazakhstan
| | - Nataliya T Urazalieva
- Laboratory of Immunology, Scientific Center of Pediatric and Children Surgery, Almaty, Kazakhstan
| | - Emile T Baimukhametov
- Department of Oncology, Kazakh Medical University of Continuing Education, Almaty, Kazakhstan
| | - Valeriy A Makarov
- Department of Oncosurgery, Almaty Oncology Center, Almaty, Kazakhstan
| | - Gulmariya M Turaly
- Joint Use Center, Atchabarov Scientific Research Institute of Fundamental and Applied Medicine, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Galina V Shurin
- Departments of Pathology and Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Narymzhan N Nakisbekov
- Joint Use Center, Atchabarov Scientific Research Institute of Fundamental and Applied Medicine, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Michael R Shurin
- Departments of Pathology and Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
de Barrios O, Meler A, Parra M. MYC's Fine Line Between B Cell Development and Malignancy. Cells 2020; 9:E523. [PMID: 32102485 PMCID: PMC7072781 DOI: 10.3390/cells9020523] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
The transcription factor MYC is transiently expressed during B lymphocyte development, and its correct modulation is essential in defined developmental transitions. Although temporary downregulation of MYC is essential at specific points, basal levels of expression are maintained, and its protein levels are not completely silenced until the B cell becomes fully differentiated into a plasma cell or a memory B cell. MYC has been described as a proto-oncogene that is closely involved in many cancers, including leukemia and lymphoma. Aberrant expression of MYC protein in these hematological malignancies results in an uncontrolled rate of proliferation and, thereby, a blockade of the differentiation process. MYC is not activated by mutations in the coding sequence, and, as reviewed here, its overexpression in leukemia and lymphoma is mainly caused by gene amplification, chromosomal translocations, and aberrant regulation of its transcription. This review provides a thorough overview of the role of MYC in the developmental steps of B cells, and of how it performs its essential function in an oncogenic context, highlighting the importance of appropriate MYC regulation circuitry.
Collapse
Affiliation(s)
| | | | - Maribel Parra
- Lymphocyte Development and Disease Group, Josep Carreras Leukaemia Research Institute, IJC Building, Campus ICO-Germans Trias i Pujol, Ctra de Can Ruti, 08916 Barcelona, Spain (A.M.)
| |
Collapse
|