1
|
Niu Y, Cao S, Ma X, Xu Z, Wu H. Multiple cytokine analyses identify CSF1 as a robust biomarker for predicting postoperative recurrence in chronic rhinosinusitis with nasal polyps. Int Immunopharmacol 2024; 127:111430. [PMID: 38142640 DOI: 10.1016/j.intimp.2023.111430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
OBJECTIVE Chronic rhinosinusitis with nasal polyps (CRSwNP) is a heterogeneous disease with a high rate of postoperative recurrence. This study aimed to discover potential biomarkers by analyzing multiple cytokine profiles in serum to predict postoperative recurrence in CRSwNP and to explore the underlying mechanisms. METHODS In this prospective study, we enrolled 18 healthy controls (HC) and 60 CRSwNP patients and analyzed the baseline serum cytokine profiles using the Luminex assay. Patients were followed up for more than 2 years and divided into non-recurrence and Recurrence groups. The differentially expressed cytokines were validated in the serum and tissue samples in a validation cohort, and their predictive values for recurrence were evaluated. RESULTS Fifty-four CRSwNP patients completed the follow-up schedule, including 37 patients in the non-Recurrence group and 17 patients in the Recurrence group. Multiple cytokine analyses showed that serum CD40, CD40L, IL-18, IL-8, MCP1, and CSF1 levels were elevated in the CRSwNP group, especially in the Recurrence group, compared to the HC group. Receiver operating characteristic curves (ROC) and Kaplan-Meier survival analysis showed that serum levels of CD40, CD40L, and CSF1 were closely associated with the risk of postoperative recurrence. Further validation results showed that both serum and tissue mRNA levels of CD40, CD40L, and CSF1 were significantly higher in the Recurrence group in comparison with the non-recurrence and HC groups, and tissue CSF1 mRNA expression exhibited a robust value for predicting the CRSwNP recurrence. Immunofluorescence results revealed that CSF1 was enhanced in the recurrent CRSwNP patients, especially in the epithelial cell area, and CSF1 expressions were augmented when patients suffered postoperative recurrence. CONCLUSIONS Circulating cytokine profiles may affect the risk of postoperative recurrence in CRSwNP patients. Our discovery-validation results suggested that CSF1 might serve as a robust biomarker for predicting CRSwNP recurrence.
Collapse
Affiliation(s)
- Yan Niu
- Department of Otolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shouming Cao
- Department of Otolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoyu Ma
- Department of Otolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhaoxiong Xu
- Department of Otolaryngology Head and Neck Surgery, the Second People's Hospital of Xuanwei City, Xuanwei, China
| | - Haiying Wu
- Department of Otolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
2
|
Detsika MG, Palamaris K, Dimopoulou I, Kotanidou A, Orfanos SE. The complement cascade in lung injury and disease. Respir Res 2024; 25:20. [PMID: 38178176 PMCID: PMC10768165 DOI: 10.1186/s12931-023-02657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND The complement system is an important arm of immune defense bringing innate and adaptive immunity. Although originally regarded as a major complementary defense mechanism against pathogens, continuously emerging evidence has uncovered a central role of this complex system in several diseases including lung pathologies. MAIN BODY Complement factors such as anaphylatoxins C3a and C5a, their receptors C3aR, C5aR and C5aR2 as well as complement inhibitory proteins CD55, CD46 and CD59 have been implicated in pathologies such as the acute respiratory distress syndrome, pneumonia, chronic obstructive pulmonary disease, asthma, interstitial lung diseases, and lung cancer. However, the exact mechanisms by which complement factors induce these diseases remain unclear. Several complement-targeting monoclonal antibodies are reported to treat lung diseases. CONCLUSIONS The complement system contributes to the progression of the acute and chronic lung diseases. Better understanding of the underlying mechanisms will provide groundwork to develop new strategy to target complement factors for treatment of lung diseases.
