1
|
Daghrery A, Araújo IJDS, Marques JF, Alipour M, Ünsal RBK, Chathoth BM, Sivaramakrishnan G, Delgadillo-Barrera S, Chaurasia A. Role of exosomes in dental and craniofacial regeneration - A review. Tissue Cell 2024; 93:102684. [PMID: 39740273 DOI: 10.1016/j.tice.2024.102684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND The treatment of congenital deformities, traumatic injuries, infectious diseases, and tumors in the craniomaxillofacial (CMF) region is complex due to the intricate nature of the tissues involved. Conventional treatments such as bone grafts and cell transplantation face limitations, including the need for multiple surgeries, complications, and safety concerns. OBJECTIVE This paper aims to provide a comprehensive analysis of the role of exosomes (EXOs) in CMF and dental tissue regeneration and to explore their potential applications in regenerative dental medicine. METHODS An extensive review of advancements in tissue engineering, materials sciences, and nanotechnology was conducted to evaluate the development of delivery systems for EXOs-based therapies. The analysis included how EXOs, as nanovesicles released by cells, can be modified to target specific cells or loaded with functional molecules for drug or gene delivery. RESULTS EXOs have emerged as a promising alternative to cell transplant therapy, offering a safer method for cell communication and epigenetic control. EXOs transport important proteins and genetic materials, facilitating intercellular communication and delivering therapeutics effectively. The potential of EXOs in personalized medicine, particularly in diagnosing, customizing treatment, and predicting patient responses, is highlighted. CONCLUSION EXO-mediated therapy holds significant potential for advancing tissue regeneration, offering targeted, personalized treatment options with reduced side effects. However, challenges in purification, production, and standardized protocols need to be addressed before its clinical application can be fully realized.
Collapse
Affiliation(s)
- Arwa Daghrery
- Department of Restorative Dental Sciences, School of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia.
| | | | - Joana Faria Marques
- Faculdade de Medicina Dentária, Universidade de Lisboa, Cidade Universitária, Lisboa 1600-277, Portugal.
| | - Mahdieh Alipour
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Iran; Departments of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, USA.
| | - Revan Birke Koca Ünsal
- Department of Periodontology, University of Kyrenia, Faculty of Dentistry, Kyrenia, Cyprus.
| | | | | | - Sara Delgadillo-Barrera
- Grupo de Investigacion Básica y Aplicada en Odontología - IBAPO, Facultad de Odontologia, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Akhilanand Chaurasia
- Department of Oral Medicine and Radiology, Faculty of Dental Sciences. King George's Medical University, Lucknow, India.
| |
Collapse
|
2
|
Shuwen H, Yifei S, Xinyue W, Zhanbo Q, Xiang Y, Xi Y. Advances in bacteria-based drug delivery systems for anti-tumor therapy. Clin Transl Immunology 2024; 13:e1518. [PMID: 38939727 PMCID: PMC11208082 DOI: 10.1002/cti2.1518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/07/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
In recent years, bacteria have gained considerable attention as a promising drug carrier that is critical in improving the effectiveness and reducing the side effects of anti-tumor drugs. Drug carriers can be utilised in various forms, including magnetotactic bacteria, bacterial biohybrids, minicells, bacterial ghosts and bacterial spores. Additionally, functionalised and engineered bacteria obtained through gene engineering and surface modification could provide enhanced capabilities for drug delivery. This review summarises the current studies on bacteria-based drug delivery systems for anti-tumor therapy and discusses the prospects and challenges of bacteria as drug carriers. Furthermore, our findings aim to provide new directions and guidance for the research on bacteria-based drug systems.
Collapse
Affiliation(s)
- Han Shuwen
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityyHuzhouZhejiang ProvinceChina
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiang ProvinceChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiang ProvinceChina
| | - Song Yifei
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityyHuzhouZhejiang ProvinceChina
| | - Wu Xinyue
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityyHuzhouZhejiang ProvinceChina
| | - Qu Zhanbo
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityyHuzhouZhejiang ProvinceChina
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiang ProvinceChina
| | - Yu Xiang
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityyHuzhouZhejiang ProvinceChina
| | - Yang Xi
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityyHuzhouZhejiang ProvinceChina
| |
Collapse
|
3
|
Puca V, Marinacci B, Pellegrini B, Campanile F, Santagati M, Grande R. Biofilm and bacterial membrane vesicles: recent advances. Expert Opin Ther Pat 2024; 34:475-491. [PMID: 38578180 DOI: 10.1080/13543776.2024.2338101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
INTRODUCTION Bacterial Membrane Vesicles (MVs) play important roles in cell-to-cell communication and transport of several molecules. Such structures are essential components of Extracellular Polymeric Substances (EPS) biofilm matrix of many bacterial species displaying a structural function and a role in virulence and pathogenesis. AREAS COVERED In this review were included original articles from the last ten years by searching the keywords 'biofilm' and 'vesicles' on PUBMED and Scopus databases. The articles available in literature mainly describe a positive correlation between bacterial MVs and biofilms formation. The research on Espacenet and Google Patent databases underlines the available patents related to the application of both biofilm MVs and planktonic MVs in inhibiting biofilm formation. EXPERT OPINION This review covers and analyzes recent advances in the study of the relationship between bacterial vesicles and biofilm. The huge number of papers discussing the role of MVs confirms the interest aimed at developing new applications in the medical field. The study of the MVs composition and biogenesis may contribute to the identification of components which could be (i) the target for the development of new drugs inhibiting the biofilm establishment; (ii) candidates for the development of vaccines; (iii) biomarkers for the diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Valentina Puca
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Beatrice Marinacci
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Benedetta Pellegrini
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Floriana Campanile
- Department of Biomedical and Biotechnological Sciences (BIOMETEC) - Microbiology Section, University of Catania, Catania, Italy
| | - Maria Santagati
- Department of Biomedical and Biotechnological Sciences (BIOMETEC) - Microbiology Section, University of Catania, Catania, Italy
| | - Rossella Grande
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
4
|
Radford EJ, Whitworth DE. The genetic basis of predation by myxobacteria. Adv Microb Physiol 2024; 85:1-55. [PMID: 39059819 DOI: 10.1016/bs.ampbs.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Myxobacteria (phylum Myxococcota) are abundant and virtually ubiquitous microbial predators. Facultatively multicellular organisms, they are able to form multicellular fruiting bodies and swarm across surfaces, cooperatively hunting for prey. Myxobacterial communities are able to kill a wide range of prey microbes, assimilating their biomass to fuel population growth. Their mechanism of predation is exobiotic - hydrolytic enzymes and toxic metabolites are secreted into the extracellular environment, killing and digesting prey cells from without. However, recent observations of single-cell predation and contact-dependent prey killing challenge the dogma of myxobacterial predation being obligately cooperative. Regardless of their predatory mechanisms, myxobacteria have a broad prey range, which includes Gram-negative bacteria, Gram-positive bacteria and fungi. Pangenome analyses have shown that their extremely large genomes are mainly composed of accessory genes, which are not shared by all members of their species. It seems that the diversity of accessory genes in different strains provides the breadth of activity required to prey upon such a smorgasbord of microbes, and also explains the considerable strain-to-strain variation in predatory efficiency against specific prey. After providing a short introduction to general features of myxobacterial biology which are relevant to predation, this review brings together a rapidly growing body of work into the molecular mechanisms and genetic basis of predation, presenting a summary of current knowledge, highlighting trends in research and suggesting strategies by which we can potentially exploit myxobacterial predation in the future.
