1
|
Szántó M, Yélamos J, Bai P. Specific and shared biological functions of PARP2 - is PARP2 really a lil' brother of PARP1? Expert Rev Mol Med 2024; 26:e13. [PMID: 38698556 PMCID: PMC11140550 DOI: 10.1017/erm.2024.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024]
Abstract
PARP2, that belongs to the family of ADP-ribosyl transferase enzymes (ART), is a discovery of the millennium, as it was identified in 1999. Although PARP2 was described initially as a DNA repair factor, it is now evident that PARP2 partakes in the regulation or execution of multiple biological processes as inflammation, carcinogenesis and cancer progression, metabolism or oxidative stress-related diseases. Hereby, we review the involvement of PARP2 in these processes with the aim of understanding which processes are specific for PARP2, but not for other members of the ART family. A better understanding of the specific functions of PARP2 in all of these biological processes is crucial for the development of new PARP-centred selective therapies.
Collapse
Affiliation(s)
- Magdolna Szántó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - José Yélamos
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Péter Bai
- HUN-REN-UD Cell Biology and Signaling Research Group, Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| |
Collapse
|
2
|
Mubaid S, Sanchez BJ, Algehani RA, Skopenkova V, Adjibade P, Hall DT, Busque S, Lian XJ, Ashour K, Tremblay AMK, Carlile G, Gagné JP, Diaz-Gaxiola A, Khattak S, Di Marco S, Thomas DY, Poirier GG, Gallouzi IE. Tankyrase-1 regulates RBP-mediated mRNA turnover to promote muscle fiber formation. Nucleic Acids Res 2024; 52:4002-4020. [PMID: 38321934 DOI: 10.1093/nar/gkae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/19/2024] [Indexed: 02/08/2024] Open
Abstract
Poly(ADP-ribosylation) (PARylation) is a post-translational modification mediated by a subset of ADP-ribosyl transferases (ARTs). Although PARylation-inhibition based therapies are considered as an avenue to combat debilitating diseases such as cancer and myopathies, the role of this modification in physiological processes such as cell differentiation remains unclear. Here, we show that Tankyrase1 (TNKS1), a PARylating ART, plays a major role in myogenesis, a vital process known to drive muscle fiber formation and regeneration. Although all bona fide PARPs are expressed in muscle cells, experiments using siRNA-mediated knockdown or pharmacological inhibition show that TNKS1 is the enzyme responsible of catalyzing PARylation during myogenesis. Via this activity, TNKS1 controls the turnover of mRNAs encoding myogenic regulatory factors such as nucleophosmin (NPM) and myogenin. TNKS1 mediates these effects by targeting RNA-binding proteins such as Human Antigen R (HuR). HuR harbors a conserved TNKS-binding motif (TBM), the mutation of which not only prevents the association of HuR with TNKS1 and its PARylation, but also precludes HuR from regulating the turnover of NPM and myogenin mRNAs as well as from promoting myogenesis. Therefore, our data uncover a new role for TNKS1 as a key modulator of RBP-mediated post-transcriptional events required for vital processes such as myogenesis.
