1
|
Chen H, Li J, Pan X, Hu Z, Cai J, Xia Z, Qi N, Liao S, Spritzer Z, Bai Y, Sun M. A novel avian intestinal epithelial cell line: its characterization and exploration as an in vitro infection culture model for Eimeria species. Parasit Vectors 2024; 17:25. [PMID: 38243250 PMCID: PMC10799501 DOI: 10.1186/s13071-023-06090-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/10/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The gastrointestinal epithelium plays an important role in directing recognition by the immune system, and epithelial cells provide the host's front line of defense against microorganisms. However, it is difficult to cultivate avian intestinal epithelial cells in vitro for lengthy periods, and the lack of available cell lines limits the research on avian intestinal diseases and nutritional regulation. Chicken coccidiosis is a serious intestinal disease that causes significant economic losses in the poultry industry. In vitro, some cell line models are beneficial for the development of Eimeria species; however, only partial reproduction can be achieved. Therefore, we sought to develop a new model with both the natural host and epithelial cell phenotypes. METHODS In this study, we use the SV40 large T antigen (SV40T) gene to generate an immortalized cell line. Single-cell screening technology was used to sort positive cell clusters with epithelial characteristics for passage. Polymerase chain reaction (PCR) identification, immunofluorescence detection, and bulk RNA sequencing analysis and validation were used to check the expression of epithelial cell markers and characterize the avian intestinal epithelial cell line (AIEC). AIECs were infected with sporozoites, and their ability to support the in vitro endogenous development of Eimeria tenella was assessed. RESULTS This novel AIEC consistently expressed intestinal epithelial markers. Transcriptome assays revealed the upregulation of genes associated with proliferation and downregulation of genes associated with apoptosis. We sought to compare E. tenella infection between an existing fibroblast cell line (DF-1) and several passages of AIEC and found that the invasion efficiency was significantly increased relative to that of chicken fibroblast cell lines. CONCLUSIONS An AIEC will serve as a better in vitro research model, especially in the study of Eimeria species development and the mechanisms of parasite-host interactions. Using AIEC helps us understand the involvement of intestinal epithelial cells in the digestive tract and the immune defense of the chickens, which will contribute to the epithelial innate defense against microbial infection in the gastrointestinal tract.
Collapse
Affiliation(s)
- Huifang Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Juan Li
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xiaoting Pan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhichao Hu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Jianfeng Cai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Zijie Xia
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nanshan Qi
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shenquan Liao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zachary Spritzer
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yinshan Bai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China.
| | - Mingfei Sun
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
2
|
Li J, Zhao B, Zhang X, Dai Y, Yang N, Bao Z, Chen Y, Liu Y, Wu X. Establishment and functional characterization of immortalized rabbit dermal papilla cell lines. Anim Biotechnol 2023; 34:4050-4059. [PMID: 37652434 DOI: 10.1080/10495398.2023.2252861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Hair follicle (HF) undergo periodic growth and development in mammals, which regulated by dermal papilla cells (DPCs) are reported to play an important role in HF morphogenesis and development. However, primary DPCs have low proliferative activity, age quickly, and fresh cell isolation is both time-consuming and laborious. In this study, we introduced the SV40 large T antigen (SV40T) into dissociated early passage rabbit vibrissae DPCs with lentiviral vectors and established seven immortalized DPC lines (R-1, R-2, R-3, R-4, R-5, R-6 and R-7). These cell lines displayed early passage morphology and high alkaline phosphatase activity. RT-PCR and immunofluorescence staining showed that all the immortalized cell lines expressed the DPC markers (α-SMA, IGF1, ALPL, FGF2, BMP2 and TGFβ2), but α-SMA was only expressed well in R-3, R-4, and R-7. Furthermore, it was found that R-7 was the only line to survive beyond 50 passages. Compared to melanoma cells, R-7 did not undergo malignant transformation. Karyotyping and cell growth viability analysis illustrated that the R-7 cell line preserved the basic characteristics of primary DPCs. The R-7 DPCs established have potential application for future hair research. The study provides the theoretical basis in the cell research of HF growth and development.
