1
|
Zhao X, Qi X, Liu D, Che X, Wu G. A Novel Approach for Bladder Cancer Treatment: Nanoparticles as a Drug Delivery System. Int J Nanomedicine 2024; 19:13461-13483. [PMID: 39713223 PMCID: PMC11662911 DOI: 10.2147/ijn.s498729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024] Open
Abstract
Bladder cancer represents one of the most prevalent malignant neoplasms of the urinary tract. In the Asian context, it represents the eighth most common cancer in males. In 2022, there were approximately 613,791 individuals diagnosed with bladder cancer worldwide. Despite the availability of efficacious treatments for the two principal forms of bladder cancer, namely non-invasive and invasive bladder cancer, the high incidence of recurrence following treatment and the suboptimal outcomes observed in patients with high-grade and advanced disease represent significant concerns in the management of bladder cancer at this juncture. Nanoparticles have gained attention for their excellent properties, including stable physical properties, a porous structure that can be loaded with a variety of substances, and so on. The in-depth research on nanoparticles has led to their emergence as a new class of nanoparticles for combination therapy, due to their advantageous properties. These include the extension of the drug release window, the enhancement of drug bioavailability, the improvement of drug targeting ability, the reduction of local and systemic toxicity, and the simultaneous delivery of multiple drugs for combination therapy. As a result, nanoparticles have become a novel agent of the drug delivery system. The advent of nanoparticles has provided a new impetus for the development of non-surgical treatments for bladder cancer, including chemotherapy, immunotherapy, gene therapy and phototherapy. The unique properties of nanoparticles have facilitated the combination of diverse non-surgical therapeutic modalities, enhancing their overall efficacy. This review examines the recent advancements in the use of nanoparticles in non-surgical bladder cancer treatments, encompassing aspects such as delivery, therapeutic efficacy, and the associated toxicity of nanoparticles, as well as the challenges encountered in clinical applications.
Collapse
Affiliation(s)
- Xinming Zhao
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Xiaochen Qi
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| |
Collapse
|
2
|
Szczęsna-Górniak W, Weżgowiec J, Tsirigotis-Maniecka M, Szyk-Warszyńska L, Michna A, Warszyński P, Saczko J, Wilk KA. Physicochemical Features and Applicability of Newly Fabricated Phytopharmaceutical-Loaded Hydrogel Alginate Microcarriers with Viscoelastic Polyelectrolyte Coatings. Chemphyschem 2024; 25:e202300758. [PMID: 38116981 DOI: 10.1002/cphc.202300758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
The design of novel polymeric carrier systems with functional coatings is of great interest for delivering various bioactive molecules. Microcapsules coated with polyelectrolyte (PE) films provide additional functionality and fine-tuning advantages essential for controlled drug release. We developed hydrogel microcarriers coated with functional PE films with encapsulated substances of natural origin, resveratrol (RES), curcumin (CUR), and epigallocatechin gallate (EGCG), which have cytotoxic and chemopreventive properties. Alginate (ALG) based microparticles were loaded with phytopharmaceuticals using the emulsification method, and then their surface was modified with PE coatings, such as chitosan (CHIT) or poly(allylamine hydrochloride) (PAH). The morphology and mean diameter of microcarriers were characterised by scanning electron microscopy, encapsulation efficiency was determined by UV-Vis spectroscopy, whereas the physicochemical properties of functional PE layers were studied using quartz crystal microbalance with dissipation monitoring and streaming potential measurements. The release profiles of active compounds from the hydrogel microparticles were described using the Peppas-Sahlin model. The cytotoxic effect of designed delivery systems was studied by evaluating their impact on the proliferation, mitochondrial metabolic function, and lipid peroxidation level of 5637 human bladder cancer cells. The present work demonstrates that the physicochemical and biological features of fabricated microcarriers can be controlled by the type of encapsulated anti-cancer agent and PE coating.