Collapse
Affiliation(s)
- Souad Mubaid
- Dept. of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Avenue, Montreal, QC H3A 1A3, Canada
| | - Brenda Janice Sanchez
- KAUST Smart-Health Initiative (KSHI) and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | - Rinad A Algehani
- KAUST Smart-Health Initiative (KSHI) and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | - Viktoriia Skopenkova
- KAUST Smart-Health Initiative (KSHI) and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | - Pauline Adjibade
- Dept. of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Avenue, Montreal, QC H3A 1A3, Canada
| | - Derek T Hall
- Dept. of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Avenue, Montreal, QC H3A 1A3, Canada
| | - Sandrine Busque
- Dept. of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Avenue, Montreal, QC H3A 1A3, Canada
| | - Xian Jin Lian
- Dept. of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Avenue, Montreal, QC H3A 1A3, Canada
| | - Kholoud Ashour
- Dept. of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Avenue, Montreal, QC H3A 1A3, Canada
| | - Anne-Marie K Tremblay
- Dept. of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Avenue, Montreal, QC H3A 1A3, Canada
| | - Graeme Carlile
- Dept. of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Jean-Philippe Gagné
- Centre de recherche du CHU de Québec-Pavillon CHUL, Faculté de Médecine, Université Laval, Québec G1V 4G2, Canada
| | - Andrea Diaz-Gaxiola
- KAUST Smart-Health Initiative (KSHI) and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | - Shahryar Khattak
- KAUST Smart-Health Initiative (KSHI) and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | - Sergio Di Marco
- KAUST Smart-Health Initiative (KSHI) and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
- Dept. of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Avenue, Montreal, QC H3A 1A3, Canada
| | - David Y Thomas
- Dept. of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Guy G Poirier
- Centre de recherche du CHU de Québec-Pavillon CHUL, Faculté de Médecine, Université Laval, Québec G1V 4G2, Canada
| | - Imed-Eddine Gallouzi
- KAUST Smart-Health Initiative (KSHI) and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
- Dept. of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Avenue, Montreal, QC H3A 1A3, Canada
| |
Collapse
|
3
|
Wilson N, Kataura T, Korsgen ME, Sun C, Sarkar S, Korolchuk VI. The autophagy-NAD axis in longevity and disease. Trends Cell Biol 2023; 33:788-802. [PMID: 36878731 DOI: 10.1016/j.tcb.2023.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/07/2023]
Abstract
Autophagy is an intracellular degradation pathway that recycles subcellular components to maintain metabolic homeostasis. NAD is an essential metabolite that participates in energy metabolism and serves as a substrate for a series of NAD+-consuming enzymes (NADases), including PARPs and SIRTs. Declining levels of autophagic activity and NAD represent features of cellular ageing, and consequently enhancing either significantly extends health/lifespan in animals and normalises metabolic activity in cells. Mechanistically, it has been shown that NADases can directly regulate autophagy and mitochondrial quality control. Conversely, autophagy has been shown to preserve NAD levels by modulating cellular stress. In this review we highlight the mechanisms underlying this bidirectional relationship between NAD and autophagy, and the potential therapeutic targets it provides for combatting age-related disease and promoting longevity.
Collapse
Affiliation(s)
- Niall Wilson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Tetsushi Kataura
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Miriam E Korsgen
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Congxin Sun
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Sovan Sarkar
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| |
Collapse
|
4
|
Jankó L, Tóth E, Laczik M, Rauch B, Janka E, Bálint BL, Bai P. PARP2 poly(ADP-ribosyl)ates nuclear factor erythroid 2-related factor 2 (NRF2) affecting NRF2 subcellular localization. Sci Rep 2023; 13:7869. [PMID: 37188809 DOI: 10.1038/s41598-023-35076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023] Open
Abstract
PARP2 is a member of the PARP enzyme family. Although, PARP2 plays role in DNA repair, it has regulatory roles in mitochondrial and lipid metabolism, it has pivotal role in bringing about the adverse effects of pharmacological PARP inhibitors. Previously, we showed that the ablation of PARP2 induces oxidative stress and, consequently, mitochondrial fragmentation. In attempt to identify the source of the reactive species we assessed the possible role of a central regulator of cellular antioxidant defense, nuclear factor erythroid 2-related factor 2 (NRF2). The silencing of PARP2 did not alter either the mRNA or the protein expression of NRF2, but changed its subcellular localization, decreasing the proportion of nuclear, active fraction of NRF2. Pharmacological inhibition of PARP2 partially restored the normal localization pattern of NRF2 and in line with that, we showed that NRF2 is PARylated that is absent in the cells in which PARP2 was silenced. Apparently, the PARylation of NRF2 by PARP2 has pivotal role in regulating the subcellular (nuclear) localization of NRF2. The silencing of PARP2 rearranged the expression of genes encoding proteins with antioxidant function, among these a subset of NRF2-dependent genes.
Collapse
Affiliation(s)
- Laura Jankó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
- Center of Excellence, The Hungarian Academy of Sciences, Budapest, Hungary
| | - Emese Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
- Center of Excellence, The Hungarian Academy of Sciences, Budapest, Hungary
| | - Miklós Laczik
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Boglárka Rauch
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
- Center of Excellence, The Hungarian Academy of Sciences, Budapest, Hungary
| | - Eszter Janka
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Bálint L Bálint
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Department of Bioinformatics, Semmelweis University, Tűzoltó Utca 7-9., Budapest, 1094, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary.