Collapse
Affiliation(s)
- Emily J Radford
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - David E Whitworth
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom.
| |
Collapse
|
5
|
Jiang B, Lai Y, Xiao W, Zhong T, Liu F, Gong J, Huang J. Microbial extracellular vesicles contribute to antimicrobial resistance. PLoS Pathog 2024; 20:e1012143. [PMID: 38696356 PMCID: PMC11065233 DOI: 10.1371/journal.ppat.1012143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024] Open
Abstract
With the escalating global antimicrobial resistance crisis, there is an urgent need for innovative strategies against drug-resistant microbes. Accumulating evidence indicates microbial extracellular vesicles (EVs) contribute to antimicrobial resistance. Therefore, comprehensively elucidating the roles and mechanisms of microbial EVs in conferring resistance could provide new perspectives and avenues for novel antimicrobial approaches. In this review, we systematically examine current research on antimicrobial resistance involving bacterial, fungal, and parasitic EVs, delineating the mechanisms whereby microbial EVs promote resistance. Finally, we discuss the application of bacterial EVs in antimicrobial therapy.
Collapse
Affiliation(s)
- Bowei Jiang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Yi Lai
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Wenhao Xiao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Fengping Liu
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Junjie Gong
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Junyun Huang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
6
|
Jeong GJ, Khan F, Tabassum N, Cho KJ, Kim YM. Bacterial extracellular vesicles: Modulation of biofilm and virulence properties. Acta Biomater 2024; 178:13-23. [PMID: 38417645 DOI: 10.1016/j.actbio.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/01/2024]
Abstract
Microbial pathogens cause persistent infections by forming biofilms and producing numerous virulence factors. Bacterial extracellular vesicles (BEVs) are nanostructures produced by various bacterial species vital for molecular transport. BEVs include various components, including lipids (glycolipids, LPS, and phospholipids), nucleic acids (genomic DNA, plasmids, and short RNA), proteins (membrane proteins, enzymes, and toxins), and quorum-sensing signaling molecules. BEVs play a major role in forming extracellular polymeric substances (EPS) in biofilms by transporting EPS components such as extracellular polysaccharides, proteins, and extracellular DNA. BEVs have been observed to carry various secretory virulence factors. Thus, BEVs play critical roles in cell-to-cell communication, biofilm formation, virulence, disease progression, and resistance to antimicrobial treatment. In contrast, BEVs have been shown to impede early-stage biofilm formation, disseminate mature biofilms, and reduce virulence. This review summarizes the current status in the literature regarding the composition and role of BEVs in microbial infections. Furthermore, the dual functions of BEVs in eliciting and suppressing biofilm formation and virulence in various microbial pathogens are thoroughly discussed. This review is expected to improve our understanding of the use of BEVs in determining the mechanism of biofilm development in pathogenic bacteria and in developing drugs to inhibit biofilm formation by microbial pathogens. STATEMENT OF SIGNIFICANCE: Bacterial extracellular vesicles (BEVs) are nanostructures formed by membrane blebbing and explosive cell lysis. It is essential for transporting lipids, nucleic acids, proteins, and quorum-sensing signaling molecules. BEVs play an important role in the formation of the biofilm's extracellular polymeric substances (EPS) by transporting its components, such as extracellular polysaccharides, proteins, and extracellular DNA. Furthermore, BEVs shield genetic material from nucleases and thermodegradation by packaging it during horizontal gene transfer, contributing to the transmission of bacterial adaptation determinants like antibiotic resistance. Thus, BEVs play a critical role in cell-to-cell communication, biofilm formation, virulence enhancement, disease progression, and drug resistance. In contrast, BEVs have been shown to prevent early-stage biofilm, disperse mature biofilm, and reduce virulence characteristics.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Institute of Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Kyung-Jin Cho
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
7
|
Saggu SK, Nath A, Kumar S. Myxobacteria: biology and bioactive secondary metabolites. Res Microbiol 2023; 174:104079. [PMID: 37169232 DOI: 10.1016/j.resmic.2023.104079] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/22/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Myxobacteria are Gram-negative eubacteria and they thrive in a variety of habitats including soil rich in organic matter, rotting wood, animal dung and marine environment. Myxobacteria are a promising source of new compounds associated with diverse bioactive spectrum and unique mode of action. The genome information of myxobacteria has revealed many orphan biosynthetic pathways indicating that these bacteria can be the source of several novel natural products. In this review, we highlight the biology of myxobacteria with emphasis on their habitat, life cycle, isolation methods and enlist all the bioactive secondary metabolites purified till date and their mode of action.