Collapse
Affiliation(s)
- Weronika Szczęsna-Górniak
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Joanna Weżgowiec
- Department of Experimental Dentistry, Wroclaw Medical University, 50-425, Wroclaw, Poland
| | - Marta Tsirigotis-Maniecka
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Lilianna Szyk-Warszyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239, Krakow, Poland
| | - Aneta Michna
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239, Krakow, Poland
| | - Piotr Warszyński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239, Krakow, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556, Wroclaw, Poland
| | - Kazimiera A Wilk
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| |
Collapse
|
3
|
Yu L, Lin N, Ye Y, Zhou S, Xu Y, Chen J, Zhuang W, Wang Q. Prognostic and chemotherapeutic response prediction by proliferation essential gene signature: Investigating POLE2 in bladder cancer progression and cisplatin resistance. J Cancer 2024; 15:1734-1749. [PMID: 38370377 PMCID: PMC10869977 DOI: 10.7150/jca.93023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Background: Bladder cancer (BLCA) is the most common genitourinary malignancy. Proliferation essential genes (PEGs) are crucial to the survival of cancer cells. This study aimed to build a PEG signature to predict BLCA prognosis and treatment efficacy. Methods: BLCA PEGs and differentially expressed PEGs were identified using DepMap and TCGA-BLCA datasets, respectively. Based on the prognostic analysis of the differentially expressed PEGs, a PEG model was constructed. Subsequently, we analyzed the relationship between the PEG signature and prognosis of BLCA patients as well as their response to chemotherapy. Finally, we performed random forest analysis to target and functional experiments to validate the most significant PEG which is associated with BLCA progression. CCK-8, invasion, migration, and chemosensitivity assays were performed to assess effects of gene knockdown on BLCA cell proliferation, invasion and migration abilities, and cisplatin chemosensitivity. Results: We screened 10 prognostic PEGs from 201 differentially expressed PEGs and used them to construct a PEG signature model. Patients with high PEG signature score (PEGs-high) exhibited worse OS and lower sensitivity to chemotherapy than those with PEGs-low. We also found significant correlations between the PEG score and previously defined BLCA molecular subtypes. This suggests that the PEG score may effectively predict the molecular subtypes which have distinct clinical outcomes. Random forest analysis revealed that POLE2 (DNA polymerase epsilon subunit 2) was the most significant PEG differentiating BLCA tissue and normal tissue. Bioinformatic analysis and an immunohistochemistry staining assay confirmed that POLE2 was significantly up-regulated in tumor tissues and was associated with poor survival in BLCA patients. Moreover, POLE2 knockdown inhibited the ability of cell clone formation, proliferation, invasion, immigration and IC50 of cisplatin. Conclusion: The PEG signature acts as a potential predictor for prognosis and chemotherapy response in BLCA patients. POLE2 is a key PEG and plays a remarkable role in promoting the malignant progression and cisplatin resistance of BLCA.
Collapse
Affiliation(s)
- Liying Yu
- Central Laboratory, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Na Lin
- Department of Pathology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Yan Ye
- Ganzhou Key Laboratory of Molecular Medicine, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, 341000, China
| | - Shuang Zhou
- The Second Clinical Medical School of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Yanjuan Xu
- Department of Pathology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Jiabi Chen
- Department of Urology, the Second Affiliated Hospital of Fujian Medical University, No. 34 Zhongshan North Road, Quanzhou 362000, Fujian
| | - Wei Zhuang
- Department of Urology, the Second Affiliated Hospital of Fujian Medical University, No. 34 Zhongshan North Road, Quanzhou 362000, Fujian
| | - Qingshui Wang
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 361000, China
| |
Collapse
|
4
|
He X, Cui J, Ma H, Abuduaini N, Huang Y, Tang L, Wang W, Zhang Y, Wang Y, Lu W, Feng B, Huang J. Berberrubine is a novel and selective IMPDH2 inhibitor that impairs the growth of colorectal cancer. Biochem Pharmacol 2023; 218:115868. [PMID: 37871880 DOI: 10.1016/j.bcp.2023.115868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Inosine monophosphate dehydrogenase (IMPDH) catalyzes the rate-limiting reaction in the de novo synthesis pathway of guanine nucleotides that is highly required for cancer cell outgrowth. Herein, we found that IMPDH isoform 2 (IMPDH2) is highly expressed in colorectal cancer (CRC) and is correlated with poor patient prognosis. Via structure-based virtual screening, we identified berberrubine, a critical ingredient of the medical plant Coptis chinensis, as a novel, selective, and competitive inhibitor of IMPDH2, which demonstrated over 15-fold selectivity to IMPDH2 than IMPDH1. Besides, we also confirmed the interaction between berberrubine and IMPDH2. Of note, berberrubine treatment significantly impairs the growth of human CRC cells in a dose-dependent manner, which can be rescued by supplementing with guanosine. Furthermore, oral administration of berberrubine remarkably reduced tumor volume and weight in a human cell line-derived xenograft model. Importantly, the anti-cancer activity of berberrubine was also confirmed by using the azoxymethane (AOM) / dextran sulfate sodium (DSS)-induced spontaneous CRC mouse model. Taken together, our study highlights that berberrubine acts as a novel IMPDH2 inhibitor, suppressing the growth of CRC in vitro and in vivo, providing a fresh perspective for its potential application in the treatment of CRC.
