1
|
Liao J, Zhang P, Yin J, Zhang X. New insights into the effects of dietary amino acid composition on meat quality in pigs: A review. Meat Sci 2024; 221:109721. [PMID: 39642438 DOI: 10.1016/j.meatsci.2024.109721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/11/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Pork is an affordable protein source with higher nutrient density. In recent years, meat quality in pigs is getting increasing attention, which has a direct impact on the economic value of pork. Dietary amino acids play a key role in pig production, not only regulating pig growth and health, but also contributing significantly to meat quality. In this review, we discuss the effect of skeletal muscle composition on meat quality. Importantly, we summarize the levels of essential amino acids (EAAs), such as lysine, methionine, threonine, tryptophan and branched-chain amino acids (BCAAs), in diets for finishing pigs to improve meat quality. The beneficial effects of flavor amino acids on meat quality, including flavor production, muscle fiber-type composition and intramuscular fat deposition, are further systematically summarized. We also focus on the impact of dietary amino acid levels on environmental benefits, although research in this area is still limited. Considering that the previously established EAA requirements are based on the principle of maximizing growth rate and feed conversion, this review will provide new insights into the effects of dietary amino acids on aspects of meat quality and highlight the current gaps to promote future research.
Collapse
Affiliation(s)
- Jialong Liao
- Frontier Science Center of Molecular Design Breeding, Ministry of Education, Beijing 100193, China; State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Pengguang Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jingdong Yin
- Frontier Science Center of Molecular Design Breeding, Ministry of Education, Beijing 100193, China; State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xin Zhang
- Frontier Science Center of Molecular Design Breeding, Ministry of Education, Beijing 100193, China; State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Normand-Gravier T, Solsona R, Dablainville V, Racinais S, Borrani F, Bernardi H, Sanchez AMJ. Effects of thermal interventions on skeletal muscle adaptations and regeneration: perspectives on epigenetics: a narrative review. Eur J Appl Physiol 2024:10.1007/s00421-024-05642-9. [PMID: 39607529 DOI: 10.1007/s00421-024-05642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/12/2024] [Indexed: 11/29/2024]
Abstract
Recovery methods, such as thermal interventions, have been developed to promote optimal recovery and maximize long-term training adaptations. However, the beneficial effects of these recovery strategies remain a source of controversy. This narrative review aims to provide a detailed understanding of how cold and heat interventions impact long-term training adaptations. Emphasis is placed on skeletal muscle adaptations, particularly the involvement of signaling pathways regulating protein turnover, ribosome and mitochondrial biogenesis, as well as the critical role of satellite cells in promoting myofiber regeneration following atrophy. The current literature suggests that cold interventions can blunt molecular adaptations (e.g., protein synthesis and satellite cell activation) and oxi-inflammatory responses after resistance exercise, resulting in diminished exercise-induced hypertrophy and lower gains in isometric strength during training protocols. Conversely, heat interventions appear promising for mitigating skeletal muscle degradation during immobilization and atrophy. Indeed, heat treatments (e.g., passive interventions such as sauna-bathing or diathermy) can enhance protein turnover and improve the maintenance of muscle mass in atrophic conditions, although their effects on uninjured skeletal muscles in both humans and rodents remain controversial. Nonetheless, heat treatment may serve as an important tool for attenuating atrophy and preserving mitochondrial function in immobilized or injured athletes. Finally, the potential interplay between exercise, thermal interventions and epigenetics is discussed. Future studies must be encouraged to clarify how repeated thermal interventions (heat and cold) affect long-term exercise training adaptations and to determine the optimal modalities (i.e., method of application, temperature, duration, relative humidity, and timing).
Collapse
Affiliation(s)
- Tom Normand-Gravier
- UMR866, Dynamique du Muscle et Métabolisme (DMeM), INRAE, University of Montpellier, Montpellier, France
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120, Font-Romeu, France
| | - Robert Solsona
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120, Font-Romeu, France
| | - Valentin Dablainville
- UMR866, Dynamique du Muscle et Métabolisme (DMeM), INRAE, University of Montpellier, Montpellier, France
- Research and Scientific Support Department, Aspetar Orthopedic and Sports Medicine Hospital, 29222, Doha, Qatar
| | - Sébastien Racinais
- Environmental Stress Unit, CREPS Montpellier-Font-Romeu, Montpellier, France
| | - Fabio Borrani
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Henri Bernardi
- UMR866, Dynamique du Muscle et Métabolisme (DMeM), INRAE, University of Montpellier, Montpellier, France
| | - Anthony M J Sanchez
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120, Font-Romeu, France.
| |
Collapse
|
3
|
Jin C, Cui S, Lu Y, Li Z, Huo X, Wang Y, Sha J, Sun Y. Nutritional Processing Quality of Sika Deer ( Cervus nippon) Venison in Different Muscles. Foods 2024; 13:3661. [PMID: 39594078 PMCID: PMC11593690 DOI: 10.3390/foods13223661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
In order to investigate the nutritional processing quality of sika deer (Cervus nippon) venison at different sites, the pH24 h, tenderness, pressurized water loss rate, meat color, intramuscular fat, moisture, protein, amino acid, fatty acid and squalene contents of sika deer venison were determined in twelve sites: foreleg, hind leg, outer tenderloin, rump, neck meat, chest meat, deer flank, abdominal rib, high rib, tenderloin, anterior tendon and posterior tendon. The results showed that the pH24 h of sika deer venison at different sites was 5.49~5.78; the tenderness of outer tenderloin (31.71 N) was the lowest, and the neck meat (68.53 N) was the highest; the squeezing moisture of tenderloin (28.12%) was the largest, and the foreleg (12.34%) was the smallest; the brightness of outer tenderloin L* (29.68) was the lowest, and the redness a* and yellowness b* of deer flank were the highest; the intramuscular fat and moisture were 0.66~4.97% and 71.00~73.78%, respectively; and the protein content of outer tenderloin (23.44%) and rump (24.02%) was high. The venison meat contained 17 kinds of amino acids, and the total amount was 63.87~79.33 g/100 g. It was rich in essential amino acids, mainly lysine and leucine, accounting for 64.29~65.39% of non-essential amino acids, which was close to the ideal protein composition. Palmitoleic acid and oleic acid were the main monounsaturated fatty acids in venison, and the contents of abdominal ribs were the highest, 16,875.33 mg/kg and 31,772.73 mg/kg, respectively. The contents of essential fatty acids were also the highest in abdominal ribs (11,225.37 mg/kg); forelegs, hind legs, outer tenderloins, rumps, neck meat, chest meat, high rib, tenderloins, anterior tendons and posterior tendons were all good sources of polyunsaturated fatty acids. Squalene content was highest in the abdominal rib (100.85 mg/kg). The nutritional processing quality of sika deer venison in different muscles is significantly different, and this study can provide a data basis for the evaluation and processing of sika deer venison quality.
Collapse
Affiliation(s)
- Chunai Jin
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun 130112, China; (C.J.); (S.C.); (Y.L.); (Z.L.); (X.H.); (Y.W.)
| | - Songhuan Cui
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun 130112, China; (C.J.); (S.C.); (Y.L.); (Z.L.); (X.H.); (Y.W.)
| | - Yushun Lu
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun 130112, China; (C.J.); (S.C.); (Y.L.); (Z.L.); (X.H.); (Y.W.)
| | - Zhiman Li
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun 130112, China; (C.J.); (S.C.); (Y.L.); (Z.L.); (X.H.); (Y.W.)
| | - Xiaohui Huo
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun 130112, China; (C.J.); (S.C.); (Y.L.); (Z.L.); (X.H.); (Y.W.)
| | - Yanbo Wang
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun 130112, China; (C.J.); (S.C.); (Y.L.); (Z.L.); (X.H.); (Y.W.)
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jiyue Sha
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun 130112, China; (C.J.); (S.C.); (Y.L.); (Z.L.); (X.H.); (Y.W.)
| | - Yinshi Sun
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun 130112, China; (C.J.); (S.C.); (Y.L.); (Z.L.); (X.H.); (Y.W.)
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
4
|
Chaudhuri RH. The role of amino acids in skeletal muscle health and sarcopenia: A narrative review. J Biomed Res 2024; 38:1-14. [PMID: 39433511 DOI: 10.7555/jbr.38.20240167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
The skeletal muscle is the largest organ present inside the body and is responsible for mechanical activities like maintaining posture, movement, respiratory function, and support for the health and functioning of other systems of the body. Skeletal muscle atrophy is a condition associated with a reduction in muscle size, strength, and activity, which leads to an increased dependency on movement, an increased risk of falls, and a reduced quality of life. Various conditions like osteoarthritis, osteoporosis, and fractures are directly associated with an increased muscle atrophy. Additionally, numerous risk factors, like aging, malnutrition, physical inactivity, and certain disease conditions, through distinct pathways negatively affect skeletal muscle health and lead to muscle atrophy. Among the various determinants of the overall muscle health, the rate of muscle protein synthesis and degradation is an important parameter that eventually alters the fate of overall muscle health. In conditions of excessive skeletal muscle atrophy, including sarcopenia, the rate of muscle protein degradation usually exceeds the rate of protein synthesis. The availability of amino acids in the systemic circulation is a crucial step for muscle protein synthesis. The current review aimed to consolidate the existing evidence of amino acids, highlight their mechanisms of action, and assess their roles and effectiveness in enhancing skeletal muscle health.