Collapse
Affiliation(s)
- Sandeep Kaur Saggu
- Department of Biotechnology, Kanya Maha Vidyalaya, Jalandhar, Punjab, India - 144004.
| | - Amar Nath
- University Centre of Excellence in Research, Baba Farid University of Health Sciences, Faridkot, Punjab India 151203.
| | - Shiv Kumar
- Guru Gobind Singh Medical College, Baba Farid University of Health Sciences, Faridkot, Punjab India 151203.
| |
Collapse
|
8
|
Zwarycz AS, Page T, Nikolova G, Radford EJ, Whitworth DE. Predatory Strategies of Myxococcus xanthus: Prey Susceptibility to OMVs and Moonlighting Enzymes. Microorganisms 2023; 11:microorganisms11040874. [PMID: 37110297 PMCID: PMC10141889 DOI: 10.3390/microorganisms11040874] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Predatory outer membrane vesicles (OMVs) secreted by myxobacteria fuse readily with the outer membranes of Gram-negative bacteria, introducing toxic cargo into their prey. Here we used a strain of the myxobacterium Myxococcus xanthus that produces fluorescent OMVs to assay the uptake of OMVs by a panel of Gram-negative bacteria. M. xanthus strains took up significantly less OMV material than the tested prey strains, suggesting that re-fusion of OMVs with producing organisms is somehow inhibited. The OMV killing activity against different prey correlated strongly with the predatory activity of myxobacterial cells, however, there was no correlation between OMV killing activity and their propensity to fuse with different prey. It has previously been proposed that M. xanthus GAPDH stimulates the predatory activity of OMVs by enhancing OMV fusion with prey cells. Therefore, we expressed and purified active fusion proteins of M. xanthus glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase (GAPDH and PGK; moonlighting enzymes with additional activities beyond their roles in glycolysis/gluconeogenesis) to investigate any involvement in OMV-mediated predation. Neither GAPDH nor PGK caused lysis of prey cells or enhanced OMV-mediated lysis of prey cells. However, both enzymes were found to inhibit the growth of Escherichia coli, even in the absence of OMVs. Our results suggest that fusion efficiency is not a determinant of prey killing, but instead resistance to the cargo of OMVs and co-secreted enzymes dictates whether organisms can be preyed upon by myxobacteria.
Collapse
|
9
|
Aytar Çelik P, Erdogan-Gover K, Barut D, Enuh BM, Amasya G, Sengel-Türk CT, Derkus B, Çabuk A. Bacterial Membrane Vesicles as Smart Drug Delivery and Carrier Systems: A New Nanosystems Tool for Current Anticancer and Antimicrobial Therapy. Pharmaceutics 2023; 15:pharmaceutics15041052. [PMID: 37111538 PMCID: PMC10142793 DOI: 10.3390/pharmaceutics15041052] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Bacterial membrane vesicles (BMVs) are known to be critical communication tools in several pathophysiological processes between bacteria and host cells. Given this situation, BMVs for transporting and delivering exogenous therapeutic cargoes have been inspiring as promising platforms for developing smart drug delivery systems (SDDSs). In the first section of this review paper, starting with an introduction to pharmaceutical technology and nanotechnology, we delve into the design and classification of SDDSs. We discuss the characteristics of BMVs including their size, shape, charge, effective production and purification techniques, and the different methods used for cargo loading and drug encapsulation. We also shed light on the drug release mechanism, the design of BMVs as smart carriers, and recent remarkable findings on the potential of BMVs for anticancer and antimicrobial therapy. Furthermore, this review covers the safety of BMVs and the challenges that need to be overcome for clinical use. Finally, we discuss the recent advancements and prospects for BMVs as SDDSs and highlight their potential in revolutionizing the fields of nanomedicine and drug delivery. In conclusion, this review paper aims to provide a comprehensive overview of the state-of-the-art field of BMVs as SDDSs, encompassing their design, composition, fabrication, purification, and characterization, as well as the various strategies used for targeted delivery. Considering this information, the aim of this review is to provide researchers in the field with a comprehensive understanding of the current state of BMVs as SDDSs, enabling them to identify critical gaps and formulate new hypotheses to accelerate the progress of the field.
Collapse
Affiliation(s)
- Pınar Aytar Çelik
- Environmental Protection and Control Program, Eskisehir Osmangazi University, Eskisehir 26110, Turkey
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Kubra Erdogan-Gover
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Dilan Barut
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Blaise Manga Enuh
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Gülin Amasya
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey
| | - Ceyda Tuba Sengel-Türk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey
| | - Burak Derkus
- Department of Chemistry, Faculty of Science, Ankara University, Ankara 06560, Turkey
| | - Ahmet Çabuk
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
- Department of Biology, Faculty of Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| |
Collapse
|
10
|
Lapuhs P, Heinrich E, Garcia R, Goes A, Frank N, Bollenbach L, Stibane V, Kuhn T, Koch M, Kiemer AK, Müller R, Fuhrmann K, Fuhrmann G. The inherent antibiotic activity of myxobacteria-derived autofluorescent outer membrane vesicles is switched on and off by light stimulation. NANOSCALE 2022; 14:17534-17542. [PMID: 36416362 DOI: 10.1039/d2nr02743g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Outer membrane vesicles are small, lipid-based vesicles shed from the outer membrane of Gram-negative bacteria. They are becoming increasingly recognised as important factors for resistance gene transfer, bacterial virulence factors and host cell modulation. The presence of pathogenic factors and antimicrobial compounds in bacterial vesicles has been proven in recent years, but it remains unclear, if and how environmental factors, such as light specifically regulate the vesicle composition. We report the first example of autofluorescent vesicles derived from non-pathogenic soil-living myxobacteria. These vesicles additionally showed inherent antibiotic activity, a property that is specifically regulated by light stimulation of the producing bacteria. Our data provide a central basis for better understanding the environmental impact on bacteria-derived vesicles, and design of future therapeutic options.
Collapse
Affiliation(s)
- Philipp Lapuhs
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Eilien Heinrich
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Ronald Garcia
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Adriely Goes
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Nicolas Frank
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Lukas Bollenbach
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Veronika Stibane
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany.
| | - Thomas Kuhn
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Kathrin Fuhrmann
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany.
| | - Gregor Fuhrmann
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany
| |
Collapse
|
11
|
Gao J, Su Y, Wang Z. Engineering bacterial membrane nanovesicles for improved therapies in infectious diseases and cancer. Adv Drug Deliv Rev 2022; 186:114340. [PMID: 35569561 PMCID: PMC9899072 DOI: 10.1016/j.addr.2022.114340] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/08/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023]
Abstract
Research on bacterial membrane vesicles (BMVs) is an emerging topic, and the goal is to address whether BMVs can bring translational tools to improve current therapies. In this review, we provided the updated studies on BMVs including their production, their types, and therapeutic regimens for treating infectious diseases and cancers. We described several platforms of BMVs, such as outer membrane vesicles (OMVs), inner membrane vesicles (IMVs) and double membrane vesicles (DMVs), and those structures were produced from Gram-negative or Gram-positive bacteria. We also discussed how to engineer and formulate new and novel BMVs using chemical, physical, and genetic methods. For therapies, we analyzed current methods for loading drugs in BMVs and discussed their limitations. Finally, we reviewed several therapeutic platforms of BMVs that have been exploited in improving the treatments of infectious diseases and cancers. Although BMVs offer the promising biomedical applications, it is needed to develop rigorous approaches and methods to generate reproducible and scalable drug delivery systems for translation.