Collapse
Affiliation(s)
- Xiangli He
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jiayan Cui
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Hui Ma
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Naijipu Abuduaini
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Huang
- Drug Inspection Technology, Guangdong Institute For Drug Control, 766 Shenzhou Road, Guangzhou 510663, China
| | - Lu Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wanyan Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yuanyuan Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yang Wang
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Bo Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jin Huang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
5
|
Janev A, Ramuta TŽ, Jerman UD, Obradović H, Kamenšek U, Čemažar M, Kreft ME. Human amniotic membrane inhibits migration and invasion of muscle-invasive bladder cancer urothelial cells by downregulating the FAK/PI3K/Akt/mTOR signalling pathway. Sci Rep 2023; 13:19227. [PMID: 37932474 PMCID: PMC10628262 DOI: 10.1038/s41598-023-46091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
Bladder cancer is the 10th most commonly diagnosed cancer with the highest lifetime treatment costs. The human amniotic membrane (hAM) is the innermost foetal membrane that possesses a wide range of biological properties, including anti-inflammatory, antimicrobial and anticancer properties. Despite the growing number of studies, the mechanisms associated with the anticancer effects of human amniotic membrane (hAM) are poorly understood. Here, we reported that hAM preparations (homogenate and extract) inhibited the expression of the epithelial-mesenchymal transition markers N-cadherin and MMP-2 in bladder cancer urothelial cells in a dose-dependent manner, while increasing the secretion of TIMP-2. Moreover, hAM homogenate exerted its antimigratory effect by downregulating the expression of FAK and proteins involved in actin cytoskeleton reorganisation, such as cortactin and small RhoGTPases. In muscle-invasive cancer urothelial cells, hAM homogenate downregulated the PI3K/Akt/mTOR signalling pathway, the key cascade involved in promoting bladder cancer. By using normal, non-invasive papilloma and muscle-invasive cancer urothelial models, new perspectives on the anticancer effects of hAM have emerged. The results identify new sites for therapeutic intervention and are prompt encouragement for ongoing anticancer drug development studies.
Collapse
Affiliation(s)
- Aleksandar Janev
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Dragin Jerman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Hristina Obradović
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Kamenšek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Maja Čemažar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
6
|
Wu SX, Xiong RG, Huang SY, Zhou DD, Saimaiti A, Zhao CN, Shang A, Zhang YJ, Gan RY, Li HB. Effects and mechanisms of resveratrol for prevention and management of cancers: An updated review. Crit Rev Food Sci Nutr 2023; 63:12422-12440. [PMID: 35852215 DOI: 10.1080/10408398.2022.2101428] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer is a severe public health problem. Resveratrol is a famous natural compound that has various bioactivities, such as antioxidant, anti-inflammatory, antidiabetic and antiaging activities. Especially, resveratrol could prevent and treat various cancers, such as oral, thyroid, breast, lung, liver, pancreatic, gastric, colorectal, bladder, prostate and ovarian cancers. The underlying mechanisms have been widely studied, such as inhibiting cell proliferation, suppressing metastasis, inducing apoptosis, stimulating autophagy, modulating immune system, attenuating inflammation, regulating gut microbiota and enhancing effects of other anticancer drugs. In this review, we summarize effects and mechanisms of resveratrol on different cancers. This paper is helpful to develop resveratrol, crude extract containing resveratrol, or foods containing resveratrol into functional food, dietary supplements or auxiliary agents for prevention and management of cancers.