Collapse
Affiliation(s)
- M G Detsika
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 3, Ploutarchou St., 10675, Athens, Greece.
| | - K Palamaris
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - I Dimopoulou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 3, Ploutarchou St., 10675, Athens, Greece
| | - A Kotanidou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 3, Ploutarchou St., 10675, Athens, Greece
| | - S E Orfanos
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 3, Ploutarchou St., 10675, Athens, Greece.
| |
Collapse
|
3
|
Laumonnier Y, Korkmaz RÜ, Nowacka AA, Köhl J. Complement-mediated immune mechanisms in allergy. Eur J Immunol 2023; 53:e2249979. [PMID: 37381711 DOI: 10.1002/eji.202249979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Allergic conditions are associated with canonical and noncanonical activation of the complement system leading to the release of several bioactive mediators with inflammatory and immunoregulatory properties that regulate the immune response in response to allergens during the sensitization and/or the effector phase of allergic diseases. Further, immune sensors of complement and regulator proteins of the cascade impact on the development of allergies. These bioactive mediators comprise the small and large cleavage fragments of C3 and C5. Here, we provide an update on the multiple roles of immune sensors, regulators, and bioactive mediators of complement in allergic airway diseases, food allergies, and anaphylaxis. A particular emphasis is on the anaphylatoxins C3a and C5a and their receptors, which are expressed on many of the effector cells in allergy such as mast cells, eosinophils, basophils, macrophages, and neutrophils. Also, we will discuss the multiple pathways, by which the anaphylatoxins initiate and control the development of maladaptive type 2 immunity including their impact on innate lymphoid cell recruitment and activation. Finally, we briefly comment on the potential to therapeutically target the complement system in different allergic conditions.
Collapse
Affiliation(s)
- Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Institute for Nutritional Medicine, University of Lübeck, Lübeck, Germany
- Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Rabia Ülkü Korkmaz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Alicja A Nowacka
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, USA
| |
Collapse
|
4
|
Wiese AV, Duhn J, Korkmaz RÜ, Quell KM, Osman I, Ender F, Schröder T, Lewkowich I, Hogan S, Huber-Lang M, Gumprecht F, König P, Köhl J, Laumonnier Y. C5aR1 activation in mice controls inflammatory eosinophil recruitment and functions in allergic asthma. Allergy 2023. [PMID: 36757006 DOI: 10.1111/all.15670] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/14/2022] [Accepted: 01/02/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Pulmonary eosinophils comprise at least two distinct populations of resident eosinophils (rEOS) and inflammatory eosinophils (iEOS), the latter recruited in response to pulmonary inflammation. Here, we determined the impact of complement activation on rEOS and iEOS trafficking and function in two models of pulmonary inflammation. METHODS BALB/c wild-type and C5ar1-/- mice were exposed to different allergens or IL-33. Eosinophil populations in the airways, lung, or mediastinal lymph nodes (mLN) were characterized by FACS or immunohistochemistry. rEOS and iEOS functions were determined in vivo and in vitro. RESULTS HDM and IL-33 exposure induced a strong accumulation of iEOS but not rEOS in the airways, lungs, and mLNs. rEOS and iEOS expressed C3/C5 and C5aR1, which were significantly higher in iEOS. Initial pulmonary trafficking of iEOS was markedly reduced in C5ar1-/- mice and associated with less IL-5 production from ILC2 cells. Functionally, adoptively transferred pulmonary iEOS from WT but not from C5ar1-/- mice-induced airway hyperresponsiveness (AHR), which was associated with significantly reduced C5ar1-/- iEOS degranulation. Pulmonary iEOS but not rEOS were frequently associated with T cells in lung tissue. After HDM or IL-33 exposure, iEOS but not rEOS were found in mLNs, which were significantly reduced in C5ar1-/- mice. C5ar1-/- iEOS expressed less costimulatory molecules, associated with a decreased potency to drive antigen-specific T cell proliferation and differentiation into memory T cells. CONCLUSIONS We uncovered novel roles for C5aR1 in iEOS trafficking and activation, which affects key aspects of allergic inflammation such as AHR, ILC2, and T cell activation.