Collapse
Affiliation(s)
- Ramendu Hom Chaudhuri
- Department of Orthopaedics, Sri Aurobindo Seva Kendra, Jodhpur Park, Kolkata, West Bengal 700068, India
| |
Collapse
|
5
|
Kim H, Kang S, Go GW. Black beans ( Glycine max (L.) Merrill) included in a multi-grain rice reduce total cholesterol and enhance antioxidant capacity in high-fat diet-induced obese mice. Food Sci Biotechnol 2024; 33:2857-2864. [PMID: 39184995 PMCID: PMC11339200 DOI: 10.1007/s10068-024-01533-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 08/27/2024] Open
Abstract
This study investigated the effects of black bean (BB) supplementation on the growth performance, lipid metabolism, and antioxidant capacity of high-fat diet-induced obese mice. The results demonstrated that although the inclusion of BBs led to increased body weight, total energy intake, and feed efficiency ratio, it did not significantly alter the overall body composition, including adiposity. Notably, BB consumption reduced total cholesterol levels, suggesting its potential to manage dyslipidemia and reduce the risk of atherosclerotic cardiovascular diseases. Furthermore, BBs significantly enhanced in the total antioxidant capacity, as indicated by the notable increase in both the total antioxidant capacity and superoxide dismutase activity. These findings provide significant insights into the promising health benefits of BBs in the context of metabolic syndrome and related health complications.
Collapse
Affiliation(s)
- Hayoon Kim
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Korea
| | - Sumin Kang
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Korea
| | - Gwang-woong Go
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Korea
| |
Collapse
|
6
|
Fu Y, Zhou J, Schroyen M, Lin J, Zhang H, Wu S, Qi G, Wang J. Dietary supplementation with calcitriol or quercetin improved eggshell and bone quality by modulating calcium metabolism. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:340-355. [PMID: 39290856 PMCID: PMC11406101 DOI: 10.1016/j.aninu.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/03/2024] [Accepted: 04/16/2024] [Indexed: 09/19/2024]
Abstract
This study was aimed to investigate the effects of dietary calcitriol or quercetin supplementation on eggshell and bone quality of laying hens. In trial 1, 72 Hy-Line Brown layers (80-week-old) with weak-shelled strength (25 to 30 N) were assigned into 4 dietary treatments with 6 replicates of 3 birds and fed a basal diet (4% calcium level) or basal diets supplemented with 0.5% calcium, 5 μg/kg calcitriol or 500 mg/kg quercetin for 4 weeks. In trial 2, 360 Hy-Line Brown layers (60-week-old) were divided into 3 groups with 8 replicates of 15 birds: control group (basal diet), calcitriol group (basal diet + 5 μg/kg calcitriol), and quercetin group (basal diet + 500 mg/kg quercetin). This trial lasted for 12 weeks. The results showed that dietary calcitriol or quercetin improved eggshell quality in both trials (P < 0.05). In trial 2, compared with the control group, both calcitriol and quercetin supplementations improved femoral bone quality, calcium retention of hens and calcium content in uterine fluid at 18.5 h post-oviposition (PO) (P < 0.05), along with enhancing uterine morphology. Compared to the control group, supplemental calcitriol or quercetin up-regulated the relative mRNA expression levels of uterine transient receptor potential cation channel, subfamily V, member 6 (TRPV6) at 8.5 h PO and plasma membrane calcium-ATPase (PMCA), vitamin D receptor (VDR), estrogen receptor alpha (ERα) at 18.5 h PO (P < 0.05), but down-regulated the uterine caspase 3 (CASP3) relative mRNA expression level at 8.5 h PO (P < 0.05). Meanwhile, the femoral relative mRNA expression levels of tartrate-resistant acid phosphatase (TRAP) (up-regulated at 8.5 and 18.5 h PO) and alkaline phosphatase (ALP) (up-regulated at 8.5 h PO but down-regulated at 18.5 h PO) were also affected by calcitriol or quercetin supplementation (P < 0.05). Compared to the calcitriol, quercetin increased hen-day egg production and femoral medullary bone volume/bone tissue volume but reduced femoral stiffness (P < 0.05), which were accompanied by increased relative mRNA expression levels of uterine TRPV6, estrogen receptor beta (ERβ) at 18.5 h PO (P < 0.05). Overall, both dietary calcitriol and quercetin could improve eggshell and bone quality by modulating calcium metabolism of aged layers. Compared to calcitriol, dietary quercetin up-regulated the expression of uterine calcium transporters, without affecting eggshell quality.
Collapse
Affiliation(s)
- Yu Fu
- Key Laboratory of Feed Biotechnology, Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing), Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Precision Livestock and Nutrition Laboratory, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, B-5030 Gembloux, Belgium
| | - Jianmin Zhou
- Key Laboratory of Feed Biotechnology, Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing), Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Martine Schroyen
- Precision Livestock and Nutrition Laboratory, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, B-5030 Gembloux, Belgium
| | - Jing Lin
- Key Laboratory of Feed Biotechnology, Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing), Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- Key Laboratory of Feed Biotechnology, Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing), Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shugeng Wu
- Key Laboratory of Feed Biotechnology, Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing), Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- Key Laboratory of Feed Biotechnology, Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing), Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Key Laboratory of Feed Biotechnology, Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing), Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
7
|
Jin C, Zhu M, Ye J, Song Z, Zheng C, Chen W. Autophagy: Are Amino Acid Signals Dependent on the mTORC1 Pathway or Independent? Curr Issues Mol Biol 2024; 46:8780-8793. [PMID: 39194736 DOI: 10.3390/cimb46080519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Autophagy is a kind of "self-eating" phenomenon that is ubiquitous in eukaryotic cells. It mainly manifests in the damaged proteins or organelles in the cell being wrapped and transported by the autophagosome to the lysosome for degradation. Many factors cause autophagy in cells, and the mechanism of nutrient-deficiency-induced autophagy has been a research focus. It has been reported that amino-acid-deficiency-induced cellular autophagy is mainly mediated through the mammalian rapamycin target protein complex 1 (mTORC1) signaling pathway. In addition, some researchers also found that non-mTORC1 signaling pathways also regulate autophagy, and the mechanism of autophagy occurrence induced by the deficiency of different amino acids is not precisely the same. Therefore, this review aims to summarize the process of various amino acids regulating cell autophagy and provide a narrative review on the molecular mechanism of amino acids regulating autophagy.
Collapse
Affiliation(s)
- Chenglong Jin
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Min Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jinling Ye
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Zhiwen Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Chuntian Zheng
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Wei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| |
Collapse
|
8
|
Chang C, Zhao W, Zhang Q, Wang X, Zhang J, Yan Z, Cao J, Liu H, Geng A. Dietary Crude Protein and Lysine Levels Affect Meat Quality and Myofiber Characteristic of Slow-Growing Chicken. Animals (Basel) 2024; 14:2068. [PMID: 39061530 PMCID: PMC11273887 DOI: 10.3390/ani14142068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to investigate the effects of dietary crude protein (CP) and lysine levels on growth performance, slaughter performance, meat quality, and myofiber characteristics of slow-growing chicken. A 3 × 3 factorial experiment was arranged, and the chickens were fed with 3 levels of dietary CP (16.0%, 17.0%, 18.0%) and 3 levels of dietary lysine (0.69%, 0.84%, 0.99%). A total of 540 8-week-old Beijing-You Chicken (BYC) female growing chickens were randomly allocated to 9 groups, 5 replicates per group, and 12 chickens per replicate. The birds were randomly allocated to one of the 9 experimental diets. Growth performance, slaughter performance, meat quality, and myofiber characteristics were determined at 16 weeks of age. The results showed that dietary CP level and the interaction of dietary CP and lysine levels affected average feed intake (AFI) (p < 0.05). The AFI in the 16.0% CP and 17.0% CP groups was higher than in the 18.0% CP group (p < 0.05). Dietary CP levels significantly affected body weight gain (BWG) (p < 0.05) at 9 to 16 weeks. The 18.0% CP group had the highest BWG (93.99 g). Dietary CP levels affected the percentage of leg muscle yield, and the percentage of leg muscle yield of the 16.0% CP group was significantly lower than that in the other two groups (p < 0.05). Dietary CP and lysine levels alone and their interactions did not affect pH24h, drip loss, and cooking loss of breast muscle (p > 0.05). The shear force of the 18.0% CP group (29.55 N) was higher than that in the other two groups (p < 0.01). Dietary CP level affected myofiber characteristic (p < 0.01), with the lowest myofiber density (846.35 p·mm-2) and the largest myofiber diameter (30.92 μm) at 18.0% CP level. Dietary lysine level affected myofiber diameter, endomysium thickness, perimysium thickness (p < 0.01), with the largest myofiber diameter (29.29 μm) obtained at 0.84% lysine level, the largest endomysium thickness (4.58 μm) at 0.69% lysine level, and the largest perimysium thickness (9.26 μm) at 0.99% lysine level. Myofiber density was negatively correlated with myofiber diameter and endomysium thickness (R = -0.883, R = -0.523, p < 0.01); perimysium thickness had a significant negative correlation with shear force (R = -0.682, p < 0.05). Therefore, reducing dietary CP level and adding appropriate lysine can reduce myofiber diameter and increase perimysium thickness, reducing shear force and improving meat tenderness. A high lysine level (0.99%) in the low-CP (16.0%) diet can improve meat tenderness by regulating the myofiber characteristic without affecting production performance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huagui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.C.); (W.Z.); (Q.Z.); (X.W.); (J.Z.); (Z.Y.); (J.C.)
| | - Ailian Geng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.C.); (W.Z.); (Q.Z.); (X.W.); (J.Z.); (Z.Y.); (J.C.)