- Center of Excellence, The Hungarian Academy of Sciences, Budapest, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
- MTA-DE Cell Biology and Signaling Research Group ELKH, Debrecen, Hungary.
| |
Collapse
|
5
|
Tan A, Younis AZ, Evans A, Creighton JV, Coveny C, Boocock DJ, Sale C, Lavery GG, Coutts AS, Doig CL. PARP1 mediated PARylation contributes to myogenic progression and glucocorticoid transcriptional response. Cell Death Discov 2023; 9:133. [PMID: 37087471 PMCID: PMC10121420 DOI: 10.1038/s41420-023-01420-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/24/2023] Open
Abstract
The ADP-ribosyltransferase, PARP1 enzymatically generates and applies the post-translational modification, ADP-Ribose (ADPR). PARP1 roles in genome maintenance are well described, but recent work highlights roles in many fundamental processes including cellular identity and energy homeostasis. Herein, we show in both mouse and human skeletal muscle cells that PARP1-mediated PARylation is a regulator of the myogenic program and the muscle transcriptional response to steroid hormones. Chemical PARP1 modulation impacts the expression of major myocellular proteins, including troponins, key in dictating muscle contractile force. Whilst PARP1 in absence of DNA damage is often assumed to be basally inactive, we show PARylation to be acutely sensitive to extracellular glucose concentrations and the steroid hormone class, glucocorticoids which exert considerable authority over muscle tissue mass. Specifically, we find during myogenesis, a transient and significant rise in PAR. This early-stage differentiation event, if blocked with PARP1 inhibition, reduced the abundance of important muscle proteins in the fully differentiated myotubes. This suggests that PAR targets during early-stage differentiation are central to the proper development of the muscle contractile unit. We also show that reduced PARP1 in myoblasts impacts a variety of metabolic pathways in line with the recorded actions of glucocorticoids. Currently, as both regulators of myogenesis and muscle mass loss, glucocorticoids represent a clinical conundrum. Our work goes on to identify that PARP1 influences transcriptional activation by glucocorticoids of a subset of genes critical to human skeletal muscle pathology. These genes may therefore signify a regulatory battery of targets through which selective glucocorticoid modulation could be achieved. Collectively, our data provide clear links between PARP1-mediated PARylation and skeletal muscle homeostatic mechanisms crucial to tissue mass maintenance and endocrine response.
Collapse
Affiliation(s)
- Arnold Tan
- School of Science and Technology, Department of Biosciences, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Awais Z Younis
- School of Science and Technology, Department of Biosciences, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Alexander Evans
- School of Science and Technology, Department of Biosciences, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Jade V Creighton
- School of Science and Technology, Department of Biosciences, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Clare Coveny
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - David J Boocock
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Craig Sale
- Institute of Sport, Manchester Metropolitan University, Manchester, M1 7EL, UK
| | - Gareth G Lavery
- School of Science and Technology, Department of Biosciences, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Amanda S Coutts
- School of Science and Technology, Department of Biosciences, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Craig L Doig
- School of Science and Technology, Department of Biosciences, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| |
Collapse
|
6
|
Hu F, Li C, Ye Y, Lu X, Alimujiang M, Bai N, Sun J, Ma X, Li X, Yang Y. PARP12 is required for mitochondrial function maintenance in thermogenic adipocytes. Adipocyte 2022; 11:379-388. [PMID: 35916471 PMCID: PMC9351573 DOI: 10.1080/21623945.2022.2091206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
PARP12 is a member of poly-ADP-ribosyl polymerase (PARPs), which has been characterized for its antiviral function. Yet its physiological implication in adipocytes remains unknown. Here, we report a central function of PARP12 in thermogenic adipocytes. We show that PARP12 is highly expressed in brown adipose tissue and is mainly localized to the mitochondria. Knockdown of PARP12 in vitro reduced UCP1 expression. In parallel, the deficiency of PARP12 reduced mitochondrial respiration in adipocytes, while overexpression of PARP12 reversed these effects.
