1
|
Kanaparthi D, Lampe M, Krohn JH, Zhu B, Klingl A, Lueders T. The reproduction of gram-negative protoplasts and the influence of environmental conditions on this process. iScience 2023; 26:108149. [PMID: 37942012 PMCID: PMC10628739 DOI: 10.1016/j.isci.2023.108149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
Bacterial protoplasts are known to reproduce independently of canonical molecular biological processes. Although their reproduction is thought to be influenced by environmental conditions, the growth of protoplasts in their natural habitat has never been empirically studied. Here, we studied the life cycle of protoplasts in their native environment. Contrary to the previous perception that protoplasts reproduce in an erratic manner, cells in our study reproduced in a defined sequence of steps, always leading to viable daughter cells. Their reproduction can be explained by an interplay between intracellular metabolism, the physicochemical properties of cell constituents, and the nature of cations in the growth media. The efficiency of reproduction is determined by the environmental conditions. Under favorable environmental conditions, protoplasts reproduce with nearly similar efficiency to cells that possess a cell wall. In short, here we demonstrate the simplest method of cellular reproduction and the influence of environmental conditions on this process.
Collapse
Affiliation(s)
- Dheeraj Kanaparthi
- Max-Planck Institute for Biochemistry, Munich, Germany
- Chair of Ecological Microbiology, BayCeer, University of Bayreuth, Bayreuth, Germany
- Excellence Cluster ORIGINS, Garching, Germany
| | - Marko Lampe
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jan-Hagen Krohn
- Max-Planck Institute for Biochemistry, Munich, Germany
- Excellence Cluster ORIGINS, Garching, Germany
| | - Baoli Zhu
- Chair of Ecological Microbiology, BayCeer, University of Bayreuth, Bayreuth, Germany
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, CAS, Changsha, China
| | - Andreas Klingl
- Department of Biology, LMU, Planegg-Martinsried, Germany
| | - Tillmann Lueders
- Chair of Ecological Microbiology, BayCeer, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
2
|
Liu R, Shan Y, Xi S, Zhang X, Sun C. A deep-sea sulfate-reducing bacterium generates zero-valent sulfur via metabolizing thiosulfate. MLIFE 2022; 1:257-271. [PMID: 38818226 PMCID: PMC10989961 DOI: 10.1002/mlf2.12038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 06/01/2024]
Abstract
Zero-valent sulfur (ZVS) is a crucial intermediate in the sulfur geobiochemical circulation and is widespread in deep-sea cold seeps. Sulfur-oxidizing bacteria are thought to be the major contributors to the formation of ZVS. However, ZVS production mediated by sulfate-reducing bacteria (SRB) has rarely been reported. In this study, we isolated and cultured a typical SRB designated Oceanidesulfovibrio marinus CS1 from deep-sea cold seep sediment in the South China Sea. We show that O. marinus CS1 forms ZVS in the medium supplemented with thiosulfate. Proteomic and protein activity assays revealed that thiosulfate reductase (PhsA) and the sulfide:quinone oxidoreductase (SQR) played key roles in driving ZVS formation in O. marinus CS1. During this process, thiosulfate firstly was reduced by PhsA to form sulfide, then sulfide was oxidized by SQR to produce ZVS. The expressions of PhsA and SQR were significantly upregulated when O. marinus CS1 was cultured in a deep-sea cold seep, strongly indicating that strain CS1 might form ZVS in the deep-sea environment. Notably, homologs of phsA and sqr were widely identified from microbes living in sediments of deep-sea cold seep in the South China Sea by the metagenomic analysis. We thus propose that SRB containing phsA and sqr genes potentially contribute to the formation of ZVS in deep-sea cold seep environments.