| |
Collapse
|
9
|
Wang X, Zong X, Ye M, Jin C, Xu T, Yang J, Gao C, Wang X, Yan H. Lysine Distinctively Manipulates Myogenic Regulatory Factors and Wnt/Ca 2+ Pathway in Slow and Fast Muscles, and Their Satellite Cells of Postnatal Piglets. Cells 2024; 13:650. [PMID: 38607088 PMCID: PMC11011516 DOI: 10.3390/cells13070650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
Muscle regeneration, representing an essential homeostatic process, relies mainly on the myogenic progress of resident satellite cells, and it is modulated by multiple physical and nutritional factors. Here, we investigated how myogenic differentiation-related factors and pathways respond to the first limiting amino acid lysine (Lys) in the fast and slow muscles, and their satellite cells (SCs), of swine. Thirty 28-day-old weaned piglets with similar body weights were subjected to three diet regimens: control group (d 0-28: 1.31% Lys, n = 12), Lys-deficient group (d 0-28: 0.83% Lys, n = 12), and Lys rescue group (d 0-14: 0.83% Lys; d 15-28: 1.31% Lys, n = 6). Pigs on d 15 and 29 were selectively slaughtered for muscular parameters evaluation. Satellite cells isolated from fast (semimembranosus) and slow (semitendinosus) muscles were also selected to investigate differentiation ability variations. We found Lys deficiency significantly hindered muscle development in both fast and slow muscles via the distinct manipulation of myogenic regulatory factors and the Wnt/Ca2+ pathway. In the SC model, Lys deficiency suppressed the Wnt/Ca2+ pathways and myosin heavy chain, myogenin, and myogenic regulatory factor 4 in slow muscle SCs but stimulated them in fast muscle SCs. When sufficient Lys was attained, the fast muscle-derived SCs Wnt/Ca2+ pathway (protein kinase C, calcineurin, calcium/calmodulin-dependent protein kinase II, and nuclear factor of activated T cells 1) was repressed, while the Wnt/Ca2+ pathway of its counterpart was stimulated to further the myogenic differentiation. Lys potentially manipulates the differentiation of porcine slow and fast muscle myofibers via the Wnt/Ca2+ pathway in opposite trends.
Collapse
Affiliation(s)
- Xiaofan Wang
- College of Animal Science, South China Agricultural University, State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou 510642, China; (X.W.); (X.Z.); (M.Y.); (C.J.); (T.X.); (C.G.); (X.W.)
| | - Xiaoyin Zong
- College of Animal Science, South China Agricultural University, State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou 510642, China; (X.W.); (X.Z.); (M.Y.); (C.J.); (T.X.); (C.G.); (X.W.)
| | - Mao Ye
- College of Animal Science, South China Agricultural University, State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou 510642, China; (X.W.); (X.Z.); (M.Y.); (C.J.); (T.X.); (C.G.); (X.W.)
| | - Chenglong Jin
- College of Animal Science, South China Agricultural University, State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou 510642, China; (X.W.); (X.Z.); (M.Y.); (C.J.); (T.X.); (C.G.); (X.W.)
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Tao Xu
- College of Animal Science, South China Agricultural University, State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou 510642, China; (X.W.); (X.Z.); (M.Y.); (C.J.); (T.X.); (C.G.); (X.W.)
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
| | - Chunqi Gao
- College of Animal Science, South China Agricultural University, State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou 510642, China; (X.W.); (X.Z.); (M.Y.); (C.J.); (T.X.); (C.G.); (X.W.)
| | - Xiuqi Wang
- College of Animal Science, South China Agricultural University, State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou 510642, China; (X.W.); (X.Z.); (M.Y.); (C.J.); (T.X.); (C.G.); (X.W.)
| | - Huichao Yan
- College of Animal Science, South China Agricultural University, State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou 510642, China; (X.W.); (X.Z.); (M.Y.); (C.J.); (T.X.); (C.G.); (X.W.)
| |
Collapse
|
10
|
Guo Y, Wei W, Wang H, Li Q, Wei C, Zhang J, Jin P. Effect of a New Hyaluronic Acid Hydrogel Dermal Filler Cross-Linked With Lysine Amino Acid for Skin Augmentation and Rejuvenation. Aesthet Surg J 2023; 44:NP87-NP97. [PMID: 37265096 DOI: 10.1093/asj/sjad169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Hyaluronic acid (HA) fillers are the most popular filler agents for skin rejuvenation. Although 1,4-butanediol diglycidyl ether is regarded as a relatively safe cross-linker, it still exhibits certain cytotoxicity. OBJECTIVES We presented here an amino acid-cross-linked HA (ACHA) which was obtained by an amidation reaction with lysine and HA. This study aimed to investigate ACHA's efficacy and safety for skin augmentation and rejuvenation. METHODS Rheology, compressive tests, and swelling experiments were conducted to investigate ACHA's mechanical and viscoelastic properties. The effects of ACHA on the human keratinocytes (HaCaT) cells and the human dermal fibroblast (HDF) were investigated by Transwell and wound healing assays. Its impacts on the epithelial thickness and collagen synthesis were further examined in a mouse experimental model. We recruited 50 patients with moderate to severe nasolabial folds (NLFs). The patients were randomly allocated to receive ACHA or Restylane injections. The resulting retention rates of HA and the Wrinkle Severity Rating Scale and Global Aesthetic Improvement Scale outcomes were evaluated and compared. RESULTS ACHA exhibited good viscoelasticity. It not only promoted migration and proliferation of HaCat and HDF and secretion of various growth factors but also increased skin thickness and promoted the generation of collagen. Patients who received ACHA had more residual volume 12 months after treatment. ACHA exhibited a promising augmentation effect in NLF correction with few adverse reactions. CONCLUSIONS ACHA has shown promise as a biomaterial with excellent biocompatibility and viscoelastic characteristics in both research and the clinic.See the abstract translated into Hindi, Portuguese, Korean, German, Italian, Arabic, Chinese, and Taiwanese online here: https://doi.org/10.1093/asj/sjad169. LEVEL OF EVIDENCE: 2
Collapse
|
11
|
Wang Q, Yan Y, Tao Y, Lu S, Xu P, Qiang J. Transcriptional Knock-down of mstn Encoding Myostatin Improves Muscle Quality of Nile Tilapia (Oreochromis niloticus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:951-965. [PMID: 37755584 DOI: 10.1007/s10126-023-10252-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/10/2023] [Indexed: 09/28/2023]
Abstract
Myostatin (encoded by mstn) negatively regulates skeletal muscle mass and affects lipid metabolism. To explore the regulatory effects of mstn on muscle development and lipid metabolism in Nile tilapia (Oreochromis niloticus), we used antisense RNA to transcriptionally knock-down mstn. At 180 days, the body weight and body length were significantly higher in the mstn-knock-down group than in the control group (p < 0.05). Additionally, fish with mstn-knock-down exhibited myofiber hyperplasia but not hypertrophy. Oil red O staining revealed a remarkable increase in the area of lipid droplets in muscle in the mstn-knockdown group (p < 0.05). Nutrient composition analyses of muscle tissue showed that the crude fat content was significantly increased in the mstn-knock-down group (p < 0.05). The contents of saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids were all significantly increased in the mstn-knock-down group (p < 0.05). Comparative transcriptome analyses revealed 2420 significant differentially expressed genes between the mstn-knock-down group and the control group. KEGG analysis indicates that disruptions to fatty acid degradation, glycerolipid metabolism, and the PPAR signaling pathway affect muscle development and lipid metabolism in mstn-knock-down Nile tilapia: acaa2, eci1, and lepr were remarkably up-regulated, and acadvl, lpl, foxo3, myod1, myog, and myf5 were significantly down-regulated (p < 0.05). These results show that knock-down of mstn results in abnormal lipid metabolism, acceleration of skeletal muscle development, and increased adipogenesis and weight gain in Nile tilapia.
Collapse
Affiliation(s)
- Qingchun Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
- Key Laboratory of Freshwater Fishes and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yue Yan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Yifan Tao
- Key Laboratory of Freshwater Fishes and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Siqi Lu
- Key Laboratory of Freshwater Fishes and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fishes and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jun Qiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory of Freshwater Fishes and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
12
|
He M, Zhang W, Wang S, Ge L, Cao X, Wang S, Yuan Z, Lv X, Getachew T, Mwacharo JM, Haile A, Sun W. Effects of YAP1 on proliferation and differentiation of Hu sheep skeletal muscle satellite cells in vitro. Anim Biotechnol 2023; 34:2691-2700. [PMID: 36001393 DOI: 10.1080/10495398.2022.2112688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This study aimed to understand the expression level of YAP1 in the skeletal muscle of Hu sheep and to reveal the regulatory mechanism of YAP1 on Hu sheep skeletal muscle satellite cells (SMSCs). Previous research by our group has found that YAP1 may affect the growth and development of Hu sheep skeletal muscle. In the present study, we found the expression of YAP1 in the skeletal muscle is higher than in other tissues of Hu sheep. Then, we detected the effect of YAP1 on proliferation and differentiation in Hu sheep SMSCs. According to the results of qPCR, CCK-8, EDU, and Western blot, compared to the group of negative control, overexpression of YAP1 promoted the proliferation and inhibited the differentiation of SMSCs according to the results of qPCR, CCK-8, EDU, Western blot, while the interference of YAP1 was on the contrary. Overall, our study suggests that YAP1 is an important functional molecule in the growth and development of skeletal muscle by regulating the proliferation and differentiation of SMSCs. These findings are of great use for understanding the roles of YAP1 in the skeletal muscle of Hu sheep.