Collapse
Affiliation(s)
- Fan Hu
- Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Chang Li
- Department of Endocrinology, Seventh People's Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Yafen Ye
- Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Xuhong Lu
- Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Miriayi Alimujiang
- Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Ningning Bai
- Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Jingjing Sun
- Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Xiaojing Ma
- Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Xiaohua Li
- Department of Endocrinology, Seventh People's Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Ying Yang
- Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| |
Collapse
|
7
|
Pérez-Peiró M, Duran X, Yélamos J, Barreiro E. Attenuation of Muscle Damage, Structural Abnormalities, and Physical Activity in Respiratory and Limb Muscles following Treatment with Rucaparib in Lung Cancer Cachexia Mice. Cancers (Basel) 2022; 14:cancers14122894. [PMID: 35740560 PMCID: PMC9221243 DOI: 10.3390/cancers14122894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Muscle wasting and cachexia are common in patients with cancer. Several mechanisms underlie muscle physiological and structural alterations in cancer-induced cachexia. Poly (ADPribose) polymerases (PARPs) are involved in muscle metabolism and in cancer. Selective inhibitors of PARP activity improve muscle function and structure. This study sought to investigate whether rucaparib (PARP inhibitor) may attenuate muscle damage in a mouse model of lung-cancer-induced cachexia. Rucaparib was administered to cancer-cachectic mice. Physiological and biological parameters were determined in the respiratory and limb muscles of the animals. In cancer cachexia mice compared to non-cachexia controls, body weight and body weight gain, muscle weight, limb strength, physical activity, and muscle fiber size significantly declined, while levels of PARP activity, plasma troponin I, muscle damage, and proteolytic and autophagy markers increased. Treatment with rucaparib elicited a significant improvement in body weight gain, tumor size and weight, physical activity, muscle damage, troponin I, and proteolytic and autophagy levels. Abstract Overactivation of poly (ADPribose) polymerases (PARPs) is involved in cancer-induced cachexia. We hypothesized that the PARP inhibitor rucaparib may improve muscle mass and reduce damage in cancer cachexia mice. In mouse diaphragm and gastrocnemius (LP07 lung adenocarcinoma) treated with PARP inhibitor (rucaparib,150 mg/kg body weight/24 h for 20 days) and in non-tumor control animals, body, muscle, and tumor weights; tumor area; limb muscle strength; physical activity; muscle structural abnormalities, damage, and phenotype; PARP activity; and proteolytic and autophagy markers were quantified. In cancer cachexia mice compared to non-cachexia controls, body weight and body weight gain, muscle weight, limb strength, physical activity, and muscle fiber size significantly declined, while levels of PARP activity, plasma troponin I, muscle damage, and proteolytic and autophagy markers increased. Treatment with the PARP inhibitor rucaparib elicited a significant improvement in body weight gain, tumor size and weight, physical activity, muscle damage, troponin I, and proteolytic and autophagy levels. PARP pharmacological inhibition did not exert any significant improvements in muscle weight, fiber size, or limb muscle strength. Treatment with rucaparib, however, improved muscle damage and structural abnormalities and physical activity in cancer cachexia mice. These findings suggest that rucaparib exerts its beneficial effects on cancer cachexia performance through the restoration of muscle structure.
Collapse
Affiliation(s)
- Maria Pérez-Peiró
- Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Pulmonology Department, Department of Medicine and Life Sciences (MELIS), Hospital del Mar, Medical Research Institute (IMIM), Parc de Salut Mar, Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain;
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Xavier Duran
- Scientific, Statistics and Technical Department, Hospital del Mar, Medical Research Institute (IMIM), Parc de Salut Mar, 08003 Barcelona, Spain;
| | - José Yélamos
- Cancer Research Program, Hospital del Mar, Medical Research Institute (IMIM), 08003 Barcelona, Spain;
| | - Esther Barreiro
- Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Pulmonology Department, Department of Medicine and Life Sciences (MELIS), Hospital del Mar, Medical Research Institute (IMIM), Parc de Salut Mar, Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain;
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-316-0385; Fax: +34-93-316-0410
| |
Collapse
|
8
|
Yuan P, Song F, Zhu P, Fan K, Liao Q, Huang L, Liu Z. Poly (ADP-ribose) polymerase 1-mediated defective mitophagy contributes to painful diabetic neuropathy in the db/db model. J Neurochem 2022; 162:276-289. [PMID: 35263449 DOI: 10.1111/jnc.15606] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/29/2022]
Abstract
Studies have shown that poly (ADP-ribose) polymerase 1 (PARP1) was involved in the pathological process of diabetes. Mitophagy is widely acknowledged to be a key regulatory process in maintaining reactive oxygen species homeostasis via lysosome degradation of damaged mitochondria. However, the regulatory role of PARP1 in mitophagy-related mitochondrial oxidative injury and progression of painful diabetic neuropathy (PDN) is unclear. In this study, we studied the in vitro and in vivo mechanisms of PARP1-mediated mitophagy blockade in a leptin gene-mutation (db/db) mouse model of PDN. Db/db mice models of PDN were established by assessing the sciatic nerve conduction velocity (SNCV), mechanical withdrawal threshold (MWT), and thermal withdrawal latency (TWL). The results showed that PARP1 activity and mitochondrial injury of dorsal root ganglion (DRG) neurons were increased, and mitophagy was impaired in PDN mice. PARP1 was found to mediate the impairment of mitophagy in DRG neurons isolated from PDN mice. PARP1 inhibitors (PJ34 or AG14361) attenuated diabetes-induced peripheral nerve hyperalgesia, restored DRG neuron mitophagy function and decreased mitochondrial oxidative injury. Mitophagy impairment induced by lysosome deacidificant (DC661) aggravated diabetes-induced DRG neuron mitochondrial oxidative stress and injury. Taken together, our data revealed that PARP1 induced defective mitophagy of DRG neurons is a key mechanism in diabetes-induced peripheral neuropathic injury. Inhibition of PARP1 and restoration of mitophagy function are potential therapeutic targets for PDN.