Collapse
Affiliation(s)
| | | | - Zhenjia Wang
- Corresponding author at: 205 East Spokane Falls BLVD, Spokane, WA 99202, United States of America. (Z. Wang)
| |
Collapse
|
12
|
The tremendous biomedical potential of bacterial extracellular vesicles. Trends Biotechnol 2022; 40:1173-1194. [DOI: 10.1016/j.tibtech.2022.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/20/2022]
|
13
|
Richter R, Kamal MAM, Koch M, Niebuur B, Huber A, Goes A, Volz C, Vergalli J, Kraus T, Müller R, Schneider‐Daum N, Fuhrmann G, Pagès J, Lehr C. An Outer Membrane Vesicle-Based Permeation Assay (OMPA) for Assessing Bacterial Bioavailability. Adv Healthc Mater 2022; 11:e2101180. [PMID: 34614289 PMCID: PMC11468809 DOI: 10.1002/adhm.202101180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/14/2021] [Indexed: 11/11/2022]
Abstract
When searching for new antibiotics against Gram-negative bacterial infections, a better understanding of the permeability across the cell envelope and tools to discriminate high from low bacterial bioavailability compounds are urgently needed. Inspired by the phospholipid vesicle-based permeation assay (PVPA), which is designed to predict non-facilitated permeation across phospholipid membranes, outer membrane vesicles (OMVs) of Escherichia coli either enriched or deficient of porins are employed to coat filter supports for predicting drug uptake across the complex cell envelope. OMVs and the obtained in vitro model are structurally and functionally characterized using cryo-TEM, SEM, CLSM, SAXS, and light scattering techniques. In vitro permeability, obtained from the membrane model for a set of nine antibiotics, correlates with reported in bacterio accumulation data and allows to discriminate high from low accumulating antibiotics. In contrast, the correlation of the same data set generated by liposome-based comparator membranes is poor. This better correlation of the OMV-derived membranes points to the importance of hydrophilic membrane components, such as lipopolysaccharides and porins, since those features are lacking in liposomal comparator membranes. This approach can offer in the future a high throughput screening tool with high predictive capacity or can help to identify compound- and bacteria-specific passive uptake pathways.
Collapse
Affiliation(s)
- Robert Richter
- Helmholtz Centre for Infection ResearchHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
| | - Mohamed A. M. Kamal
- Helmholtz Centre for Infection ResearchHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
- Saarland UniversityDepartment of PharmacyCampus E8.1Saarbrücken66123Germany
| | - Marcus Koch
- INM – Leibniz Institute for New MaterialsCampus D2.2Saarbrücken66123Germany
| | - Bart‐Jan Niebuur
- INM – Leibniz Institute for New MaterialsCampus D2.2Saarbrücken66123Germany
| | - Anna‐Lena Huber
- Helmholtz Centre for Infection ResearchHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
- Saarland UniversityDepartment of PharmacyCampus E8.1Saarbrücken66123Germany
| | - Adriely Goes
- Helmholtz Centre for Infection ResearchHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
- Saarland UniversityDepartment of PharmacyCampus E8.1Saarbrücken66123Germany
| | - Carsten Volz
- Helmholtz Centre for Infection ResearchHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
| | - Julia Vergalli
- UMR_MD1U‐1261Aix‐Marseille UniversitéINSERMIRBAMCTFaculté de Pharmacie27 Boulevard Jean MoulinMarseille13005France
| | - Tobias Kraus
- INM – Leibniz Institute for New MaterialsCampus D2.2Saarbrücken66123Germany
- Colloid and Interface ChemistrySaarland UniversityCampus D2.2Saarbrücken66123Germany
| | - Rolf Müller
- Helmholtz Centre for Infection ResearchHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
- Saarland UniversityDepartment of PharmacyCampus E8.1Saarbrücken66123Germany
| | - Nicole Schneider‐Daum
- Helmholtz Centre for Infection ResearchHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
| | - Gregor Fuhrmann
- Helmholtz Centre for Infection ResearchHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
- Saarland UniversityDepartment of PharmacyCampus E8.1Saarbrücken66123Germany
| | - Jean‐Marie Pagès
- UMR_MD1U‐1261Aix‐Marseille UniversitéINSERMIRBAMCTFaculté de Pharmacie27 Boulevard Jean MoulinMarseille13005France
| | - Claus‐Michael Lehr
- Helmholtz Centre for Infection ResearchHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
- Saarland UniversityDepartment of PharmacyCampus E8.1Saarbrücken66123Germany
| |
Collapse
|
14
|
Huang W, Meng L, Chen Y, Dong Z, Peng Q. Bacterial outer membrane vesicles as potential biological nanomaterials for antibacterial therapy. Acta Biomater 2022; 140:102-115. [PMID: 34896632 DOI: 10.1016/j.actbio.2021.12.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/05/2021] [Accepted: 12/03/2021] [Indexed: 02/05/2023]
Abstract
Antibiotic therapy is one of the most important approaches against bacterial infections. However, the improper use of antibiotics and the emergence of drug resistance have compromised the efficacy of traditional antibiotic therapy. In this regard, it is of great importance and significance to develop more potent antimicrobial therapies, including the development of functionalized antibiotics delivery systems and antibiotics-independent antimicrobial agents. Outer membrane vesicles (OMVs), secreted by Gram-negative bacteria and with similar structure to cell-derived exosomes, are natural functional nanomaterials and known to play important roles in many bacterial life events, such as communication, biofilm formation and pathogenesis. Recently, more and more reports have demonstrated the use of OMVs as either active antibacterial agents or antibiotics delivery carriers, implying the great potentials of OMVs in antibacterial therapy. Herein, we aim to provide a comprehensive understanding of OMV and its antibacterial applications, including its biogenesis, biofunctions, isolation, purification and its potentials in killing bacteria, delivering antibiotics and developing vaccine or immunoadjuvants. In addition, the concerns in clinical use of OMVs and the possible solutions are discussed. STATEMENT OF SIGNIFICANCE: The emergence of antibiotic-resistant bacteria has led to the failure of traditional antibiotic therapy, and thus become a big threat to human beings. In this regard, developing more potent antibacterial approaches is of great importance and significance. Recently, bacterial outer membrane vesicles (OMVs), which are natural functional nanomaterials secreted by Gram-negative bacteria, have been used as active agents, drug carriers and vaccine adjuvant for antibacterial therapy. This review provides a comprehensive understanding of OMVs and summarizes the recent progress of OMVs in antibacterial applications. The concerns of OMVs in clinical use and the possible solutions are also discussed. As such, this review may guide the future works in antibacterial OMVs and appeal to both scientists and clinicians.