Collapse
Affiliation(s)
- Anna V Wiese
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jannis Duhn
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Rabia Ülkü Korkmaz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Katharina M Quell
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Ibrahim Osman
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Fanny Ender
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Torsten Schröder
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Institute of Nutritional Medicine, University Hospital of Schleswig-Holstein & University of Lübeck, Lübeck, Germany
| | - Ian Lewkowich
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Simon Hogan
- Mary H. Weiser Food Allergy Center, Experimental Pathology, Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology (ITI), University of Ulm, Ulm, Germany
| | | | - Peter König
- Institute for Anatomy, University of Lübeck, Lübeck, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Institute of Nutritional Medicine, University Hospital of Schleswig-Holstein & University of Lübeck, Lübeck, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany
| |
Collapse
|
5
|
Sabatel C, Bureau F. The innate immune brakes of the lung. Front Immunol 2023; 14:1111298. [PMID: 36776895 PMCID: PMC9915150 DOI: 10.3389/fimmu.2023.1111298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/02/2023] [Indexed: 01/29/2023] Open
Abstract
Respiratory mucosal surfaces are continuously exposed to not only innocuous non-self antigens but also pathogen-associated molecular patterns (PAMPs) originating from environmental or symbiotic microbes. According to either "self/non-self" or "danger" models, this should systematically result in homeostasis breakdown and the development of immune responses directed to inhaled harmless antigens, such as T helper type (Th)2-mediated asthmatic reactions, which is fortunately not the case in most people. This discrepancy implies the existence, in the lung, of regulatory mechanisms that tightly control immune homeostasis. Although such mechanisms have been poorly investigated in comparison to the ones that trigger immune responses, a better understanding of them could be useful in the development of new therapeutic strategies against lung diseases (e.g., asthma). Here, we review current knowledge on innate immune cells that prevent the development of aberrant immune responses in the lung, thereby contributing to mucosal homeostasis.
Collapse
Affiliation(s)
- Catherine Sabatel
- Laboratory of Cellular and Molecular Immunology, GIGA-Research, University of Liège, Liège, Belgium,Faculty of Veterinary Medicine, University of Liège, Liège, Belgium,*Correspondence: Catherine Sabatel,
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, GIGA-Research, University of Liège, Liège, Belgium,Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
6
|
Schanzenbacher J, Köhl J, Karsten CM. Anaphylatoxins spark the flame in early autoimmunity. Front Immunol 2022; 13:958392. [PMID: 35958588 PMCID: PMC9358992 DOI: 10.3389/fimmu.2022.958392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
The complement system (CS) is an ancient and highly conserved part of the innate immune system with important functions in immune defense. The multiple fragments bind to specific receptors on innate and adaptive immune cells, the activation of which translates the initial humoral innate immune response (IR) into cellular innate and adaptive immunity. Dysregulation of the CS has been associated with the development of several autoimmune disorders such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), ANCA-associated vasculitis, and autoimmune bullous dermatoses (AIBDs), where complement drives the inflammatory response in the effector phase. The role of the CS in autoimmunity is complex. On the one hand, complement deficiencies were identified as risk factors to develop autoimmune disorders. On the other hand, activation of complement can drive autoimmune responses. The anaphylatoxins C3a and C5a are potent mediators and regulators of inflammation during the effector phase of autoimmunity through engagement of specific anaphylatoxin receptors, i.e., C3aR, C5aR1, and C5aR2 either on or in immune cells. In addition to their role in innate IRs, anaphylatoxins regulate humoral and cellular adaptive IRs including B-cell and T-cell activation, differentiation, and survival. They regulate B- and T-lymphocyte responses either directly or indirectly through the activation of anaphylatoxin receptors via dendritic cells that modulate lymphocyte function. Here, we will briefly review our current understanding of the complex roles of anaphylatoxins in the regulation of immunologic tolerance and the early events driving autoimmunity and the implications of such regulation for therapeutic approaches that target the CS.