Collapse
Affiliation(s)
- Pengfei Yuan
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China
| | - Fuhu Song
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong Province, China
| | - Pian Zhu
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China
| | - Keke Fan
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China
| | - Qinming Liao
- Department of Neurosurgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong Province, China
| | - Lijin Huang
- Department of Neurosurgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong Province, China
| | - Zhongjie Liu
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China
| |
Collapse
|
9
|
PARPs in lipid metabolism and related diseases. Prog Lipid Res 2021; 84:101117. [PMID: 34450194 DOI: 10.1016/j.plipres.2021.101117] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
PARPs and tankyrases (TNKS) represent a family of 17 proteins. PARPs and tankyrases were originally identified as DNA repair factors, nevertheless, recent advances have shed light on their role in lipid metabolism. To date, PARP1, PARP2, PARP3, tankyrases, PARP9, PARP10, PARP14 were reported to have multi-pronged connections to lipid metabolism. The activity of PARP enzymes is fine-tuned by a set of cholesterol-based compounds as oxidized cholesterol derivatives, steroid hormones or bile acids. In turn, PARPs modulate several key processes of lipid homeostasis (lipotoxicity, fatty acid and steroid biosynthesis, lipoprotein homeostasis, fatty acid oxidation, etc.). PARPs are also cofactors of lipid-responsive nuclear receptors and transcription factors through which PARPs regulate lipid metabolism and lipid homeostasis. PARP activation often represents a disruptive signal to (lipid) metabolism, and PARP-dependent changes to lipid metabolism have pathophysiological role in the development of hyperlipidemia, obesity, alcoholic and non-alcoholic fatty liver disease, type II diabetes and its complications, atherosclerosis, cardiovascular aging and skin pathologies, just to name a few. In this synopsis we will review the evidence supporting the beneficial effects of pharmacological PARP inhibitors in these diseases/pathologies and propose repurposing PARP inhibitors already available for the treatment of various malignancies.
Collapse
|
10
|
Silencing of Poly(ADP-Ribose) Polymerase-2 Induces Mitochondrial Reactive Species Production and Mitochondrial Fragmentation. Cells 2021; 10:cells10061387. [PMID: 34199944 PMCID: PMC8227884 DOI: 10.3390/cells10061387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/18/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
PARP2 is a DNA repair protein. The deletion of PARP2 induces mitochondrial biogenesis and mitochondrial activity by increasing NAD+ levels and inducing SIRT1 activity. We show that the silencing of PARP2 causes mitochondrial fragmentation in myoblasts. We assessed multiple pathways that can lead to mitochondrial fragmentation and ruled out the involvement of mitophagy, the fusion-fission machinery, SIRT1, and mitochondrial unfolded protein response. Nevertheless, mitochondrial fragmentation was reversed by treatment with strong reductants, such as reduced glutathione (GSH), N-acetyl-cysteine (NAC), and a mitochondria-specific antioxidant MitoTEMPO. The effect of MitoTEMPO on mitochondrial morphology indicates the production of reactive oxygen species of mitochondrial origin. Elimination of reactive oxygen species reversed mitochondrial fragmentation in PARP2-silenced cells.