Collapse
Affiliation(s)
- Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Weibo Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Shan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Ling Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Nanjing, China
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Nanjing, China
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Nanjing, China
| | - Tesfaye Getachew
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Joram M Mwacharo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Aynalem Haile
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Nanjing, China
| |
Collapse
|
13
|
Xing J, Xie L, Qi X, Liu G, Akhtar MF, Li X, Bou G, Bai D, Zhao Y, Dugarjaviin M, Zhang X. Integrated analysis of transcriptome and proteome for exploring mechanism of promoting proliferation of equine satellite cells associated with leucine. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101118. [PMID: 37633218 DOI: 10.1016/j.cbd.2023.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/28/2023]
Abstract
The proliferation and differentiation of skeletal muscle satellite cells (SCs) are necessary for the development of mature skeletal muscle. Leucine (Leu) is both an essential amino acid (EAA) and a branched-chain amino acid (BCAA), which has attracted worldwide attention due to its ability to repair and become new fibers. We separated the equine SCs into the control group (CON) and the Leu-supplemented group (LEU), which the cells were cultured in Leu-deprived and Leu-supplemented media respectively. We combined the transcriptome (RNA-Seq) and quantitative proteome (TMT) profiling analyses on proliferation of equine SCs associated with Leu. 1839 up-regulated and 631 down-regulated genes made up the 2470 differentially expressed genes (DEGs), and the 253 differentially abundant proteins (DEPs) included 118 up-regulated and 135 down-regulated proteins. 110 overlapping genes were verified based on the mRNA and protein translation relationship. Moreover, by comparing overlapped pathways through enrichment analysis, we found 13 genes not only appeared among 110 key DEGs/DEPs but also enriched in the KEGG overlapping signaling pathway, including CCL26, STAT2, PCK2, ASNS, GPT2, SHMT2, PHGDH, PGAM2, PSAT1, FTL, HMOX1, STEAP1 and STEAP2. To our knowledge, this is the first report in the world to systematically show how Leu regulated the growth of equine SCs. Leu deficiency inhibits the proliferation of equine SCs and development of fresh muscle fibers was proved in this paper. The main genes in charge of the Leu-induced proliferation of horse SCs have been found. These genes will make it easier to understand the mechanism at work and offer new information for enhancing the performance of sport horses and alleviating the equine muscle damage during exercise in the future.
Collapse
Affiliation(s)
- Jingya Xing
- Key Laboratory of Equus Germplasm Innovation (Co-const ruction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; College of animal science, Qingdao Agricultural University, Qingdao 266000, China
| | - Lan Xie
- College of Agronomy, Liaocheng University, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng 252059, Shandong Province, China
| | - Xingzhen Qi
- College of Agronomy, Liaocheng University, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng 252059, Shandong Province, China
| | - Guiqin Liu
- College of Agronomy, Liaocheng University, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng 252059, Shandong Province, China
| | - Muhammad Faheem Akhtar
- College of Agronomy, Liaocheng University, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng 252059, Shandong Province, China
| | - Xinyu Li
- Key Laboratory of Equus Germplasm Innovation (Co-const ruction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Gerelchimeg Bou
- Key Laboratory of Equus Germplasm Innovation (Co-const ruction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Dongyi Bai
- Key Laboratory of Equus Germplasm Innovation (Co-const ruction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yiping Zhao
- Key Laboratory of Equus Germplasm Innovation (Co-const ruction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Manglai Dugarjaviin
- Key Laboratory of Equus Germplasm Innovation (Co-const ruction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xinzhuang Zhang
- Key Laboratory of Equus Germplasm Innovation (Co-const ruction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
14
|
Yun SH, Lee DY, Lee SY, Lee J, Mariano EJ, Joo ST, Choi I, Choi JS, Kim GD, Hur SJ. Improved culture procedure for bovine muscle satellite cells for cultured meat. Food Res Int 2023; 174:113660. [PMID: 37981377 DOI: 10.1016/j.foodres.2023.113660] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/21/2023]
Abstract
Many researchers and companies around the world are reported to have developed cultured meat, but their specific techniques have rarely been disclosed. Thus, the purpose of this study is to provide an improved procedure for cultured meat. There are four major steps in this cultured meat production: muscle cell isolation, proliferation, differentiation, and validation. The improved isolation enabled the efficient removal of unnecessary cells and tissues compared to previous procedures. In addition, proper use of basal media can improve the proliferation efficiency by about 2-fold. During the differentiation process, improved procedure was performed by using 10 % horse serum-containing media after 3 days of initial differentiation for myotube induction. This method demonstrated significantly enhanced myotube formation, up to 2.6-fold increase in area and up to 1.9-fold increase in fusion index compared to the previous method. This study provides a simple, improved procedure to enable more effective cultured meat production compared to previous procedures and is expected to help produce inexpensive and safe cultured meat.
Collapse
Affiliation(s)
- Seung Hyeon Yun
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Seung Yun Lee
- Division of Applied Life Science (BK21 Four), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Juhyun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Ermie Jr Mariano
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Seon-Tea Joo
- Division of Applied Life Science (BK21 Four), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jung Seok Choi
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Gap-Don Kim
- Graduate School of International Agricultural Technology, Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
15
|
Hasan MS, Wang Y, Feugang JM, Zhou H, Liao SF. RNA sequencing analysis revealed differentially expressed genes and their functional annotation in porcine longissimus dorsi muscle affected by dietary lysine restriction. Front Vet Sci 2023; 10:1233292. [PMID: 38026666 PMCID: PMC10668494 DOI: 10.3389/fvets.2023.1233292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
The objective of this study was to investigate the effects of dietary lysine restriction on the global gene expression profile of skeletal muscle in growing pigs. Twelve crossbred (Yorkshire × Landrace) barrows (initial BW 22.6 ± 2.04 kg) were randomly assigned to two dietary treatments (LDD: a lysine-deficient diet; LAD: a lysine-adequate diet) according to a completely randomized experiment design (n = 6). After feeding for 8 weeks, skeletal muscle was sampled from the longissimus dorsi of individual pigs. The muscle total RNA was isolated and cDNA libraries were prepared for RNA sequencing (RNA-Seq) analysis. The RNA-Seq data obtained was then analyzed using the CLC Genomics Workbench to identify differentially expressed genes (DEGs). A total of 80 genes (padj ≤ 0.05) were differentially expressed in the longissimus dorsi muscle of the pigs fed LDD vs. LAD, of which 46 genes were downregulated and 34 genes were upregulated. Gene Ontology (GO) analysis of the DEGs (padj ≤ 0.05) for functional annotation identified those GO terms that are mostly associated with the molecular functions of structural molecules and metabolic enzymes (e.g., oxidoreductase and endopeptidase), biological process of acute-phase response, and amino acid metabolism including synthesis and degradation in the extracellular matrix region. Collectively, the results of this study have provided some novel insight regarding the molecular mechanisms of muscle growth that are associated with dietary lysine supply.
Collapse
Affiliation(s)
- Md. Shamimul Hasan
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Ying Wang
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Jean M. Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Shengfa F. Liao
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
16
|
El-Mallah C, Ragi MEE, Eid A, Obeid OA. Low-quality protein modulates inflammatory markers and the response to lipopolysaccharide insult: the case of lysine. Br J Nutr 2023; 130:944-957. [PMID: 36597807 PMCID: PMC10442798 DOI: 10.1017/s0007114522004068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
The relationship between non-communicable diseases and eating behaviour has long been attributed to a surplus of food and energy. However, the increase in the prevalence of non-communicable disease and their underlying low-grade inflammatory milieu among people of low socio-economic status has highlighted the existence of a confounding factor. In this work, we aim to study the effect of lysine deficiency on some inflammatory markers in the absence or presence of an inflammatory insult (lipopolysaccharide (LPS)). For this purpose, thirty-two 5-week-old male Sprague Dawley rats were randomly distributed into four groups: (1) control diet, (2) control diet+LPS, (3) lysine-deficient diet and (4) lysine-deficient diet + LPS. Groups were only allowed their experimental diets for 4 weeks, during which LPS (50 µg/kg) or saline injections were administered intraperitoneally three times per week. The study showed that lysine deficiency blunted growth and body compartments development, decreased albumin production and elevated liver C-reactive protein (CRP) expression, independently of IL-6 and IL-1β, the main precursors of CRP. Also, the insufficient levels of lysine in the diet increased hyperactivity and triggered an anxiety-like behaviour, exacerbated with LPS. This work presents evidence that various physiological changes are associated with the absence of a sufficient amount of lysine in the diet and can potentially increase the risk factor for diseases. Thus, the increment in non-communicable disease among the low socio-economic status populations, who heavily rely on cereals as a main source of protein, can be, at least partially, blamed on low lysine availability in diets.
Collapse
Affiliation(s)
- Carla El-Mallah
- Department of Nutrition and Food Science, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Marie-Elizabeth E. Ragi
- Department of Nutrition and Food Science, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Assaad Eid
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Omar A. Obeid
- Department of Nutrition and Food Science, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
17
|
Yang Y, Wu J, Liu W, Zhao Y, Chen H. The Function and Regulation Mechanism of Non-Coding RNAs in Muscle Development. Int J Mol Sci 2023; 24:14534. [PMID: 37833983 PMCID: PMC10572267 DOI: 10.3390/ijms241914534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 10/15/2023] Open
Abstract
Animal skeletal muscle growth is regulated by a complex molecular network including some non-coding RNAs (ncRNAs). In this paper, we review the non-coding RNAs related to the growth and development of common animal skeletal muscles, aiming to provide a reference for the in-depth study of the role of ncRNAs in the development of animal skeletal muscles, and to provide new ideas for the improvement of animal production performance.