Collapse
Affiliation(s)
- Jovan Schanzenbacher
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Division of Immunobiology, Cincinnati Childrens Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Christian M. Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- *Correspondence: Christian M. Karsten,
| |
Collapse
|
7
|
Albrecht M, Schaub B, Gilles S, Köhl J, Altrichter S, Voehringer D, Spillner E, Ehlers M, Jönsson F, Loser K, Mayer JU, Rösner LM, Möbs C, Heine G, Pfützner W. Current research and unmet needs in allergy and immunology in Germany: report presented by the DGfI and DGAKI task force Allergy & Immunology. Eur J Immunol 2022; 52:851-855. [PMID: 35654759 DOI: 10.1002/eji.202270065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Melanie Albrecht
- Molecular Allergology/Vice president´s research group, Paul-Ehrlich-Institut, Langen, Germany
| | - Bianca Schaub
- University Children's Hospital, Dr. von Haunersches Kinderspital, Department of Allergy/Immunology, Lindwurmstr. 4, Germany, LMU Klinikum, Munich, 80337, Germany
| | - Stefanie Gilles
- Chair of Environmental Medicine, Faculty of Medicine, University of Augsburg, Neusäßer Str. 47, Augsburg, 86156, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23562, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Airway Research Center North, German Center for Lung Research (DZL), University of Lübeck, Lübeck, Germany
| | - Sabine Altrichter
- Immunological Biotechnology, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, 8000, Denmark.,Institute for Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, 91054
| | - Edzard Spillner
- Immunological Biotechnology, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, 8000, Denmark
| | - Marc Ehlers
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany.,Airway Research Center North, German Center for Lung Research (DZL), University of Lübeck, Lübeck, Germany
| | - Friederike Jönsson
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Inserm UMR1222, Paris, F-75015.,CNRS, Paris, F-75016
| | - Karin Loser
- Institute for Immunology, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Johannes U Mayer
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Lennart M Rösner
- Dpt. of Dermatology and Allergy, Div. of Immunodermatology and Allergy Research, Hannover Medical School (MHH), Hannover, Germany
| | - Christian Möbs
- Clinical & Experimental Allergy, Department of Dermatology and Allergology, Allergy Center Hessen, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Guido Heine
- Division of Allergy, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Wolfgang Pfützner
- Clinical & Experimental Allergy, Department of Dermatology and Allergology, Allergy Center Hessen, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
8
|
Zhao M, Wang Z, Yang M, Ding Y, Zhao M, Wu H, Zhang Y, Lu Q. The Roles of Orphan G Protein-Coupled Receptors in Autoimmune Diseases. Clin Rev Allergy Immunol 2021; 60:220-243. [PMID: 33411320 DOI: 10.1007/s12016-020-08829-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/26/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of plasma membrane receptors in nature and mediate the effects of a variety of extracellular signals, such as hormone, neurotransmitter, odor, and light signals. Due to their involvement in a broad range of physiological and pathological processes and their accessibility, GPCRs are widely used as pharmacological targets of treatment. Orphan G protein-coupled receptors (oGPCRs) are GPCRs for which no natural ligands have been found, and they not only play important roles in various physiological functions, such as sensory perception, reproduction, development, growth, metabolism, and responsiveness, but are also closely related to many major diseases, such as central nervous system (CNS) diseases, metabolic diseases, and cancer. Recently, many studies have reported that oGPCRs play increasingly important roles as key factors in the occurrence and progression of autoimmune diseases. Therefore, oGPCRs are likely to become potential therapeutic targets and may provide a breakthrough in the study of autoimmune diseases. In this article, we focus on reviewing the recent research progress and clinical treatment effects of oGPCRs in three common autoimmune diseases: multiple sclerosis (MS), rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE), shedding light on novel strategies for treatments.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheyu Wang
- University of South China, Hengyang, Hunan, China.,Maternal & Child Health Care Hospital Hainan Province, Haikou, Hainan, China
| | - Ming Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Ding
- Maternal & Child Health Care Hospital Hainan Province, Haikou, Hainan, China.,Hainan Province Dermatol Disease Hospital, Haikou, Hainan, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yan Zhang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China. .,Zhejiang Provincial Key Laboratory of Immunity and Inflammatory Diseases, Hangzhou, 310058, China. .,MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| |
Collapse
|
9
|
Mohamed MME, Nicklin AD, Stover CM. The Value of Targeting Complement Components in Asthma. ACTA ACUST UNITED AC 2020; 56:medicina56080405. [PMID: 32806638 PMCID: PMC7466339 DOI: 10.3390/medicina56080405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 01/09/2023]
Abstract
Asthma is an important respiratory illness. Though pharmacological and biological treatment is well established and is staged according to endotypes and their responses to treatment, novel avenues are being explored. Our focus is complement. In this viewpoint, we evaluate the approach to target complement in this complex hypersensitivity reaction that develops chronicity and has a personal—as well as a societal—cost.