Collapse
Affiliation(s)
- Si-Xia Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Cai-Ning Zhao
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ao Shang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yun-Jian Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
7
|
Cao W, Chen X, Xiao C, Lin D, Li Y, Luo S, Zeng Z, Sun B, Lei S. Ar-turmerone inhibits the proliferation and mobility of glioma by downregulating cathepsin B. Aging (Albany NY) 2023; 15:9377-9390. [PMID: 37768200 PMCID: PMC10564430 DOI: 10.18632/aging.204940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/18/2023] [Indexed: 09/29/2023]
Abstract
Ar-turmerone, a compound isolated from turmeric seeds, has exhibited anti-malignant, anti-aging and anti-inflammatory properties. Here, we assessed the effects of ar-turmerone on glioma cells. U251, U87 and LN229 glioma cell lines were treated with different concentrations of ar-turmerone (0, 50, 100 and 200 μM), and their viability and mobility were evaluated using Cell Counting Kit 8, colony formation, wound healing and Transwell assays. The effects of ar-turmerone on U251 glioma cell proliferation were also assessed using a subcutaneous implantation tumor model. High-throughput sequencing, bioinformatic analyses and quantitative real-time polymerase chain reactions were used to identify the key signaling pathways and targets of ar-turmerone. Ar-turmerone reduced the proliferation rate and mobility of glioma cells in vitro and arrested cell division at G1/S phase. Cathepsin B was identified as a key target of ar-turmerone in glioma cells. Ar-turmerone treatment reduced cathepsin B expression and inhibited the cleavage of its target protein P27 in glioma cells. On the other hand, cathepsin B overexpression reversed the inhibitory effects of ar-turmerone on glioma cell proliferation, mobility progression in vitro and in vivo. In conclusion, ar-turmerone suppressed cathepsin B expression and P27 cleavage, thereby inhibiting the proliferation and mobility of glioma cells.
Collapse
Affiliation(s)
- Wenpeng Cao
- Department of Anatomy, Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang 550009, Guizhou, China
| | - Xiaozong Chen
- Department of Neurosurgery, The Jinyang Hospital Affiliated to Guizhou Medical University, Guiyang 550009, Guizhou, China
| | - Chaolun Xiao
- Department of Anatomy, Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang 550009, Guizhou, China
| | - Dengxiao Lin
- Department of Anatomy, Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang 550009, Guizhou, China
| | - Yumei Li
- Department of Anatomy, Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang 550009, Guizhou, China
| | - Shipeng Luo
- Department of Anatomy, Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang 550009, Guizhou, China
| | - Zhirui Zeng
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang 550009, Guizhou, China
| | - Baofei Sun
- Department of Anatomy, Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang 550009, Guizhou, China
| | - Shan Lei
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang 550009, Guizhou, China
| |
Collapse
|
8
|
Zhang M, Zhu J, Zhang P, Li L, Min M, Li T, He W. Development and validation of cancer-associated fibroblasts-related gene landscape in prognosis and immune microenvironment of bladder cancer. Front Oncol 2023; 13:1174252. [PMID: 37397364 PMCID: PMC10309557 DOI: 10.3389/fonc.2023.1174252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Backgrounds Bladder cancer (BLCA) is one of the most prevalent cancers of the genitourinary system, the clinical outcomes of patients with BLCA are bad, and the morbidity rate is high. One of the key components of the tumor microenvironment (TME) is cancer-associated fibroblasts (CAFs) which are critically involved