Collapse
Affiliation(s)
- Yaling Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (W.L.)
| | - Jian Wu
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Academy of Agricultural Sciences of Jilin Province, Changchun 136100, China;
| | - Wujun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (W.L.)
| | - Yumin Zhao
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Academy of Agricultural Sciences of Jilin Province, Changchun 136100, China;
| | - Hong Chen
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (W.L.)
| |
Collapse
|
18
|
Chen B, Wang Y, Hou D, Zhang Y, Zhang B, Niu Y, Ji H, Tian Y, Liu X, Kang X, Cai H, Li Z. Transcriptome-Based Identification of the Muscle Tissue-Specific Expression Gene CKM and Its Regulation of Proliferation, Apoptosis and Differentiation in Chicken Primary Myoblasts. Animals (Basel) 2023; 13:2316. [PMID: 37508090 PMCID: PMC10376263 DOI: 10.3390/ani13142316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Skeletal muscle is an essential tissue in meat-producing animals, and meat-producing traits have been a hot topic in chicken genetic breeding research. Current research shows that creatine kinase M-type-like (CKM) is one of the most abundant proteins in skeletal muscle and plays an important role in the growth and development of skeletal muscle, but its role in the development of chicken skeletal muscle is still unclear. Via RNA sequencing (RNA-seq), we found that CKM was highly expressed in chicken breast muscle tissue. In this study, the expression profile of CKM was examined by quantitative real-time PCR (qPCR), and overexpression and RNA interference techniques were used to explore the functions of CKM in the proliferation, apoptosis and differentiation of chicken primary myoblasts (CPMs). It was shown that CKM was specifically highly expressed in breast muscle and leg muscle and was highly expressed in stage 16 embryonic muscle, while CKM inhibited proliferation, promoted the apoptosis and differentiation of CPMs and was involved in regulating chicken myogenesis. Transcriptome sequencing was used to identify genes that were differentially expressed in CPMs after CKM disruption, and bioinformatics analysis showed that CKM was involved in regulating chicken myogenesis. In summary, CKM plays an important role in skeletal muscle development during chicken growth and development.
Collapse
Affiliation(s)
- Bingjie Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Yanxing Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Dan Hou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Yushi Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Bochun Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Yufang Niu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Haigang Ji
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Hanfang Cai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| |
Collapse
|
19
|
Cao Y, Hu G, Li W, Wang J, Ge Y, Li F, Guo W, Kan X, Fu S, Liu J. Lysine promotes proliferation and β-casein synthesis through the SLC6A14-ERK1/2-CDK1-mTOR signaling pathway in bovine primary mammary epithelial cells. J Therm Biol 2022; 110:103375. [DOI: 10.1016/j.jtherbio.2022.103375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
|
20
|
mTORC1 Mediates the Processes of Lysine Regulating Satellite Cells Proliferation, Apoptosis, and Autophagy. Metabolites 2022; 12:metabo12090788. [PMID: 36144192 PMCID: PMC9505949 DOI: 10.3390/metabo12090788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Lysine (Lys) is essential for skeletal muscle growth and protein synthesis in mammals. However, the regulatory network underlying Lys-regulated skeletal muscle development is unknown. To determine whether any cross-talk occurs among mammalian targets of rapamycin complex 1 (mTORC1) and Lys in the regulation of muscle satellite cells (SCs) proliferation, we applied the treatment rapamycin (a mTORC1 inhibitor) and MHY1485 (a mTORC1 activator) on Lys-added or -deficient SCs. The results show Lys deprivation significantly decreases SCs viability, protein synthesis, and cell cycling, increases autophagy and apoptosis, and inhibits the mTORC1 signaling pathway. Restoration of Lys content significantly attenuates this effect. mTORC1 signaling pathway activation during Lys deprivation or mTORC1 signaling pathway inhibition during Lys addition attenuates the effect of Lys deprivation or addition on SCs viability, protein synthesis, cell cycling, autophagy, and apoptosis. In conclusion, Lys could improve SCs proliferation, and inhibit SCs apoptosis and autophagy, via the mTORC1 signaling pathway.
Collapse
|
21
|
Li W, Long X, Li F, Cao Y, Liu J, Fu S, Guo W, Hu G. Lysine stimulates the development of the murine mammary gland at puberty via PI3K/AKT/mTOR signalling axis. J Anim Physiol Anim Nutr (Berl) 2022; 106:1420-1430. [PMID: 35923149 DOI: 10.1111/jpn.13756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/21/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
Abstract
Lysine is one of the essential amino acids. The effect of lysine on milk protein and milk fat anabolism has been reported, but the effect on mammary glands development has not been studied in detail. The normal development of the mammary glands at puberty is crucial to lactation of mammals. In this study, to explore the effect of lysine on mammary glands development, we fed different concentrations of lysine (0.025%, 0.05%, 0.1%) to pubertal mice and found that the addition of 0.1% lysine to drinking water significantly promoted mammary glands development. Furthermore, we treated mMECs (mouse mammary epithelial cells) with different concentrations of lysine (0, 0.2, 0.4, 0.6, 0.8 and 1 mM) to explore the underlying mechanism, and found that lysine promoted the proliferation of mMECs and development of mammary glands through PI3K/AKT/mTOR signalling pathway in pubertal mice. Overall, the results of this study revealed that lysine activated the PI3K/AKT/mTOR signal axis, elevated protein concentrations of cell proliferation markers, such as PCNA, Cyclin D1 and D3, and enhanced the proliferation of mMECs, finally promoted the murine mammary glands development at puberty.
Collapse
Affiliation(s)
- Wen Li
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xiaoyu Long
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Feng Li
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yu Cao
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Juxiong Liu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Shoupeng Fu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Wenjin Guo
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Guiqiu Hu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| |
Collapse
|
22
|
Xu J, Strasburg GM, Reed KM, Velleman SG. Thermal stress and selection for growth affect myogenic satellite cell lipid accumulation and adipogenic gene expression through mechanistic target of rapamycin pathway. J Anim Sci 2022; 100:6652327. [PMID: 35908789 PMCID: PMC9339274 DOI: 10.1093/jas/skac001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
Satellite cells (SCs) are multipotential stem cells having the plasticity to convert to an adipogenic lineage in response to thermal stress during the period of peak mitotic activity (the first week after hatch in poultry). The mechanistic target of rapamycin (mTOR) pathway, which regulates cellular function and fate of SCs, is greatly altered by thermal stress in turkey pectoralis major muscle SCs. The objective of the present study was to determine the effects of thermal stress, selection for growth, and the role of the mTOR pathway on SC intracellular lipid accumulation and expression of adipogenic regulatory genes. These effects were analyzed using SCs isolated from the pectoralis major muscle of 1-wk-old modern faster-growing commercial turkey line (NC) selected for increased growth and breast muscle yield as compared with SCs of a historic slower-growing Randombred Control Line 2 (RBC2) turkey. Heat stress (43 °C) of SCs during proliferation increased intracellular lipid accumulation (P < 0.001), whereas cold stress (33 °C) showed an inhibitory effect (P < 0.001) in both lines. Knockdown of mTOR reduced the intracellular lipid accumulation (P < 0.001) and suppressed the expression of several adipogenic regulatory genes: peroxisome proliferator-activated receptor-γ (PPARγ; P < 0.001), CCAAT/enhancer-binding protein-β (C/EBPβ; P < 0.001), and neuropeptide-Y (NPY; P < 0.001) during both proliferation and differentiation. The NC line SCs showed fewer reductions in lipid accumulation compared with the RBC2 line independent of temperature. Both intracellular lipid accumulation (P < 0.001) and PPARγ expression (P < 0.001) were greater at 72 h of proliferation than at 48 h of differentiation in both the RBC2 and NC lines independent of temperature. Thus, hot and cold thermal stress affected intracellular lipid accumulation in the pectoralis major muscle SCs, in part, through the mTOR pathway in wea growth-dependent manner. Altered intracellular lipid accumulation could eventually affect intramuscular fat deposition, resulting in a long-lasting effect on the structure and protein to fat ratio of the poultry pectoralis major muscle.
Collapse
Affiliation(s)
- Jiahui Xu
- Department of Animal Sciences, The Ohio State University, Wooster, OH, USA
| | - Gale M Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Kent M Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Sandra G Velleman
- Department of Animal Sciences, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
23
|
Zumbaugh MD, Johnson SE, Shi TH, Gerrard DE. Molecular and biochemical regulation of skeletal muscle metabolism. J Anim Sci 2022; 100:6652332. [PMID: 35908794 PMCID: PMC9339271 DOI: 10.1093/jas/skac035] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle hypertrophy is a culmination of catabolic and anabolic processes that are interwoven into major metabolic pathways, and as such modulation of skeletal muscle metabolism may have implications on animal growth efficiency. Muscle is composed of a heterogeneous population of muscle fibers that can be classified by metabolism (oxidative or glycolytic) and contractile speed (slow or fast). Although slow fibers (type I) rely heavily on oxidative metabolism, presumably to fuel long or continuous bouts of work, fast fibers (type IIa, IIx, and IIb) vary in their metabolic capability and can range from having a high oxidative capacity to a high glycolytic capacity. The plasticity of muscle permits continuous adaptations to changing intrinsic and extrinsic stimuli that can shift the classification of muscle fibers, which has implications on fiber size, nutrient utilization, and protein turnover rate. The purpose of this paper is to summarize the major metabolic pathways in skeletal muscle and the associated regulatory pathways.