Collapse
|
10
|
Jodele S, Köhl J. Tackling COVID-19 infection through complement-targeted immunotherapy. Br J Pharmacol 2020; 178:2832-2848. [PMID: 32643798 PMCID: PMC7361469 DOI: 10.1111/bph.15187] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/09/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
The complement system is an ancient part of innate immunity sensing highly pathogenic coronaviruses by mannan‐binding lectin (MBL) resulting in lectin pathway activation and subsequent generation of the anaphylatoxins (ATs) C3a and C5a as important effector molecules. Complement deposition on endothelial cells and high blood C5a serum levels have been reported in COVID‐19 patients with severe illness, suggesting vigorous complement activation leading to systemic thrombotic microangiopathy (TMA). Complement regulator gene variants prevalent in African‐Americans have been associated with a higher risk for severe TMA and multi‐organ injury. Strikingly, severe acute respiratory syndrome Coronavirus 2 (SARS‐CoV‐2)‐infected African‐Americans suffer from high mortality. These findings allow us to apply our knowledge from other complement‐mediated diseases to COVID‐19 infection to better understand severe disease pathogenesis. Here, we discuss the multiple aspects of complement activation, regulation, crosstalk with other parts of the immune system, and the options to target complement in COVID‐19 patients to halt disease progression and death.
Collapse
Affiliation(s)
- Sonata Jodele
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jörg Köhl
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
11
|
Briukhovetska D, Ohm B, Mey FT, Aliberti J, Kleingarn M, Huber-Lang M, Karsten CM, Köhl J. C5aR1 Activation Drives Early IFN-γ Production to Control Experimental Toxoplasma gondii Infection. Front Immunol 2020; 11:1397. [PMID: 32733463 PMCID: PMC7362728 DOI: 10.3389/fimmu.2020.01397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is a parasite infecting animals and humans. In intermediate hosts, such as humans or rodents, rapidly replicating tachyzoites drive vigorous innate and adaptive immune responses resulting in bradyzoites that survive within tissue cysts. Activation of the innate immune system is critical during the early phase of infection to limit pathogen growth and to instruct parasite-specific adaptive immunity. In rodents, dendritic cells (DCs) sense T. gondii through TLR11/12, leading to IL-12 production, which activates NK cells to produce IFN-γ as an essential mechanism for early parasite control. Further, C3 can bind to T. gondii resulting in limited complement activation. Here, we determined the role of C5a/C5aR1 axis activation for the early innate immune response in a mouse model of peritoneal T. gondii infection. We found that C5ar1−/− animals suffered from significantly higher weight loss, disease severity, mortality, and parasite burden in the brain than wild type control animals. Severe infection in C5ar1−/− mice was associated with diminished serum concentrations of IL-12, IL-27, and IFN-γ. Importantly, the serum levels of pro-inflammatory cytokines, including IL-1α, IL-6, and TNF-α, as well as several CXC and CC chemokines, were decreased in comparison to wt animals, whereas anti-inflammatory IL-10 was elevated. The defect in IFN-γ production was associated with diminished Ifng mRNA expression in the spleen and the brain, reduced frequency of IFN-γ+ NK cells in the spleen, and decreased Nos2 expression in the brain of C5ar1−/− mice. Mechanistically, DCs from the spleen of C5ar1−/− mice produced significantly less IL-12 in response to soluble tachyzoite antigen (STAg) stimulation in vivo and in vitro. Our findings suggest a model in which the C5a/C5aR1 axis promotes IL-12 induction in splenic DCs that is critical for IFN-γ production from NK cells and subsequent iNOS expression in the brain as a critical mechanism to control acute T. gondii infection.
Collapse
Affiliation(s)
- Daria Briukhovetska
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Birte Ohm
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Fabian T Mey
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Julio Aliberti
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Marie Kleingarn
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital and College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|