Collapse
Affiliation(s)
- Wenlong Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lingxi Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zaiquan Dong
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
15
|
Drost M, Diamanti E, Fuhrmann K, Goes A, Shams A, Haupenthal J, Koch M, Hirsch AKH, Fuhrmann G. Bacteriomimetic Liposomes Improve Antibiotic Activity of a Novel Energy-Coupling Factor Transporter Inhibitor. Pharmaceutics 2021; 14:4. [PMID: 35056900 PMCID: PMC8779172 DOI: 10.3390/pharmaceutics14010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 11/21/2022] Open
Abstract
Liposomes have been studied for decades as nanoparticulate drug delivery systems for cytostatics, and more recently, for antibiotics. Such nanoantibiotics show improved antibacterial efficacy compared to the free drug and can be effective despite bacterial recalcitrance. In this work, we present a loading method of bacteriomimetic liposomes for a novel, hydrophobic compound (HIPS5031) inhibiting energy-coupling factor transporters (ECF transporters), an underexplored antimicrobial target. The liposomes were composed of DOPG (18:1 (Δ9-cis) phosphatidylglycerol) and CL (cardiolipin), resembling the cell membrane of Gram-positive Staphylococcus aureus and Streptococcus pneumoniae, and enriched with cholesterol (Chol). The size and polydispersity of the DOPG/CL/± Chol liposomes remained stable over 8 weeks when stored at 4 °C. Loading of the ECF transporter inhibitor was achieved by thin film hydration and led to a high encapsulation efficiency of 33.19% ± 9.5% into the DOPG/CL/Chol liposomes compared to the phosphatidylcholine liposomes (DMPC/DPPC). Bacterial growth inhibition assays on the model organism Bacillus subtilis revealed liposomal HIPS5031 as superior to the free drug, showing a 3.5-fold reduction in CFU/mL at a concentration of 9.64 µM. Liposomal HIPS5031 was also shown to reduce B. subtilis biofilm. Our findings present an explorative basis for bacteriomimetic liposomes as a strategy against drug-resistant pathogens by surpassing the drug-formulation barriers of innovative, yet unfavorably hydrophobic, antibiotics.
Collapse
Affiliation(s)
- Menka Drost
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany; (M.D.); (E.D.); (K.F.); (A.G.); (A.S.); (J.H.); (A.K.H.H.)
- Department of Biology, Pharmaceutical Biology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Staudtstr. 5, 91058 Erlangen, Germany
| | - Eleonora Diamanti
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany; (M.D.); (E.D.); (K.F.); (A.G.); (A.S.); (J.H.); (A.K.H.H.)
- Helmholtz International Lab for Anti-Infectives, Campus E8.1, 66123 Saarbrücken, Germany
| | - Kathrin Fuhrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany; (M.D.); (E.D.); (K.F.); (A.G.); (A.S.); (J.H.); (A.K.H.H.)
| | - Adriely Goes
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany; (M.D.); (E.D.); (K.F.); (A.G.); (A.S.); (J.H.); (A.K.H.H.)
| | - Atanaz Shams
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany; (M.D.); (E.D.); (K.F.); (A.G.); (A.S.); (J.H.); (A.K.H.H.)
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany; (M.D.); (E.D.); (K.F.); (A.G.); (A.S.); (J.H.); (A.K.H.H.)
| | - Marcus Koch
- INM-Leibniz-Institut für Neue Materialien, Campus D2.2, 66123 Saarbrücken, Germany;
| | - Anna K. H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany; (M.D.); (E.D.); (K.F.); (A.G.); (A.S.); (J.H.); (A.K.H.H.)
- Helmholtz International Lab for Anti-Infectives, Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus C1.7, 66123 Saarbrücken, Germany
| | - Gregor Fuhrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany; (M.D.); (E.D.); (K.F.); (A.G.); (A.S.); (J.H.); (A.K.H.H.)
- Department of Biology, Pharmaceutical Biology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Staudtstr. 5, 91058 Erlangen, Germany
| |
Collapse
|
16
|
Akbar S, Phillips KE, Misra SK, Sharp JS, Stevens DC. Differential response to prey quorum signals indicates predatory specialization of myxobacteria and ability to predate Pseudomonas aeruginosa. Environ Microbiol 2021; 24:1263-1278. [PMID: 34674390 PMCID: PMC9257966 DOI: 10.1111/1462-2920.15812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/20/2021] [Accepted: 10/07/2021] [Indexed: 11/29/2022]
Abstract
Multiomic analysis of transcriptional and metabolic responses from the predatory myxobacteria Myxococcus xanthus and Cystobacter ferrugineus exposed to prey signalling molecules of the acylhomoserine lactone and quinolone quorum signalling classes provided insight into predatory specialization. Acylhomoserine lactone quorum signals elicited a general response from both myxobacteria. We suggest that this is likely due to the generalist predator lifestyles of myxobacteria and ubiquity of acylhomoserine lactone signals. We also provide data that indicates the core homoserine lactone moiety included in all acylhomoserine lactone scaffolds to be sufficient to induce this general response. Comparing both myxobacteria, unique transcriptional and metabolic responses were observed from Cystobacter ferrugineus exposed to the quinolone signal 2‐heptylquinolin‐4(1H)‐one (HHQ) natively produced by Pseudomonas aeruginosa. We suggest that this unique response and ability to metabolize quinolone signals contribute to the superior predation of P. aeruginosa observed from C. ferrugineus. These results further demonstrate myxobacterial eavesdropping on prey signalling molecules and provide insight into how responses to exogenous signals might correlate with prey range of myxobacteria.