Collapse
Affiliation(s)
- Morgan D Zumbaugh
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sally E Johnson
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Tim H Shi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - David E Gerrard
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
24
|
Hu X, Huo B, Yang J, Wang K, Huang L, Che L, Feng B, Lin Y, Xu S, Zhuo Y, Wu C, Wu D, Fang Z. Effects of Dietary Lysine Levels on Growth Performance, Nutrient Digestibility, Serum Metabolites, and Meat Quality of Baqing Pigs. Animals (Basel) 2022; 12:ani12151884. [PMID: 35892534 PMCID: PMC9330884 DOI: 10.3390/ani12151884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 12/13/2022] Open
Abstract
This study was carried out to determine the Lys requirements of Baqing pigs and the effects of different dietary lysine levels on growth performance, apparent nutrient digestibility, serum metabolites, and carcass and meat traits. A total of 120 castrated Baqing pigs were selected by body weight and randomly assigned to five dietary treatments with six replicate pens (4 pigs per pen, castrated) per treatment in a randomized complete block design. Five diets in mash form were formulated to contain SID Lys at 0.56%, 0.68%, 0.80%, 0.92%, and 1.04% of diet in phase 1 (20−40 kg), at 0.45%, 0.54%, 0.63%, 0.72%, and 0.81% of diet in phase 2 (40−60 kg), and at 0.39%, 0.47%, 0.55%, 0.63%, and 0.71% of diet in phase 3 (60−90 kg), respectively. The results showed that the bodyweight of pigs was not affected by dietary SID Lys content during each period. However, the addition of dietary SID Lys linearly reduced F/G in the first period and quadratically increased ADG during the second period (p < 0.05). The digestible energy (DE) was increased linearly and quadratically in the first phases with the dietary increased SID Lys levels, while DE was reduced in the third and second phases (p < 0.05). Increasing SID Lys contents linearly increased the serum TG concentration and quadratically decreased the serum GLU concentration, while linearly reducing the serum HDLC concentration of first period pigs (p < 0.05). Serum concentrations of TP, TG, TC, and LDLC were increased linearly with the increasing dietary SID Lys levels in the second period (p < 0.05). The serum concentrations of Lys increased quadratically, and histidine increased linearly with the increased dietary SID Lys levels (p < 0.05). Compared with the treatment three group, dietary SID Lys addition content at treatment four increased the shear force of the longissimus dorsi muscle (p < 0.05), but it did not affect the other carcass and meat traits. The optimal SID Lys requirement of 20−40 kg, 40−60 kg, and 60−90 kg of Baqing pigs fed corn−soybean meal-based diets is estimated to be 0.92%, 0.66%, and 0.55% of the diets by the quadratic curve models, respectively.
Collapse
Affiliation(s)
- Xuecai Hu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (B.H.); (J.Y.); (K.W.); (L.H.); (L.C.); (B.F.); (Y.L.); (S.X.); (Y.Z.); (C.W.); (D.W.)
| | - Bin Huo
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (B.H.); (J.Y.); (K.W.); (L.H.); (L.C.); (B.F.); (Y.L.); (S.X.); (Y.Z.); (C.W.); (D.W.)
| | - Jiameng Yang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (B.H.); (J.Y.); (K.W.); (L.H.); (L.C.); (B.F.); (Y.L.); (S.X.); (Y.Z.); (C.W.); (D.W.)
| | - Kun Wang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (B.H.); (J.Y.); (K.W.); (L.H.); (L.C.); (B.F.); (Y.L.); (S.X.); (Y.Z.); (C.W.); (D.W.)
| | - Lingjie Huang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (B.H.); (J.Y.); (K.W.); (L.H.); (L.C.); (B.F.); (Y.L.); (S.X.); (Y.Z.); (C.W.); (D.W.)
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (B.H.); (J.Y.); (K.W.); (L.H.); (L.C.); (B.F.); (Y.L.); (S.X.); (Y.Z.); (C.W.); (D.W.)
| | - Bin Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (B.H.); (J.Y.); (K.W.); (L.H.); (L.C.); (B.F.); (Y.L.); (S.X.); (Y.Z.); (C.W.); (D.W.)
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (B.H.); (J.Y.); (K.W.); (L.H.); (L.C.); (B.F.); (Y.L.); (S.X.); (Y.Z.); (C.W.); (D.W.)
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (B.H.); (J.Y.); (K.W.); (L.H.); (L.C.); (B.F.); (Y.L.); (S.X.); (Y.Z.); (C.W.); (D.W.)
| | - Yong Zhuo
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (B.H.); (J.Y.); (K.W.); (L.H.); (L.C.); (B.F.); (Y.L.); (S.X.); (Y.Z.); (C.W.); (D.W.)
| | - Caimei Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (B.H.); (J.Y.); (K.W.); (L.H.); (L.C.); (B.F.); (Y.L.); (S.X.); (Y.Z.); (C.W.); (D.W.)
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (B.H.); (J.Y.); (K.W.); (L.H.); (L.C.); (B.F.); (Y.L.); (S.X.); (Y.Z.); (C.W.); (D.W.)
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (B.H.); (J.Y.); (K.W.); (L.H.); (L.C.); (B.F.); (Y.L.); (S.X.); (Y.Z.); (C.W.); (D.W.)
- Key Laboratory for Food Science and Human Health, College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
- Correspondence:
| |
Collapse
|
25
|
Iturin A Rescued STb-R-Induced Pork Skeletal Muscle Growth Restriction through the Hypothalamic-Pituitary-mTORC1 Growth Axis. Animals (Basel) 2022; 12:ani12121568. [PMID: 35739903 PMCID: PMC9219473 DOI: 10.3390/ani12121568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
The engineered STb-Rosetta Escherichia coli (STb-R) was designed to investigate the effects of Iturin A on the skeletal muscle growth of weaned piglets. A total of 28 piglets were randomly divided into 4 groups (7 piglets per group): the control group (100 mL PBS), the Iturin A group (100 mL 320 mg/kg body weight (BW) Iturin A), the STb-R group (100 mL 1 × 1010 CFU/mL STb-R), and the Iturin A + STb-R group (100 mL 320 mg/kg BW Iturin A + 1 × 1010 CFU/mL STb-R). Compared with the control, STb-R-reduced body weight gain were rescued by Iturin A. The semimembranosus muscle weight recovered to normal level in the Iturin A + STb-R group. The level of relevant genes of the growth axis were elevated by Iturin A, including GHRH in the hypothalamus, GHRHR and GH in the pituitary, and GHR, IGF-1 and IGF-1R in the semimembranosus muscle. Moreover, Iturin A increased the mean fiber area and the number of proliferating cells in the semimembranosus muscle, which were decreased by STb-R. Additionally, the mTORC1 pathway was reactivated by Iturin A to relieve the suppression of STb-R. Collectively, the hypothalamic-pituitary growth axis-mediated Iturin A reactivated the mTORC1 pathway to rescue STb-R-restricted pork skeletal muscle growth.
Collapse
|
26
|
Jin CL, Ye M, Song ZW, Zhang ZM, Gao CQ, Yan HC, Wang XQ. Lysine Interacts with Frizzled7 to Activate β-Catenin in Satellite Cell-Participated Skeletal Muscle Growth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3745-3756. [PMID: 35312309 DOI: 10.1021/acs.jafc.2c01027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This work provided an interesting finding of lysine (Lys) control on skeletal muscle growth besides protein synthesis. According to the isobaric tag for relative and absolute quantitation and molecular docking analyses, we found both in in vivo skeletal muscle and in vitro muscle satellite cells (MuSCs) that the frizzled7 (FZD7) expression level was positively correlated with Lys levels and this was consistent with the activation of the Wnt/β-catenin pathway. On the other hand, FZD7 inhibition suppressed the Lys-rescued Wnt/β-catenin pathway, FZD7 knockdown caused cell proliferation, and Wnt/β-catenin pathway restrictions could not be compensated for by Lys or Wnt3a. Furthermore, the combination between Lys and recombinant pig frizzled7 (rpFZD7) protein was confirmed by isothermal titration calorimetry. This finding displayed concrete evidence that Lys is not only a molecular block of protein synthesis but is also a ligand for FZD7 to activate β-catenin to stimulate MuSCs in promoting skeletal muscle growth.
Collapse
Affiliation(s)
- Cheng-Long Jin
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China
| | - Mao Ye
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China
| | - Zhi-Wen Song
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China
| | - Zong-Ming Zhang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China
| |
Collapse
|
27
|
Thermal stress affects proliferation and differentiation of turkey satellite cells through the mTOR/S6K pathway in a growth-dependent manner. PLoS One 2022; 17:e0262576. [PMID: 35025965 PMCID: PMC8758067 DOI: 10.1371/journal.pone.0262576] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Satellite cells (SCs) are stem cells responsible for post-hatch muscle growth through hypertrophy and in birds are sensitive to thermal stress during the first week after hatch. The mechanistic target of rapamycin (mTOR) signaling pathway, which is highly responsive to thermal stress in differentiating turkey pectoralis major (p. major) muscle SCs, regulates protein synthesis and the activities of SCs through a downstream effector, S6 kinase (S6K). The objectives of this study were: 1) to determine the effect of heat (43°C) and cold (33°C) stress on activity of the mTOR/S6K pathway in SCs isolated from the p. major muscle of one-week-old faster-growing modern commercial (NC) turkeys compared to those from slower-growing Randombred Control Line 2 (RBC2) turkeys, and 2) to assess the effect of mTOR knockdown on the proliferation, differentiation, and expression of myogenic regulatory factors of the SCs. Heat stress increased phosphorylation of both mTOR and S6K in both turkey lines, with greater increases observed in the RBC2 line. With cold stress, greater reductions in mTOR and S6K phosphorylation were observed in the NC line. Early knockdown of mTOR decreased proliferation, differentiation, and expression of myoblast determination protein 1 and myogenin in both lines independent of temperature, with the RBC2 line showing greater reductions in proliferation and differentiation than the NC line at 38° and 43°C. Proliferating SCs are more dependent on mTOR/S6K-mediated regulation than differentiating SCs. Thus, thermal stress can affect breast muscle hypertrophic potential by changing satellite cell proliferation and differentiation, in part, through the mTOR/S6K pathway in a growth-dependent manner. These changes may result in irreversible effects on the development and growth of the turkey p. major muscle.