Collapse
Affiliation(s)
- Jiali Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiyu Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yingying Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Naisu Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiyuan Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yan Liu
- Animal Husbandry and Veterinary Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
3
|
Xu B, He T, Yang H, Dai W, Liu L, Ma X, Ma J, Yang G, Si R, Du X, Fu X, Pei X. Activation of the p62-Keap1-Nrf2 pathway protects against oxidative stress and excessive autophagy in ovarian granulosa cells to attenuate DEHP-induced ovarian impairment in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115534. [PMID: 37776821 DOI: 10.1016/j.ecoenv.2023.115534] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is widely used in various plastics but has been demonstrated to cause female reproductive toxicity. However, the exact mechanism underlying the ovarian damage induced by DEHP remains unclear. In this study, DEHP was administered orally to 5-week-old female mice for 30 days at doses of 0, 250, 500, and 1000 mg/kg/day. The findings demonstrated that DEHP exposure disrupted ovarian function and follicular development as well as induced oxidative stress and autophagy in ovarian granulosa cells (GCs). Further, 200 µM mono-(2-ethylhexyl) phthalate (MEHP), the primary metabolite of DEHP in vivo, induced autophagy in both human ovarian granulosa cells line (KGN) and mouse primary GCs within 24 h in vitro. However, it did not affect the p62-dependent autophagy flux. Furthermore, MEHP-induced autophagy was inhibited by the autophagy inhibitor 3-MA and exacerbated by the autophagy activator rapamycin, indicating that MEHP induces excessive autophagy in GCs. Subsequently, we found that MEHP-induced autophagic cell death was primarily attributed to oxidative damage from elevated intracellular ROS levels. Meanwhile, MEHP exposure induced nuclear translocation of erythroid-derived factor 2-related factor (Nrf2), a key regulator of antioxidant activity resulting in activating antioxidant effects. Interestingly, we also found that MEHP-induced increase in p62 competitively binds Keap1, thereby facilitating nuclear translocation of Nrf2 and establishing a positive feedback loop in antioxidant regulation. Therefore, this study demonstrated that inhibition of Nrf2 could aggravate oxidative damage and enhance excessive autophagy caused by MEHP, while activation of Nrf2 could reverse the trend. These findings have also been reinforced in studies of cultured ovaries in vitro. Our study suggests that the p62-Keap1-Nrf2 pathway may serve as a potential protective mechanism against DEHP-induced oxidative stress and excessive autophagy in mouse GCs.
Collapse
Affiliation(s)
- Bo Xu
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Tiantian He
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Hong Yang
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Wenjie Dai
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Ling Liu
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoqian Ma
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Jiaxue Ma
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Guoqin Yang
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Rui Si
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Xing Du
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Xufeng Fu
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China.
| | - Xiuying Pei
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
4
|
Sutyagina OI, Beilin AK, Vorotelyak EA, Vasiliev AV. Immortalization Reversibility in the Context of Cell Therapy Biosafety. Int J Mol Sci 2023; 24:7738. [PMID: 37175444 PMCID: PMC10178325 DOI: 10.3390/ijms24097738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Immortalization (genetically induced prevention of replicative senescence) is a promising approach to obtain cellular material for cell therapy or for bio-artificial organs aimed at overcoming the problem of donor material shortage. Immortalization is reversed before cells are used in vivo to allow cell differentiation into the mature phenotype and avoid tumorigenic effects of unlimited cell proliferation. However, there is no certainty that the process of de-immortalization is 100% effective and that it does not cause unwanted changes in the cell. In this review, we discuss various approaches to reversible immortalization, emphasizing their advantages and disadvantages in terms of biosafety. We describe the most promising approaches in improving the biosafety of reversibly immortalized cells: CRISPR/Cas9-mediated immortogene insertion, tamoxifen-mediated self-recombination, tools for selection of successfully immortalized cells, using a decellularized extracellular matrix, and ensuring post-transplant safety with the use of suicide genes. The last process may be used as an add-on for previously existing reversible immortalized cell lines.