Collapse
Affiliation(s)
- Shukria Akbar
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA
| | - Kayleigh E Phillips
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA
| | - Sandeep K Misra
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA
| | - Joshua S Sharp
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA.,Department of Chemistry and Biochemistry, University of Mississippi, University, University, MS, USA
| | - D Cole Stevens
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA
| |
Collapse
|
17
|
Subramaniam S, Joyce P, Thomas N, Prestidge CA. Bioinspired drug delivery strategies for repurposing conventional antibiotics against intracellular infections. Adv Drug Deliv Rev 2021; 177:113948. [PMID: 34464665 DOI: 10.1016/j.addr.2021.113948] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/04/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022]
Abstract
Bacteria have developed a wealth of strategies to avoid and resist the action of antibiotics, one of which involves pathogens invading and forming reservoirs within host cells. Due to the poor cell membrane permeability, stability and retention of conventional antibiotics, this renders current treatments largely ineffective, since achieving a therapeutically relevant antibiotic concentration at the site of intracellular infection is not possible. To overcome such challenges, current antibiotics are 'repurposed' via reformulation using micro- or nano-carrier systems that effectively encapsulate and deliver therapeutics across cellular membranes of infected cells. Bioinspired materials that imitate the uptake of biological particulates and release antibiotics in response to natural stimuli are recently explored to improve the targeting and specificity of this 'nanoantibiotic' approach. In this review, the mechanisms of internalization and survival of intracellular bacteria are elucidated, effectively accentuating the current treatment challenges for intracellular infections and the implications for repurposing conventional antibiotics. Key case studies of nanoantibiotics that have drawn inspiration from natural biological particles and cellular uptake pathways to effectively eradicate intracellular pathogens are detailed, clearly highlighting the rational for harnessing bioinspired drug delivery strategies.
Collapse
Affiliation(s)
- Santhni Subramaniam
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia
| | - Paul Joyce
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia
| | - Nicky Thomas
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia; The Basil Hetzel Institute for Translational Health Research, Woodville, SA 5011, Australia
| | - Clive A Prestidge
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
18
|
Collins SM, Brown AC. Bacterial Outer Membrane Vesicles as Antibiotic Delivery Vehicles. Front Immunol 2021; 12:733064. [PMID: 34616401 PMCID: PMC8488215 DOI: 10.3389/fimmu.2021.733064] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/31/2021] [Indexed: 01/04/2023] Open
Abstract
Bacterial outer membrane vesicles (OMVs) are nanometer-scale, spherical vehicles released by Gram-negative bacteria into their surroundings throughout growth. These OMVs have been demonstrated to play key roles in pathogenesis by delivering certain biomolecules to host cells, including toxins and other virulence factors. In addition, this biomolecular delivery function enables OMVs to facilitate intra-bacterial communication processes, such as quorum sensing and horizontal gene transfer. The unique ability of OMVs to deliver large biomolecules across the complex Gram-negative cell envelope has inspired the use of OMVs as antibiotic delivery vehicles to overcome transport limitations. In this review, we describe the advantages, applications, and biotechnological challenges of using OMVs as antibiotic delivery vehicles, studying both natural and engineered antibiotic applications of OMVs. We argue that OMVs hold great promise as antibiotic delivery vehicles, an urgently needed application to combat the growing threat of antibiotic resistance.
Collapse
Affiliation(s)
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, United States
| |
Collapse
|
19
|
Goes A, Vidakovic L, Drescher K, Fuhrmann G. Interaction of myxobacteria-derived outer membrane vesicles with biofilms: antiadhesive and antibacterial effects. NANOSCALE 2021; 13:14287-14296. [PMID: 34477714 DOI: 10.1039/d1nr02583j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bacterial biofilms are widespread in nature and in medical settings and display a high tolerance to antibiotics and disinfectants. Extracellular vesicles have been increasingly studied to characterise their origins and assess their potential for use as a versatile drug delivery system; however, it remains unclear whether they also have antibiofilm effects. Outer membrane vesicles are lipid vesicles shed by Gram-negative bacteria and, in the case of myxobacteria, carry natural antimicrobial compounds produced by these microorganisms. In this study, we demonstrate that vesicles derived from the myxobacteria Cystobacter velatus Cbv34 and Cystobacter ferrugineus Cbfe23 are highly effective at inhibiting the formation and disrupting biofilms by different bacterial species.
Collapse
Affiliation(s)
- Adriely Goes
- Helmholtz Centre for Infection Research (HZI), Biogenic Nanotherapeutics Group (BION), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany.
| | | | | | | |
Collapse
|
20
|
Herrmann IK, Wood MJA, Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. NATURE NANOTECHNOLOGY 2021; 16:748-759. [PMID: 34211166 DOI: 10.1038/s41565-021-00931-2] [Citation(s) in RCA: 919] [Impact Index Per Article: 229.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 05/17/2021] [Indexed: 05/23/2023]
Abstract
Extracellular-vesicle-based cell-to-cell communication is conserved across all kingdoms of life. There is compelling evidence that extracellular vesicles are involved in major (patho)physiological processes, including cellular homoeostasis, infection propagation, cancer development and cardiovascular diseases. Various studies suggest that extracellular vesicles have several advantages over conventional synthetic carriers, opening new frontiers for modern drug delivery. Despite extensive research, clinical translation of extracellular-vesicle-based therapies remains challenging. Here, we discuss the uniqueness of extracellular vesicles along with critical design and development steps required to utilize their full potential as drug carriers, including loading methods, in-depth characterization and large-scale manufacturing. We compare the prospects of extracellular vesicles with those of the well established liposomes and provide guidelines to direct the process of developing vesicle-based drug delivery systems.
Collapse
Affiliation(s)
- Inge Katrin Herrmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland.
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland.
| | - Matthew John Andrew Wood
- Department of Paediatrics and Oxford Harrington Rare Disease Centre, University of Oxford, Oxford, UK
| | - Gregor Fuhrmann
- Helmholtz Centre for Infection Research (HZI), Biogenic Nanotherapeutics Group (BION), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, Saarbrücken, Germany.