Collapse
Affiliation(s)
- Rui Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine BiologyCenter of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Center of Ocean Mega‐Science, Chinese Academy of SciencesQingdaoChina
| | - Yeqi Shan
- CAS and Shandong Province Key Laboratory of Experimental Marine BiologyCenter of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Center of Ocean Mega‐Science, Chinese Academy of SciencesQingdaoChina
- College of Earth Science, University of Chinese Academy of SciencesBeijingChina
| | - Shichuan Xi
- Center of Ocean Mega‐Science, Chinese Academy of SciencesQingdaoChina
- College of Earth Science, University of Chinese Academy of SciencesBeijingChina
- CAS Key Laboratory of Marine Geology and EnvironmentCenter of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Xin Zhang
- Center of Ocean Mega‐Science, Chinese Academy of SciencesQingdaoChina
- CAS Key Laboratory of Marine Geology and EnvironmentCenter of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Chaomin Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine BiologyCenter of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Center of Ocean Mega‐Science, Chinese Academy of SciencesQingdaoChina
| |
Collapse
|
3
|
Transient Complexity of E. coli Lipidome Is Explained by Fatty Acyl Synthesis and Cyclopropanation. Metabolites 2022; 12:metabo12090784. [PMID: 36144187 PMCID: PMC9500627 DOI: 10.3390/metabo12090784] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
In the case of many bacteria, such as Escherichia coli, the composition of lipid molecules, termed the lipidome, temporally adapts to different environmental conditions and thus modifies membrane properties to permit growth and survival. Details of the relationship between the environment and lipidome composition are lacking, particularly for growing cultures under either favourable or under stress conditions. Here, we highlight compositional lipidome changes by describing the dynamics of molecular species throughout culture-growth phases. We show a steady cyclopropanation of fatty acyl chains, which acts as a driver for lipid diversity. There is a bias for the cyclopropanation of shorter fatty acyl chains (FA 16:1) over longer ones (FA 18:1), which likely reflects a thermodynamic phenomenon. Additionally, we observe a nearly two-fold increase in saturated fatty acyl chains in response to the presence of ampicillin and chloramphenicol, with consequences for membrane fluidity and elasticity, and ultimately bacterial stress tolerance. Our study provides the detailed quantitative lipidome composition of three E. coli strains across culture-growth phases and at the level of the fatty acyl chains and provides a general reference for phospholipid composition changes in response to perturbations. Thus, lipidome diversity is largely transient and the consequence of lipid synthesis and cyclopropanation.
Collapse
|
4
|
TTAPE-Me dye is not selective to cardiolipin and binds to common anionic phospholipids nonspecifically. Biophys J 2021; 120:3776-3786. [PMID: 34280369 DOI: 10.1016/j.bpj.2021.06.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 11/21/2022] Open
Abstract
Identification, visualization, and quantitation of cardiolipin (CL) in biological membranes is of great interest because of the important structural and physiological roles of this lipid. Selective fluorescent detection of CL using noncovalently bound fluorophore 1,1,2,2-tetrakis[4-(2-trimethylammonioethoxy)-phenylethene (TTAPE-Me) has been recently proposed. However, this dye was only tested on wild-type mitochondria or liposomes containing negligible amounts of other anionic lipids, such as phosphatidylglycerol (PG) and phosphatidylserine (PS). No clear preference of TTAPE-Me for binding to CL compared to PG and PS was found in our experiments on artificial liposomes, Escherichia coli inside-out vesicles, or Saccharomyces cerevisiae mitochondria in vitro or in situ, respectively. The shapes of the emission spectra for these anionic phospholipids were also found to be indistinguishable. Thus, TTAPE-Me is not suitable for detection, visualization, and localization of CL in the presence of other anionic lipids present in substantial physiological amounts. Our experiments and complementary molecular dynamics simulations suggest that fluorescence intensity of TTAPE-Me is regulated by dynamic equilibrium between emitting dye aggregates, stabilized by unspecific but thermodynamically favorable electrostatic interactions with anionic lipids, and nonemitting dye monomers. These results should be taken into consideration when interpreting past and future results of CL detection and localization studies with this probe in vitro and in vivo. Provided methodology emphasizes minimal experimental requirements, which should be considered as a guideline during the development of novel lipid-specific probes.
Collapse
|
5
|
Mérida-Floriano A, Rowe WPM, Casadesús J. Genome-Wide Identification and Expression Analysis of SOS Response Genes in Salmonella enterica Serovar Typhimurium. Cells 2021; 10:cells10040943. [PMID: 33921732 PMCID: PMC8072944 DOI: 10.3390/cells10040943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/24/2023] Open
Abstract
A bioinformatic search for LexA boxes, combined with transcriptomic detection of loci responsive to DNA damage, identified 48 members of the SOS regulon in the genome of Salmonella enterica serovar Typhimurium. Single cell analysis using fluorescent fusions revealed that heterogeneous expression is a common trait of SOS response genes, with formation of SOSOFF and SOSON subpopulations. Phenotypic cell variants formed in the absence of external DNA damage show gene expression patterns that are mainly determined by the position and the heterology index of the LexA box. SOS induction upon DNA damage produces SOSOFF and SOSON subpopulations that contain live and dead cells. The nature and concentration of the DNA damaging agent and the time of exposure are major factors that influence the population structure upon SOS induction. An analogy can thus be drawn between the SOS response and other bacterial stress responses that produce phenotypic cell variants.