Collapse
Affiliation(s)
- Oksana I. Sutyagina
- N.K. Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Laboratory of Cell Biology, Vavilov Str. 26, 119334 Moscow, Russia
| | | | | | | |
Collapse
|
5
|
Kim S, Oh D, Choi H, Kim M, Cai L, Jawad A, Haomiao Z, Lee J, Kim E, Hyun SH. The effect of C–C motif chemokine ligand 2 supplementation on in vitro maturation of porcine cumulus-oocyte complexes and subsequent developmental competence after parthenogenetic activation. Front Vet Sci 2023; 10:1136705. [PMID: 36992978 PMCID: PMC10040565 DOI: 10.3389/fvets.2023.1136705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Porcine embryos are used for a variety of applications. However, the maturation rate in vitro remains low, and novel in vitro maturation (IVM) techniques that facilitate the collection of mature oocytes are necessary. C-C motif chemokine ligand 2 (CCL2) is a key periovulatory chemokine present in cumulus-oocyte complexes (COCs). We aimed to examine the effects of CCL2 supplementation during IVM on oocyte maturation and embryonic development. The CCL2 concentration was significantly higher in porcine follicular fluid (pFF) derived from follicles >8 mm in size than in pFF derived from smaller follicles. There was a significant increase in CCL2 mRNA levels in all follicular cells after IVM compared with that before IVM. We analyzed the localization of CCL2 and its receptor, the CCL2 receptor, in follicular cells. During IVM, different concentrations of CCL2 were added to COCs cultured in a maturation medium. After IVM, the group treated with 100 ng/mL CCL2 showed significantly higher metaphase II rates than the control group. All CCL2-treatment groups showed a significant increase in intracellular glutathione levels and a significant decrease in reactive oxygen species levels, compared to the control. In CCs treated with 100 ng/mL CCL2, the mRNA levels of BAX, CASP3, and NPR2 were significantly decreased. Furthermore, the mRNA levels of SOD1, SOD2, and CD44 were significantly increased. In oocytes treated with 10 ng/mL CCL2, mRNA levels of BAX and CASP3 were significantly decreased, whereas, NRF2 and NPM2 were significantly increased. ERK1 exhibited significantly increased mRNA expression in both CCs and oocytes treated with 10 ng/mL CCL2. The protein expression ratio of phosphorylated ERK1/2 to total ERK1/2 was significantly increased in CCs treated with 10 ng/mL CCL2. After parthenogenetic activation, cleavage rates were significantly improved in the 100 ng/mL CCL2 treatment group, and blastocyst formation rates were significantly enhanced in the 10 ng/mL CCL2 treatment group. Overall, our results suggest that IVM medium along with CCL2 improves porcine oocyte maturation and the development of parthenogenetically-activated embryos.
Collapse
Affiliation(s)
- Sohee Kim
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Dongjin Oh
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyerin Choi
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Mirae Kim
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Lian Cai
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
| | - Ali Jawad
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Zheng Haomiao
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Joohyeong Lee
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Eunhye Kim
- Laboratory of Molecular Diagnostics and Cell Biology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
- *Correspondence: Eunhye Kim
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
- Sang-Hwan Hyun
| |
Collapse
|
6
|
Guo D, Zhang L, Wang X, Zheng J, Lin S. Establishment methods and research progress of livestock and poultry immortalized cell lines: A review. Front Vet Sci 2022; 9:956357. [PMID: 36118350 PMCID: PMC9478797 DOI: 10.3389/fvets.2022.956357] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
An infinite cell line is one of the most favored experimental tools and plays an irreplaceable role in cell-based biological research. Primary cells from normal animal tissues undergo a limited number of divisions and subcultures in vitro before they enter senescence and die. On the contrary, an infinite cell line is a population of non-senescent cells that could proliferate indefinitely in vitro under the stimulation of external factors such as physicochemical stimulation, virus infection, or transfer of immortality genes. Cell immortalization is the basis for establishing an infinite cell line, and previous studies have found that methods to obtain immortalized cells mainly included physical and chemical stimulations, heterologous expression of viral oncogenes, increased telomerase activity, and spontaneous formation. However, some immortalized cells do not necessarily proliferate permanently even though they can extend their lifespan compared with primary cells. An infinite cell line not only avoids the complicated process of collecting primary cell, it also provides a convenient and reliable tool for studying scientific problems in biology. At present, how to establish a stable infinite cell line to maximize the proliferation of cells while maintaining the normal function of cells is a hot issue in the biological community. This review briefly introduces the methods of cell immortalization, discusses the related progress of establishing immortalized cell lines in livestock and poultry, and compares the characteristics of several methods, hoping to provide some ideas for generating new immortalized cell lines.