in BLCA tumorigenesis. Previous studies have shown the involvement of CAFs in tumor growth, cancer progression, immune evasion, angiogenesis, and chemoresistance in several cancers such as breast, colon, pancreatic, ovarian, and prostate cancers. However, only a few studies have shown the role of CAFs in the occurrence and development of BLCA. Methods We have retrieved and merged the data on RNA-sequencing of patients with BLCA from databases including "the Cancer Genome Atlas" and "Gene Expression Omnibus." Next, we compared the differences in CAFs-related genes (CRGs) expression between normal and BLCA tissues. Based on CRGs expression, we randomly divided patients into two groups. Next, we determined the correlation between CAFs subtypes and differentially expressed CRGs (DECRGs) between the two subtypes. Furthermore, the "Gene Ontology" and "Kyoto Encyclopedia of Genes and Genomes pathway" enrichment analyses were conducted to determine the functional characteristics between the DECRGs and clinicopathology. Results We identified five genes (POF1B, ARMCX1, ALDOC, C19orf33, and KRT13) using multivariate COX regression and "Least Absolute Shrinkage and Selection Operator (LASSO) COX regression analysis" for developing a prognostic model and calculating the CRGs-risk score. The TME, mutation, CSC index, and drug sensitivity were also analyzed. Conclusion We constructed a novel five- CRGs prognostic model, which sheds light on the roles of CAFs in BLCA.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Urology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Junlong Zhu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pan Zhang
- Department of Urology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Lingxun Li
- Department of Urology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Min Min
- Department of Urology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Tinghao Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Kang Y, Park C, Lee H, Kang S, Cheon C, Kim B. Natural Products as New Approaches for Treating Bladder Cancer: From Traditional Medicine to Novel Drug Discovery. Pharmaceutics 2023; 15:pharmaceutics15041117. [PMID: 37111603 PMCID: PMC10145408 DOI: 10.3390/pharmaceutics15041117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Bladder cancer (BC) is a heterogeneous disease that a tumor develops in the bladder lining and in some cases, the bladder muscle. Chemotherapy and immunotherapy are commonly used to treat bladder cancer. However, chemotherapy can cause burning and irritation in the bladder while BCG immunotherapy, which is the main type of intravesical immunotherapy for bladder cancer, can also cause burning in the bladder and flu-like symptoms. Thus, drugs originating from natural products have attracted much attention due to the reports that they have anti-cancer properties with low adverse effects. In this study, eighty-seven papers that dealt with natural products preventing or treating bladder cancer were reviewed. The studies were classified into the following mechanism: 71 papers on cell death, 5 papers on anti-metastasis, 3 papers on anti-angiogenesis, 1 paper on anti-resistance, and 7 papers on clinical trials. Most of the natural products that induced apoptosis up-regulated proteins such as caspase-3 and caspase-9. Regarding anti-metastasis, MMP-2 and MMP-9 are regulated frequently. Regarding anti-angiogenesis, HIF-1α and VEGF-A are down-regulated frequently. Nevertheless, the number of papers regarding anti-resistance and clinical trial are too few, so more studies are needed. In conclusion, this database will be useful for future in vivo studies of the anti-bladder cancer effect of natural products, in the process of selecting materials used for the experiment.