- Chair for Pharmaceutical Biology, Department of Biology, Friedrich-Alexander-University Erlangen Nuremberg, Erlangen, Germany.
| |
Collapse
|
21
|
Richter M, Vader P, Fuhrmann G. Approaches to surface engineering of extracellular vesicles. Adv Drug Deliv Rev 2021; 173:416-426. [PMID: 33831479 DOI: 10.1016/j.addr.2021.03.020] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/03/2021] [Accepted: 03/29/2021] [Indexed: 12/23/2022]
Abstract
Extracellular vesicles (EVs) are cell-derived nanoparticles that are important mediators in intercellular communication. This function makes them auspicious candidates for therapeutic and drug-delivery applications. Among EVs, mammalian cell derived EVs and outer membrane vesicles (OMVs) produced by gram-negative bacteria are the most investigated candidates for pharmaceutical applications. To further optimize their performance and to utilize their natural abilities, researchers have strived to equip EVs with new moieties on their surface while preserving the integrity of the vesicles. The aim of this review is to give a comprehensive overview of techniques that can be used to introduce these moieties to the vesicle surface. Approaches can be classified in regards to whether they take place before or after the isolation of EVs. The producing cells can be subjected to genetic manipulation or metabolic engineering to produce surface modified vesicles or EVs are engineered after their isolation by physical or chemical means. Here, the advantages and disadvantages of these processes and their applicability for the development of EVs as therapeutic agents are discussed.
Collapse
|
22
|
Bacterial extracellular vesicles: Understanding biology promotes applications as nanopharmaceuticals. Adv Drug Deliv Rev 2021; 173:125-140. [PMID: 33774113 DOI: 10.1016/j.addr.2021.03.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022]
Abstract
Extracellular vesicle (EV)-mediated communication between proximal and distant cells is a highly conserved characteristic in all of the life domains, including bacteria. These vesicles that contain a variety of biomolecules, such as proteins, lipids, nucleic acids, and small-molecule metabolites play a key role in the biology of bacteria. They are one of the key underlying mechanisms behind harmful or beneficial effects of many pathogenic, symbiont, and probiotic bacteria. These nanoscale EVs mediate extensive crosstalk with mammalian cells and deliver their cargos to the host. They are stable in physiological condition, can encapsulate diverse biomolecules and nanoparticles, and their surface could be engineered with available technologies. Based on favorable characteristics of bacterial vesicles, they can be harnessed for designing a diverse range of therapeutics and diagnostics for treatment of disorders including tumors and resistant infections. However, technical limitations for their production, purification, and characterization must be addressed in future studies.
Collapse
|
23
|
Shrivastava A, Sharma RK. Myxobacteria and their products: current trends and future perspectives in industrial applications. Folia Microbiol (Praha) 2021; 66:483-507. [PMID: 34060028 DOI: 10.1007/s12223-021-00875-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 05/13/2021] [Indexed: 12/12/2022]
Abstract
Myxobacteria belong to a group of bacteria that are known for their well-developed communication system and synchronized or coordinated movement. This typical behavior of myxobacteria is mediated through secondary metabolites. They are capable of producing secondary metabolites belonging to several chemical classes with unique and wide spectrum of bioactivities. It is predominantly significant that myxobacteria specialize in mechanisms of action that are very rare with other producers. Most of the metabolites have been explored for their medical and pharmaceutical values while a lot of them are still unexplored. This review is an attempt to understand the role of potential metabolites produced by myxobacteria in different applications. Different myxobacterial metabolites have demonstrated antibacterial, antifungal, and antiviral properties along with cytotoxic activity against various cell lines. Beside their metabolites, these myxobacteria have also been discussed for better exploitation and implementation in different industrial sectors.
Collapse
Affiliation(s)
- Akansha Shrivastava
- Department of Biosciences, Manipal University Jaipur, Rajasthan, 303007, Jaipur, India
| | - Rakesh Kumar Sharma
- Department of Biosciences, Manipal University Jaipur, Rajasthan, 303007, Jaipur, India.
| |
Collapse
|
24
|
Müller L, Kuhn T, Koch M, Fuhrmann G. Stimulation of Probiotic Bacteria Induces Release of Membrane Vesicles with Augmented Anti-inflammatory Activity. ACS APPLIED BIO MATERIALS 2021; 4:3739-3748. [PMID: 35006804 DOI: 10.1021/acsabm.0c01136] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
During infection, inflammation is an important contributor to tissue regeneration and healing, but it may also negatively affect these processes should chronic overstimulation take place. Similar issues arise in chronic inflammatory gastrointestinal diseases such as inflammatory bowel diseases or celiac disease, which show increasing incidences worldwide. For these dispositions, probiotic microorganisms, including lactobacilli, are studied as an adjuvant therapy to counterbalance gut dysbiosis. However, not all who are affected can benefit from the probiotic treatment, as immunosuppressed or hospitalized patients can suffer from bacteremia or sepsis when living microorganisms are administered. A promising alternative is the treatment with bacteria-derived membrane vesicles that confer similar beneficial effects as the progenitor strains themselves. Membrane vesicles from lactobacilli have shown anti-inflammatory therapeutic effects, but it remains unclear whether the stimulation of probiotics induces vesicles that are more efficient. Here, the influence of culture conditions on the anti-inflammatory characteristics of Lactobacillus membrane vesicles was investigated. We reveal that the culture conditions of two Lactobacillus strains, namely, L. casei and L. plantarum, can be optimized to increase the anti-inflammatory effect of their vesicles. Five different cultivation conditions were tested, including pH manipulation, agitation rate, and oxygen supply, and the produced membrane vesicles were characterized physico-chemically regarding size, yield, and zeta potential. We furthermore analyzed the anti-inflammatory effect of the purified vesicles in macrophage inflammation models. Compared to standard cultivation conditions, vesicles obtained from L. casei cultured at pH 6.5 and agitation induced the strongest interleukin-10 release and tumor necrosis factor-α reduction. For L. plantarum, medium adjusted to pH 5 had the most pronounced effect on the anti-inflammatory activity of their vesicles. Our results reveal that the anti-inflammatory effect of probiotic vesicles may be potentiated by expanding different cultivation conditions for lactobacilli. This study creates an important base for the utilization of probiotic membrane vesicles to treat inflammation.