Collapse
|
7
|
Simulated Microgravity Induces the Proliferative Inhibition and Morphological Changes in Porcine Granulosa Cells. Curr Issues Mol Biol 2021; 43:2210-2219. [PMID: 34940129 PMCID: PMC8929043 DOI: 10.3390/cimb43030155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Astronauts are always faced with serious health problems during prolonged spaceflights. Previous studies have shown that weightlessness significantly affects the physiological function of female astronauts, including a change in reproductive hormones and ovarian cells, such as granulosa and theca cells. However, the effects of microgravity on these cells have not been well characterized, especially in granulosa cells. This study aimed to investigate the effects of simulated microgravity (SMG) on the proliferation and morphology of porcine granulosa cells (pGCs). pGC proliferation from the SMG group was inhibited, demonstrated by the reduced O.D. value and cell density in the WST-1 assay and cell number counting. SMG-induced pGCs exhibited an increased ratio of cells in the G0/G1 phase and a decreased ratio of cells in the S and G2/M phase. Western blot analysis indicated a down-regulation of cyclin D1, cyclin-dependent kinase 4 (cdk4), and cyclin-dependent kinase 6 (cdk6), leading to the prevention of the G1-S transition and inducing the arrest phase. pGCs under the SMG condition showed an increase in nuclear area. This caused a reduction in nuclear shape value in pGCs under the SMG condition. SMG-induced pGCs exhibited different morphologies, including fibroblast-like shape, rhomboid shape, and pebble-like shape. These results revealed that SMG inhibited proliferation and induced morphological changes in pGCs.
Collapse
|
8
|
MicroRNA 195-5p Targets Foxo3 Promoter Region to Regulate Its Expression in Granulosa Cells. Int J Mol Sci 2021; 22:ijms22136721. [PMID: 34201585 PMCID: PMC8267755 DOI: 10.3390/ijms22136721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Forkhead box O3 (Foxo3) is a member of the FOXO subfamily within the forkhead box (FOX) family, which has been shown to be essential for ovarian follicular development and maturation. Previous studies have shown the abundant expression of miR-195-5p in the nuclei of porcine granulosa cells (GCs), suggesting its potential role during ovarian follicle growth. In this study, a conditional immortalized porcine granulosa cell (CIPGC) line was used to determine whether the expression of Foxo3 could be regulated by the nuclear-enriched miR-195-5p. Through silico target prediction, we identified a potential binding site of miR-195-5p within the Foxo3 promoter. The over-expression of miR-195-5p increased Foxo3 expression at both mRNA and protein levels, while the knockdown of miR-195-5p decreased the expression of Foxo3. Furthermore, driven by the Foxo3 promoter, luciferase reporter activity was increased in response to miR-195-5p, while the mutation of the miR-195-5p binding site in the promoter region abolished this effect. In addition, the siRNA knockdown of Argonaute (AGO) 2, but not AGO1, significantly decreased Foxo3 transcript level. However, miR-195-5p failed to upregulate Foxo3 expression when AGO2 was knocked down. Moreover, chromatin immunoprecipitation (CHIP) assay showed that anti-AGO2 antibody pulled down both AGO2 and the Foxo3 promoter sequence, suggesting that AGO2 may be required for miR-195-5p to regulate Foxo3 expression in the nucleus. Additionally, Foxo3 expression was significantly increased by valproic acid (VPA), the inhibitor of deacetylase, as well as by methyltransferase inhibitor BIX-01294, indicating the involvement of histone modification. These effects were further enhanced in the presence of miR-195-5p and were decreased when miR-195-5p was knocked down. Overall, our results suggest that nuclear-enriched miR-195-5p regulates Foxo3 expression, which may be associated with AGO2 recruitment, as well as histone demethylation and acetylation in ovarian granulosa cells.