Collapse
|
28
|
Nowosad A, Besson A. Lysosomes at the Crossroads of Cell Metabolism, Cell Cycle, and Stemness. Int J Mol Sci 2022; 23:ijms23042290. [PMID: 35216401 PMCID: PMC8879101 DOI: 10.3390/ijms23042290] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
Initially described as lytic bodies due to their degradative and recycling functions, lysosomes play a critical role in metabolic adaptation to nutrient availability. More recently, the contribution of lysosomal proteins to cell signaling has been established, and lysosomes have emerged as signaling hubs that regulate diverse cellular processes, including cell proliferation and cell fate. Deciphering these signaling pathways has revealed an extensive crosstalk between the lysosomal and cell cycle machineries that is only beginning to be understood. Recent studies also indicate that a number of lysosomal proteins are involved in the regulation of embryonic and adult stem cell fate and identity. In this review, we will focus on the role of the lysosome as a signaling platform with an emphasis on its function in integrating nutrient sensing with proliferation and cell cycle progression, as well as in stemness-related features, such as self-renewal and quiescence.
Collapse
Affiliation(s)
- Ada Nowosad
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France;
- Department of Oncology, KULeuven, Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Arnaud Besson
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France;
- Correspondence: ; Tel.: +33-561558486
| |
Collapse
|
29
|
Satellite Cells Exhibit Decreased Numbers and Impaired Functions on Single Myofibers Isolated from Vitamin B6-Deficient Mice. Nutrients 2021; 13:nu13124531. [PMID: 34960083 PMCID: PMC8705767 DOI: 10.3390/nu13124531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Emerging research in human studies suggests an association among vitamin B6, sarcopenia, and muscle strength. However, very little is known regarding its potential role at the cellular level, especially in muscle satellite cells. Therefore, to determine whether vitamin B6 affects the satellite cells, we isolated single myofibers from muscles of vitamin B6-deficient and vitamin B6-supplemented mice. Subsequently, we subjected them to single myofiber culture and observed the number and function of the satellite cells, which remained in their niche on the myofibers. Prior to culture, the vitamin B6-deficient myofibers exhibited a significantly lower number of quiescent satellite cells, as compared to that in the vitamin B6-supplemented myofibers, thereby suggesting that vitamin B6 deficiency induces a decline in the quiescent satellite cell pool in mouse muscles. After 48 and 72 h of culture, the number of proliferating satellite cells per cluster was similar between the vitamin B6-deficient and -supplemented myofibers, but their numbers decreased significantly after culturing the myofibers in vitamin B6-free medium. After 72 h of culture, the number of self-renewing satellite cells per cluster was significantly lower in the vitamin B6-deficient myofibers, and the vitamin B6-free medium further decreased this number. In conclusion, vitamin B6 deficiency appears to reduce the number of quiescent satellite cells and suppress the proliferation and self-renewal of satellite cells during myogenesis.
Collapse
|
30
|
Liu M, Li C, Tang H, Gong M, Yue Z, Zhao M, Liu L, Li F. Dietary lysine supplementation improves growth performance and skeletal muscle development in rabbits fed a low protein diet. J Anim Physiol Anim Nutr (Berl) 2021; 106:1118-1129. [PMID: 34496098 DOI: 10.1111/jpn.13632] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/17/2021] [Indexed: 12/20/2022]
Abstract
The purpose of this study was to investigate the effects on growth of Lysine (Lys) supplementation in a low protein diet. We also investigated the gene or protein expression related to skeletal muscle development and intestinal amino acid transporters, and determined the major signalling associated with Lys-regulating skeletal muscle development. 1000 healthy, weights averaging 938.6 ± 6.54 g weaned rabbits were randomly divided into five groups (five replicates in each group and 40 rabbits in each replicate). These groups consisted of the normal protein group (NP group, consuming a diet containing 16.27% protein), the low protein group (LP group, 14.15%-14.19% protein) and the LP group with an addition of 0.15%, 0.3% or 0.45% Lys. The trial included 7 d of pre-feeding and 28 d of exposure to the treatment. Compared with NP diet and LP diet, LP+0.3% Lys group improved growth performance (p < 0.05), full-bore weight and half-bore weight of rabbits (p < 0.05). The LP+0.3% Lys group also resulted in a decrease in the excretion of faecal nitrogen and urinary nitrogen (FN; UN; p < 0.05), and an increase in nitrogen utilisation rate (NUR; p < 0.05). LP diet increased the mRNA expression of MSTN and WWP1, and decreased the mRNA expression of IGF1 (p < 0.05). LP diet decreased the protein expression of P-P70S6K1, P-4EBP1 and P-S6 (p < 0.05). LP+0.3% Lys group attenuated the effects of LP diet on the expression of MSTN, WWP1, IGF1, P-P70S6K1, P-4EBP1 and P-S6 (p < 0.05). LP+0.3% Lys group resulted in an increase in mRNA expression of MyoD and protein expression of P-mTOR relative to the NP and LP groups (p < 0.05). In summary, the addition of Lys to a LP diet provides a theoretical basis for the popularisation and application of Lys in rabbit production.
Collapse
Affiliation(s)
- Mengqi Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Chenyang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Haojia Tang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Maohua Gong
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Zhengkai Yue
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Man Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Lei Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Fuchang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
31
|
Tokarz J, Möller G, Artati A, Huber S, Zeigerer A, Blaauw B, Adamski J, Dyar KA. Common Muscle Metabolic Signatures Highlight Arginine and Lysine Metabolism as Potential Therapeutic Targets to Combat Unhealthy Aging. Int J Mol Sci 2021; 22:ijms22157958. [PMID: 34360722 PMCID: PMC8348621 DOI: 10.3390/ijms22157958] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Biological aging research is expected to reveal modifiable molecular mechanisms that can be harnessed to slow or possibly reverse unhealthy trajectories. However, there is first an urgent need to define consensus molecular markers of healthy and unhealthy aging. Established aging hallmarks are all linked to metabolism, and a ‘rewired’ metabolic circuitry has been shown to accelerate or delay biological aging. To identify metabolic signatures distinguishing healthy from unhealthy aging trajectories, we performed nontargeted metabolomics on skeletal muscles from 2-month-old and 21-month-old mice, and after dietary and lifestyle interventions known to impact biological aging. We hypothesized that common metabolic signatures would highlight specific pathways and processes promoting healthy aging, while revealing the molecular underpinnings of unhealthy aging. Here, we report 50 metabolites that commonly distinguished aging trajectories in all cohorts, including 18 commonly reduced under unhealthy aging and 32 increased. We stratified these metabolites according to known relationships with various aging hallmarks and found the greatest associations with oxidative stress and nutrient sensing. Collectively, our data suggest interventions aimed at maintaining skeletal muscle arginine and lysine may be useful therapeutic strategies to minimize biological aging and maintain skeletal muscle health, function, and regenerative capacity in old age.
Collapse
Affiliation(s)
- Janina Tokarz
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (J.T.); (G.M.); (A.Z.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Gabriele Möller
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (J.T.); (G.M.); (A.Z.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Anna Artati
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (A.A.); (S.H.)
| | - Simone Huber
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (A.A.); (S.H.)
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (J.T.); (G.M.); (A.Z.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Bert Blaauw
- Department of Biomedical Sciences, University of Padova, 35129 Padova, Italy;
- Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany;
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Kenneth Allen Dyar
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (J.T.); (G.M.); (A.Z.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Correspondence:
| |
Collapse
|
32
|
Ren L, Liu A, Wang Q, Wang H, Dong D, Liu L. Transcriptome analysis of embryonic muscle development in Chengkou Mountain Chicken. BMC Genomics 2021; 22:431. [PMID: 34107874 PMCID: PMC8191012 DOI: 10.1186/s12864-021-07740-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Muscle is the predominant portion of any meat product, and growth performance and product quality are the core of modern breeding. The embryonic period is highly critical for muscle development, the number, shape and structure of muscle fibers are determined at the embryonic stage. Herein, we performed transcriptome analysis to reveal the law of muscle development in the embryonic stage of Chengkou Mountain Chicken at embryonic days (E) 12, 16, 19, 21. RESULTS Diameter and area of muscle fibers exhibited significant difference at different embryonic times(P < 0.01). A total of 16,330 mRNAs transcripts were detected, including 109 novel mRNAs transcripts. By comparing different embryonic muscle development time points, 2,262 in E12vsE16, 5,058 in E12vsE19, 6139 in E12vsE21, 1,282 in E16vsE19, 2,920 in E16vsE21, and 646 in E19vsE21differentially expressed mRNAs were identified. It is worth noting that 7,572 mRNAs were differentially expressed. The time-series expression profile of differentially expressed genes (DEGs) showed that the rising and falling expression trends were significantly enriched. The significant enrichment trends included 3,150 DEGs. GO enrichment analysis provided three significantly enriched categories of significantly enriched differential genes, including 65 cellular components, 88 molecular functions, and 453 biological processes. Through KEGG analysis, we explored the biological metabolic pathways involved in differentially expressed genes. A total of 177 KEGG pathways were enriched, including 19 significant pathways, such as extracellular matrix-receptor interactions. Similarly, numerous pathways related to muscle development were found, including the Wnt signaling pathway (P < 0.05), MAPK signalingpathway, TGF-beta signaling pathway, PI3K-Akt signaling pathway and mTOR signaling pathway. Among the differentially expressed genes, we selected those involved in developing 4-time points; notably, up-regulated genes included MYH1F, SLC25A12, and HADHB, whereas the down-regulated genes included STMN1, VASH2, and TUBAL3. CONCLUSIONS Our study explored the embryonic muscle development of the Chengkou Mountain Chicken. A large number of DEGs related to muscle development have been identified ,and validation of key genes for embryonic development and preliminary explanation of their role in muscle development. Overall, this study broadened our current understanding of the phenotypic mechanism for myofiber formation and provides valuable information for improving chicken quality.