Collapse
Affiliation(s)
- Lisann Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Department of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Thomas Kuhn
- Helmholtz Institute for Pharmaceutical Research Saarland, Department of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Gregor Fuhrmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Department of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| |
Collapse
|
25
|
Trousil J, Aryal S, Fuhrmann G. Biogenic and biomimetic nanocarrier-based interventions: focus on intracellular infections. Nanomedicine (Lond) 2021; 16:685-688. [PMID: 33683144 DOI: 10.2217/nnm-2021-0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Jiří Trousil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, 16200, Czech Republic
| | - Santosh Aryal
- Department of Chemistry, Nanotechnology Innovation Center of Kansas State (NICKS), Kansas State University, Manhattan, KS 66506, USA
| | - Gregor Fuhrmann
- Helmholtz Centre for Infection Research (HZI), Biogenic Nanotherapeutics Group (BION), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, 66123, Germany
| |
Collapse
|
26
|
Extracellular Vesicles as an Efficient and Versatile System for Drug Delivery. Cells 2020; 9:cells9102191. [PMID: 33003285 PMCID: PMC7600121 DOI: 10.3390/cells9102191] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/24/2020] [Accepted: 05/30/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the recent advances in drug development, the majority of novel therapeutics have not been successfully translated into clinical applications. One of the major factors hindering their clinical translation is the lack of a safe, non-immunogenic delivery system with high target specificity upon systemic administration. In this respect, extracellular vesicles (EVs), as natural carriers of bioactive cargo, have emerged as a promising solution and can be further modified to improve their therapeutic efficacy. In this review, we provide an overview of the biogenesis pathways, biochemical features, and isolation methods of EVs with an emphasis on their many intrinsic properties that make them desirable as drug carriers. We then describe in detail the current advances in EV therapeutics, focusing on how EVs can be engineered to achieve improved target specificity, better circulation kinetics, and efficient encapsulation of therapeutic payloads. We also identify the challenges and obstacles ahead for clinical translation and provide an outlook on the future perspective of EV-based therapeutics.
Collapse
|
27
|
Pérez J, Contreras-Moreno FJ, Marcos-Torres FJ, Moraleda-Muñoz A, Muñoz-Dorado J. The antibiotic crisis: How bacterial predators can help. Comput Struct Biotechnol J 2020; 18:2547-2555. [PMID: 33033577 PMCID: PMC7522538 DOI: 10.1016/j.csbj.2020.09.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/30/2022] Open
Abstract
Discovery of antimicrobials in the past century represented one of the most important advances in public health. Unfortunately, the massive use of these compounds in medicine and other human activities has promoted the selection of pathogens that are resistant to one or several antibiotics. The current antibiotic crisis is creating an urgent need for research into new biological weapons with the ability to kill these superbugs. Although a proper solution requires this problem to be addressed in a variety of ways, the use of bacterial predators is emerging as an excellent strategy, especially when used as whole cell therapeutic agents, as a source of new antimicrobial agents by awakening silent metabolic pathways in axenic cultures, or as biocontrol agents. Moreover, studies on their prey are uncovering mechanisms of resistance that can be shared by pathogens, representing new targets for novel antimicrobial agents. In this review we discuss potential of the studies on predator-prey interaction to provide alternative solutions to the problem of antibiotic resistance.
Collapse
Key Words
- AR, antibiotic resistance
- ARB, antibiotic-resistant bacteria
- ARG, antibiotic-resistant gene
- Antibiotic crisis
- BALOs
- BALOs, Bdellovibrio and like organisms
- BGC, biosynthetic gene cluster
- Bacterial predators
- HGT, horizontal gene transfer
- MDRB, multi-drug resistant bacteria
- Myxobacteria
- NRPS, nonribosomal peptide synthetase
- OMV, outer membrane vesicle
- OSMAC, one strain many compounds
- PKS, polyketide synthase
- SM, secondary metabolite
- WHO, World Health Organization
Collapse
Affiliation(s)
- Juana Pérez
- Departamento de Microbiología, Facultad de Ciencias, Avda. Fuentenueva s/n, Universidad de Granada, 18071 Granada, Spain
| | | | | | - Aurelio Moraleda-Muñoz
- Departamento de Microbiología, Facultad de Ciencias, Avda. Fuentenueva s/n, Universidad de Granada, 18071 Granada, Spain
| | - José Muñoz-Dorado
- Departamento de Microbiología, Facultad de Ciencias, Avda. Fuentenueva s/n, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
28
|
Zwarycz AS, Livingstone PG, Whitworth DE. Within-species variation in OMV cargo proteins: the Myxococcus xanthus OMV pan-proteome. Mol Omics 2020; 16:387-397. [PMID: 32373862 DOI: 10.1039/d0mo00027b] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Extracellular membrane vesicles are produced by all domains of life (bacteria, archaea and eukaryotes). Bacterial extracellular vesicles (outer membrane vesicles or OMVs) are produced by outer membrane blebbing, and contain proteins, nucleic acids, virulence factors, lipids and metabolites. OMV functions depend on their internal composition, therefore understanding the proteome of OMVs, and how it varies between organisms, is imperative. Here, we report a comparative proteomic profiling of OMVs from strains of Myxococcus xanthus, a predatory species of Gram-negative myxobacteria whose secretions include secondary metabolites and hydrolytic enzymes, thought to be involved in prey lysis. Ten strains were chosen for study, of which seven had genome sequences available. The remaining three strains were genome sequenced allowing definition of the core and accessory genes and genome-derived proteins found within the pan-genome and pan-proteome respectively. OMVs were isolated from each strain and proteins identified using mass spectrometry. The M. xanthus OMV pan-proteome was found to contain tens of 'core' and hundreds of 'accessory' proteins. Properties of the OMV pan-proteome were compared with those of the pan-proteome deduced from the M. xanthus pan-genome. On average, 80% of 'core' OMV proteins are encoded by genes of the core genome, yet the OMV proteomes of individual strains contain subsets of core genome-derived proteins which only partially overlap. In addition, the distribution of characteristics of vesicle proteins does not correlate with the genome-derived proteome characteristic distribution. We hypothesize that M. xanthus cells package a personalized subset of proteins whose availability is only partially dictated by the presence/absence of encoding genes within the genome.
Collapse
Affiliation(s)
- Allison S Zwarycz
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion SY23 4DD, UK.
| | | | | |
Collapse
|