Collapse
|
9
|
Hou J, Lei Z, Cui L, Hou Y, Yang L, An R, Wang Q, Li S, Zhang H, Zhang L. Polystyrene microplastics lead to pyroptosis and apoptosis of ovarian granulosa cells via NLRP3/Caspase-1 signaling pathway in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:112012. [PMID: 33550074 DOI: 10.1016/j.ecoenv.2021.112012] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 01/17/2021] [Accepted: 01/28/2021] [Indexed: 05/23/2023]
Abstract
Microplastics (MPs) considered as a new persistent environmental pollutant could enter into the circulatory system and result in decrease of sperm quantity and quality in mice. However, the effects of Polystyrene MPs (PS MPs) on the ovary and its mechanism in rats remained unclear. In this present study, thirty-two healthy female Wistar rats were exposed to different concentrations of 0.5 µm PS MPs dispersed in deionized water for 90 days. Using hematoxylin-eosin (HE) staining, the number of growing follicles was decreased compared to the control group. In addition, the activity of glutathione peroxidase (GSH-Px), catalase (CAT) and superoxide dismutase (SOD) were decreased while the expression level of malondialdehyde (MDA) was increased in ovary tissue. Confirmed by immunohistochemistry, the integrated optical density of NLRP3 and Cleaved-Caspase-1 had been elevated by 13.9 and 14 in granulosa cells in the 1.5 mg/kg/d group. Furthermore, compared to the control group, the level of AMH had been decreased by 23.3 pg/ml while IL-1β and IL-18 had been increased by 32 and 18.5 pg/ml in the 1.5 mg/kg/d group using the enzyme-linked immune sorbent assay (ELISA). Besides, the apoptosis of granulosa cells was elevated measured by terminal deoxyribonucleotide transferase-mediated nick end labeling (TUNEL) staining and flow cytometry. Moreover, western blot assays showed that the expressions of NLRP3/Caspase-1 signaling pathway related factors and Cleaved-Caspase-3 were increased. These results demonstrated that PS MPs could induce pyroptosis and apoptosis of ovarian granulosa cells via the NLRP3/Caspase-1 signaling pathway maybe triggered by oxidative stress. The present study suggested that exposure to microplastics had adverse effects on ovary and could be a potential risk factor for female infertility, which provided new insights into the toxicity of MPs on female reproduction.
Collapse
Affiliation(s)
- Junyu Hou
- College of Clinical Medicine, Bin Zhou Medical University, Yantai, PR China
| | - Zhimin Lei
- College of Clinical Medicine, Bin Zhou Medical University, Yantai, PR China
| | - Linlu Cui
- Department of Histology and Embryology, Bin Zhou Medical University, Yantai, PR China; College of Basic Medicine & Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, PR China
| | - Yun Hou
- Department of Histology and Embryology, Bin Zhou Medical University, Yantai, PR China; College of Basic Medicine & Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, PR China
| | - Long Yang
- College of Clinical Medicine, Bin Zhou Medical University, Yantai, PR China
| | - Ru An
- College of Clinical Medicine, Bin Zhou Medical University, Yantai, PR China
| | - Qimeng Wang
- College of Clinical Medicine, Bin Zhou Medical University, Yantai, PR China
| | - Shengda Li
- College of Clinical Medicine, Bin Zhou Medical University, Yantai, PR China
| | - Hongqin Zhang
- Department of Histology and Embryology, Bin Zhou Medical University, Yantai, PR China; College of Basic Medicine & Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, PR China
| | - Lianshuang Zhang
- Department of Histology and Embryology, Bin Zhou Medical University, Yantai, PR China; College of Basic Medicine & Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, PR China.
| |
Collapse
|
10
|
Knockout of the Transducin-Like Enhancer of Split 6 Gene Affects the Proliferation and Cell Cycle Process of Mouse Spermatogonia. Int J Mol Sci 2020; 21:ijms21165827. [PMID: 32823735 PMCID: PMC7461562 DOI: 10.3390/ijms21165827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
Tle6 (Transducin-like enhancer of split 6) is a member of the Tle co-repressor superfamily, which is expressed in various tissues of invertebrates and vertebrates and participates in the developmental process. However, the current research has only found that the TLE6 mutation is related to infertility, and the key regulatory mechanism of TLE6 remains to be explored. In this study, we combined Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 and the Tet-on system to construct mouse spermatogonia cell lines that induced TLE6 protein knockout (KO), and studied the effect of Tle6 on mouse spermatogonia proliferation and the cell cycle. The results showed that, after drug induction, the Tle6 gene in mouse spermatogonia was successfully knocked out at the genome and protein levels, and the Tle6 gene knockout efficiency was confirmed to be 87.5% with gene-cloning technology. At the same time, we also found that the mouse spermatogonia proliferated slowly after the Tle6 knockout. Using flow cytometry, we found that the cells did not undergo significant apoptosis, and the number of cells in the S phase decreased. After real-time quantity PCR (qRT-PCR) analysis, we found that the expression of cell-proliferation-related genes, CCAAT enhancer-binding protein α(C/ebp α), granulocyte-colony stimulating factor(G-csf), cyclin-dependent kinases 4(Cdk 4), Cyclin E, proliferating cell nuclear antigen(Pcna), and S-phase kinase-associated protein 2 (Skp2) was significantly reduced, which further affected cell growth. In summary, Tle6 can regulate spermatogonia cell proliferation and the cell cycle and provide a scientific basis for studying the role of TLE6 on spermatogenesis.
Collapse
|