Collapse
Affiliation(s)
- Angela Mérida-Floriano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, E-41080 Sevilla, Spain;
| | - Will P. M. Rowe
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK;
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, E-41080 Sevilla, Spain;
- Correspondence: ; Tel.: +34-95-455-7105
| |
Collapse
|
6
|
Zhang Q, Zhang Z, Shi H. Cell Size Is Coordinated with Cell Cycle by Regulating Initiator Protein DnaA in E. coli. Biophys J 2020; 119:2537-2557. [PMID: 33189684 DOI: 10.1016/j.bpj.2020.10.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/22/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022] Open
Abstract
Sixty years ago, bacterial cell size was found to be an exponential function of growth rate. Fifty years ago, a more general relationship was proposed, in which cell mass was equal to the initiation mass multiplied by 2 to the power of the ratio of the total time of C and D periods to the doubling time. This relationship has recently been experimentally confirmed by perturbing doubling time, C period, D period, or initiation mass. However, the underlying molecular mechanism remains unclear. Here, we developed a theoretical model for initiator protein DnaA mediating DNA replication initiation in Escherichia coli. We introduced an initiation probability function for competitive binding of DnaA-ATP and DnaA-ADP at oriC. We established a kinetic description of regulatory processes (e.g., expression regulation, titration, inactivation, and reactivation) of DnaA. Cell size as a spatial constraint also participates in the regulation of DnaA. By simulating DnaA kinetics, we obtained a regular DnaA oscillation coordinated with cell cycle and a converged cell size that matches replication initiation frequency to the growth rate. The relationship between the simulated cell size and growth rate, C period, D period, or initiation mass reproduces experimental results. The model also predicts how DnaA number and initiation mass vary with perturbation parameters, comparable with experimental data. The results suggest that 1) when growth rate, C period, or D period changes, the regulation of DnaA determines the invariance of initiation mass; 2) ppGpp inhibition of replication initiation may be important for the growth rate independence of initiation mass because three possible mechanisms therein produce different DnaA dynamics, which is experimentally verifiable; and 3) perturbation of some DnaA regulatory process causes a changing initiation mass or even an abnormal cell cycle. This study may provide clues for concerted control of cell size and cell cycle in synthetic biology.
Collapse
Affiliation(s)
- Qing Zhang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China.
| | - Zhichao Zhang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
| | - Hualin Shi
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Bogdanov M, Pyrshev K, Yesylevskyy S, Ryabichko S, Boiko V, Ivanchenko P, Kiyamova R, Guan Z, Ramseyer C, Dowhan W. Phospholipid distribution in the cytoplasmic membrane of Gram-negative bacteria is highly asymmetric, dynamic, and cell shape-dependent. SCIENCE ADVANCES 2020; 6:eaaz6333. [PMID: 32537497 PMCID: PMC7269648 DOI: 10.1126/sciadv.aaz6333] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 03/23/2020] [Indexed: 05/19/2023]
Abstract
The distribution of phospholipids across the inner membrane (IM) of Gram-negative bacteria is unknown. We demonstrate that the IMs of Escherichia coli and Yersinia pseudotuberculosis are asymmetric, with a 75%/25% (cytoplasmic/periplasmic leaflet) distribution of phosphatidylethanolamine (PE) in rod-shaped cells and an opposite distribution in E. coli filamentous cells. In initially filamentous PE-lacking E. coli cells, nascent PE appears first in the periplasmic leaflet. As the total PE content increases from nearly zero to 75%, cells progressively adopt a rod shape and PE appears in the cytoplasmic leaflet of the IM. The redistribution of PE influences the distribution of the other lipids between the leaflets. This correlates with the tendency of PE and cardiolipin to regulate antagonistically lipid order of the bilayer. The results suggest that PE asymmetry is metabolically controlled to balance temporally the net rates of synthesis and translocation, satisfy envelope growth capacity, and adjust bilayer chemical and physical properties.
Collapse
Affiliation(s)
- Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, TX 77030, USA
- Department of Biochemistry, Biotechnology and Pharmacology, Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan 420008, Russian Federation
- Corresponding author.
| | - Kyrylo Pyrshev
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, TX 77030, USA
- Laboratory of the Nanobiotechnology, Department of Neurochemistry, Palladin Institute of Biochemistry of the NAS of Ukraine, 9 Leontovycha Street, Kyiv 01601, Ukraine
- Department of Physics of Biological Systems, Institute of Physics, NAS of Ukraine, 46 Nauky Avenue., Kyiv 03680, Ukraine
| | - Semen Yesylevskyy
- Department of Physics of Biological Systems, Institute of Physics, NAS of Ukraine, 46 Nauky Avenue., Kyiv 03680, Ukraine
- Laboratoire Chrono-Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France
| | - Sergey Ryabichko
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, TX 77030, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Vitalii Boiko
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, TX 77030, USA
- Department of Spectroscopy of Excited States, Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, Wrocław 50-422, Poland
| | - Pavlo Ivanchenko
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, TX 77030, USA
- Department of Chemistry and Interdepartmental Centre Nanostructured Interfaces and Surfaces (NIS), University of Torino, 10125 Torino, Italy
| | - Ramziya Kiyamova
- Department of Biochemistry, Biotechnology and Pharmacology, Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan 420008, Russian Federation
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Christophe Ramseyer
- Laboratoire Chrono-Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France
| | - William Dowhan
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, TX 77030, USA
| |
Collapse
|