Collapse
Affiliation(s)
- Lingtong Ren
- College of Animal Science and Technology, Southwest University, Beibei, 400715, Chongqing, P. R. China
| | - Anfang Liu
- College of Animal Science and Technology, Southwest University, Beibei, 400715, Chongqing, P. R. China
| | - Qigui Wang
- ChongQing Academy of Animal Sciences, Rongchang, 402460, Chongqing, P. R. China
| | - Honggan Wang
- College of Animal Science and Technology, Southwest University, Beibei, 400715, Chongqing, P. R. China
| | - Deqiang Dong
- College of Animal Science and Technology, Southwest University, Beibei, 400715, Chongqing, P. R. China
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Beibei, 400715, Chongqing, P. R. China.
| |
Collapse
|
33
|
Solsona R, Pavlin L, Bernardi H, Sanchez AMJ. Molecular Regulation of Skeletal Muscle Growth and Organelle Biosynthesis: Practical Recommendations for Exercise Training. Int J Mol Sci 2021; 22:2741. [PMID: 33800501 PMCID: PMC7962973 DOI: 10.3390/ijms22052741] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
The regulation of skeletal muscle mass and organelle homeostasis is dependent on the capacity of cells to produce proteins and to recycle cytosolic portions. In this investigation, the mechanisms involved in skeletal muscle mass regulation-especially those associated with proteosynthesis and with the production of new organelles-are presented. Thus, the critical roles of mammalian/mechanistic target of rapamycin complex 1 (mTORC1) pathway and its regulators are reviewed. In addition, the importance of ribosome biogenesis, satellite cells involvement, myonuclear accretion, and some major epigenetic modifications related to protein synthesis are discussed. Furthermore, several studies conducted on the topic of exercise training have recognized the central role of both endurance and resistance exercise to reorganize sarcomeric proteins and to improve the capacity of cells to build efficient organelles. The molecular mechanisms underlying these adaptations to exercise training are presented throughout this review and practical recommendations for exercise prescription are provided. A better understanding of the aforementioned cellular pathways is essential for both healthy and sick people to avoid inefficient prescriptions and to improve muscle function with emergent strategies (e.g., hypoxic training). Finally, current limitations in the literature and further perspectives, notably on epigenetic mechanisms, are provided to encourage additional investigations on this topic.
Collapse
Affiliation(s)
- Robert Solsona
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120 Font-Romeu, France;
| | - Laura Pavlin
- DMEM, University of Montpellier, INRAE UMR866, 2 Place Pierre Viala, 34060 Montpellier, France; (L.P.); (H.B.)
| | - Henri Bernardi
- DMEM, University of Montpellier, INRAE UMR866, 2 Place Pierre Viala, 34060 Montpellier, France; (L.P.); (H.B.)
| | - Anthony MJ Sanchez
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120 Font-Romeu, France;
| |
Collapse
|
34
|
Bureš D, Bartoň L, Kudrnáčová E, Kotrba R, Hoffman LC. The Effect of Barley and Lysine Supplementation on the longissimus lumborum Meat Quality of Pasture-Raised Fallow Deer ( Dama dama). Foods 2020; 9:foods9091255. [PMID: 32911635 PMCID: PMC7555754 DOI: 10.3390/foods9091255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/23/2022] Open
Abstract
The chemical characteristics (proximate composition, amino acids, and fatty acids) and sensory quality of the longissimus lumborum (LL) muscle of 45 farmed male fallow deer were investigated. The animals were divided into three separate groups (n = 15 per treatment): pasture-fed (P), pasture-fed and supplemented with barley (B), and pasture-fed and supplemented with barley and lysine (BL). Differences were observed in LL moisture and the intramuscular fat contents, the latter being almost two-fold greater in the meat of B and BL groups compared to P. The concentrations of histidine, leucine, alanine, glutamic acid and glycine in the raw meat were higher in the BL group compared to the P group. Higher contents of n–3 polyunsaturated fatty acids (PUFAs), and consequently lower n–3 ratios, were found in the P group, compared to the BL group. The grilled meat samples from the P group scored higher than the other groups for grassy flavour, and lower for liver flavour.
Collapse
Affiliation(s)
- Daniel Bureš
- Institute of Animal Science, 104 00 Prague 10-Uhříněves, Czech Republic; (L.B.); (E.K.); (R.K.)
- Correspondence: ; Tel.: +420-267-009-659
| | - Luděk Bartoň
- Institute of Animal Science, 104 00 Prague 10-Uhříněves, Czech Republic; (L.B.); (E.K.); (R.K.)
| | - Eva Kudrnáčová
- Institute of Animal Science, 104 00 Prague 10-Uhříněves, Czech Republic; (L.B.); (E.K.); (R.K.)
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 21 Prague, Czech Republic
| | - Radim Kotrba
- Institute of Animal Science, 104 00 Prague 10-Uhříněves, Czech Republic; (L.B.); (E.K.); (R.K.)
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences, 165 21 Prague, Czech Republic
| | - Louwrens C. Hoffman
- Centre for Nutrition and Food Sciences, Queensland Alliance Mechanisation Building A. 8115, Gatton 4343, Australia;
- Department of Animal Sciences, University of Stellenbosch, Private Bag XI, Matieland 7602, South Africa
| |
Collapse
|
35
|
Musarò A. Muscle Homeostasis and Regeneration: From Molecular Mechanisms to Therapeutic Opportunities. Cells 2020; 9:cells9092033. [PMID: 32899793 PMCID: PMC7563331 DOI: 10.3390/cells9092033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/31/2022] Open
Abstract
The capacity of adult muscle to regenerate in response to injury stimuli represents an important homeostatic process. Regeneration is a highly coordinated program that partially recapitulates the embryonic developmental program and involves the activation of the muscle compartment of stem cells, namely satellite cells, as well as other precursor cells, whose activity is strictly dependent on environmental signals. However, muscle regeneration is severely compromised in several pathological conditions due to either the progressive loss of stem cell populations or to missing signals that limit the damaged tissues from efficiently activating a regenerative program. It is, therefore, plausible that the loss of control over these cells’ fate might lead to pathological cell differentiation, limiting the ability of a pathological muscle to sustain an efficient regenerative process. This Special Issue aims to bring together a collection of original research and review articles addressing the intriguing field of the cellular and molecular players involved in muscle homeostasis and regeneration and to suggest potential therapeutic approaches for degenerating muscle disease.
Collapse
Affiliation(s)
- Antonio Musarò
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via Antonio Scarpa, 14, 00161 Rome, Italy
| |
Collapse
|
36
|
Jin CL, Zhang ZM, Song ZW, Gao CQ, Yan HC, Wang XQ. mTORC1-Mediated Satellite Cell Differentiation Is Required for Lysine-Induced Skeletal Muscle Growth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4884-4892. [PMID: 32275833 DOI: 10.1021/acs.jafc.0c01275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Skeletal muscle is the primary source of protein for humans. However, the mechanisms of skeletal muscle growth, such as nutrition control, remain unknown. Moreover, the function of lysine (Lys) in controling skeletal muscle growth has gradually demonstrated that Lys is not only substantial for protein synthesis but also a signaling molecule for satellite cell (SC) activation. In the current work, the number of differentiated SCs in the longissimus thoracis muscle and the fusion index of SCs were both governed by Lys supplementation. Meanwhile, the myogenic regulatory factors and the mammalian target of rapamycin complex 1 (mTORC1) pathway showed the same tendencies of changes as the differentiation of SCs. After Lys was resupplemented with rapamycin, the mTORC1 pathway was inhibited and the differentiation ability of SCs was suppressed. Collectively, the results showed that the mTORC1-pathway-mediated SC differentiation was required for Lys-promoted skeletal muscle growth.
Collapse
Affiliation(s)
- Cheng-Long Jin
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, People's Republic of China
| | - Zong-Ming Zhang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, People's Republic of China
| | - Zhi-Wen Song
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, People's Republic of China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, People's Republic of China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, People's Republic of China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, People's Republic of China
| |
Collapse
|
37
|
Song ZW, Jin CL, Ye M, Gao CQ, Yan HC, Wang XQ. Lysine inhibits apoptosis in satellite cells to govern skeletal muscle growth via the JAK2-STAT3 pathway. Food Funct 2020; 11:3941-3951. [PMID: 32338270 DOI: 10.1039/d0fo00047g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Apoptosis is programmed cell death that can be stimulated by external stress or nutrition restrictions. However, the precise mechanism of apoptosis in skeletal muscle remains unknown. The objective of this study was to investigate whether apoptosis could be regulated by lysine (Lys) supplementation and the potential mechanism. In this study, an isobaric tag for relative and absolute quantification (iTRAQ) proteomics analysis of the longissimus dorsi muscle from piglets showed that the Janus family tyrosine kinase (JAK)-signal transducer and activator of transcription (STAT) pathway was involved in Lys deficiency-induced apoptosis and inhibited skeletal muscle growth. Meanwhile, western blotting results demonstrated that Lys deficiency led to apoptosis in the longissimus dorsi muscle with the JAK2-STAT3 pathway inhibition. Interestingly, apoptosis was suppressed, and the JAK2-STAT3 pathway was reactivated after Lys re-supplementation. In addition, the results showed that Lys deficiency-induced apoptosis in satellite cells (SCs) was mediated by the JAK2-STAT3 pathway inhibition. Moreover, the JAK2-STAT3 pathway was reactivated by Lys re-supplementation and suppressed cell apoptosis, and this effect was inhibited after treatment with Tyrphostin B42 (AG 490). In conclusion, we found that Lys inhibits apoptosis in SCs to govern skeletal muscle growth via the JAK2-STAT3 pathway.
Collapse
Affiliation(s)
- Zhi-Wen Song
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China.
| | | | | | | | | | | |
Collapse
|