Collapse
|
11
|
Demény MA, Virág L. The PARP Enzyme Family and the Hallmarks of Cancer Part 1. Cell Intrinsic Hallmarks. Cancers (Basel) 2021; 13:cancers13092042. [PMID: 33922595 PMCID: PMC8122967 DOI: 10.3390/cancers13092042] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/02/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022] Open
Abstract
The 17-member poly (ADP-ribose) polymerase enzyme family, also known as the ADP-ribosyl transferase diphtheria toxin-like (ARTD) enzyme family, contains DNA damage-responsive and nonresponsive members. Only PARP1, 2, 5a, and 5b are capable of modifying their targets with poly ADP-ribose (PAR) polymers; the other PARP family members function as mono-ADP-ribosyl transferases. In the last decade, PARP1 has taken center stage in oncology treatments. New PARP inhibitors (PARPi) have been introduced for the targeted treatment of breast cancer 1 or 2 (BRCA1/2)-deficient ovarian and breast cancers, and this novel therapy represents the prototype of the synthetic lethality paradigm. Much less attention has been paid to other PARPs and their potential roles in cancer biology. In this review, we summarize the roles played by all PARP enzyme family members in six intrinsic hallmarks of cancer: uncontrolled proliferation, evasion of growth suppressors, cell death resistance, genome instability, reprogrammed energy metabolism, and escape from replicative senescence. In a companion paper, we will discuss the roles of PARP enzymes in cancer hallmarks related to cancer-host interactions, including angiogenesis, invasion and metastasis, evasion of the anticancer immune response, and tumor-promoting inflammation. While PARP1 is clearly involved in all ten cancer hallmarks, an increasing body of evidence supports the role of other PARPs in modifying these cancer hallmarks (e.g., PARP5a and 5b in replicative immortality and PARP2 in cancer metabolism). We also highlight controversies, open questions, and discuss prospects of recent developments related to the wide range of roles played by PARPs in cancer biology. Some of the summarized findings may explain resistance to PARPi therapy or highlight novel biological roles of PARPs that can be therapeutically exploited in novel anticancer treatment paradigms.
Collapse
Affiliation(s)
- Máté A. Demény
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: (M.A.D.); (L.V.)
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: (M.A.D.); (L.V.)
| |
Collapse
|
12
|
Curtin N, Bányai K, Thaventhiran J, Le Quesne J, Helyes Z, Bai P. Repositioning PARP inhibitors for SARS-CoV-2 infection(COVID-19); a new multi-pronged therapy for acute respiratory distress syndrome? Br J Pharmacol 2020; 177:3635-3645. [PMID: 32441764 PMCID: PMC7280733 DOI: 10.1111/bph.15137] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023] Open
Abstract
Clinically approved PARP inhibitors (PARPi) have a mild adverse effect profile and are well tolerated as continuous daily oral therapy. We review the evidence that justifies the repurposing of PARPi to block the proliferation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and combat the life-threatening sequelae of coronavirus disease 2019 (COVID-19) by several mechanisms. PARPi can effectively decrease IL-6, IL-1 and TNF-α levels (key interleukins in SARS-CoV-2-induced cytokine storm) and can alleviate subsequent lung fibrosis, as demonstrated in murine experiments and clinical trials. PARPi can tune macrophages towards a tolerogenic phenotype. PARPi may also counteract SARS-CoV-2-induced and inflammation-induced cell death and support cell survival. PARPi is effective in animal models of acute respiratory distress syndrome (ARDS), asthma and ventilator-induced lung injury. PARPi may potentiate the effectiveness of tocilizumab, anakinra, sarilumab, adalimumab, canakinumab or siltuximab therapy. The evidence suggests that PARPi would benefit COVID-19 patients and trials should be undertaken.
Collapse
Affiliation(s)
- Nicola Curtin
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Krisztián Bányai
- Institute for Veterinary Medical ResearchCentre for Agricultural ResearchBudapestHungary
| | | | - John Le Quesne
- MRC Toxicology UnitUniversity of CambridgeLeicesterUK
- Leicester Cancer Research CentreUniversity of Leicester, Leicester Royal InfirmaryLeicesterUK
- Glenfield HospitalUniversity Hospitals Leicester NHS TrustLeicesterUK
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School; Centre for Neuroscience and János Szentágothai Research CentreUniversity of PécsPécsHungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of MedicineUniversity of DebrecenDebrecenHungary
- MTA‐DE Lendület Laboratory of Cellular MetabolismDebrecenHungary
- Research Center for Molecular Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| |
Collapse
|