Collapse
|
10
|
Gao Y, Su Z, Wang C, Xu J, Hu S, Zhang C, Sun P, Zhou X, Wang W, Zou T, Yang B, Cheng X, Yi X, Zheng Q. Light-triggered polymeric prodrug and nano-assembly for chemo-photodynamic therapy and potentiate immune checkpoint blockade immunotherapy for hepatocellular carcinoma. MATERIALS & DESIGN 2023; 225:111457. [DOI: 10.1016/j.matdes.2022.111457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
|
11
|
Esmeeta A, Adhikary S, Dharshnaa V, Swarnamughi P, Ummul Maqsummiya Z, Banerjee A, Pathak S, Duttaroy AK. Plant-derived bioactive compounds in colon cancer treatment: An updated review. Biomed Pharmacother 2022; 153:113384. [PMID: 35820317 DOI: 10.1016/j.biopha.2022.113384] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 12/19/2022] Open
Abstract
Colon cancer is the third most predominant cancer caused by genetic, environmental and nutritional factors. Plant-based compounds are very well known to regress colon cancer in many ways, like delaying tumor growth, managing chemotherapy and radiation therapy side-effects, and working at the molecular levels. Medicinal plants contain many bioactive phytochemicals such as flavonoids, polyphenol compounds, caffeic acid, catechins, saponins, polysaccharides, triterpenoids, alkaloids, glycosides, phenols, quercetin, luteolin, kaempferol and luteolin glycosides, carnosic acid, oleanolic acid, rosmarinic acid, emodin, and eugenol and anthricin. These bioactive compounds can reduce tumor cell proliferation via several mechanisms, such as blocking cell cycle checkpoints and promoting apoptosis through activating initiator and executioner caspase. Traditional medicines have been used globally to treat cancers because of their anti-cancer effects, antioxidant properties, anti-inflammatory properties, anti-mutagenic effects, and anti-angiogenic effects. In addition, these medicines effectively suppress early and intermediate stages of carcinogenesis when administered in their active and pure form. However, traditional medicine is not very popular due to some critical challenges. These include poor solubility and absorption of these compounds, intellectual property-related issues, involvement of drug synergism, absence of drug-likeness, and unsure protocols for their extraction from the plant source. Using bioactive compounds in colon cancer has equal advantages and limitations. This review highlights the benefits and challenges of using bioactive compounds derived from plants for colon cancer. We have also discussed using these compounds to target cancer stem cell self-renewal, its effects on cancer cell metabolism, safety parameters, easy modulation, and their bioavailability.
Collapse
Affiliation(s)
- Akanksha Esmeeta
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, Uttar Pradesh 201301, India
| | - Subhamay Adhikary
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, Uttar Pradesh 201301, India
| | - V Dharshnaa
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - P Swarnamughi
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Z Ummul Maqsummiya
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Antara Banerjee
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Surajit Pathak
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India.
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| |
Collapse
|
12
|
Wang Z, He S, Jiang M, Li X, Chen N. Mechanism Study on Radiosensitization Effect of Curcumin in Bladder Cancer Cells Regulated by Filamin A. Dose Response 2022; 20:15593258221100997. [PMID: 35677349 PMCID: PMC9168873 DOI: 10.1177/15593258221100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective To study the radiosensitization effect of curcumin, a natural product with
anti-inflammatory and anti-cancer properties, in bladder cancer cells and identify the
specific role of FLNA gene in that process. Methods CCK-8 method was initially adopted to identify the proper interventional concentration
of curcumin. T24 bladder cancer cells were subjected to CCK-8, flow cytometry, and
colony formation assay to study the cell biological behaviors under different
interventions. γ-H2AX test was performed to test the level of damage in T24 cells.
RT-qPCR and Western blot were conducted to measure FLNA mRNA and protein levels. Results Low-dose curcumin (10, 20 μM) following X-ray exposure resulted in increased DNA
damage, augmented apoptosis, and reduced proliferation of T24 cells. Certain
radiosensitization was demonstrated when curcumin was applied at 10 μM. Additionally,
elevation of FLNA gene and protein levels was also indicated upon combination
treatment. Conclusion Low-dose curcumin has certain radiosensitization effect in bladder cancer, where FLNA
plays a certain regulatory role.
Collapse
Affiliation(s)
- Zhenfan Wang
- Soochow University Affiliated Suzhou Ninth Hospital, Suzhou, China
| | - Shuqing He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Minjun Jiang
- Soochow University Affiliated Suzhou Ninth Hospital, Suzhou, China
| | - Xue Li
- Soochow University Affiliated Suzhou Ninth Hospital, Suzhou, China
| | - Na Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| |
Collapse
|
13
|
Wang SS, Zhai GQ, Chen G, Huang ZG, He RQ, Huang SN, Liu JL, Cheng JW, Yan HB, Dang YW, Li SH. Decreased expression of transcription factor Homeobox A11 and its potential target genes in bladder cancer. Pathol Res Pract 2022; 233:153847. [DOI: 10.1016/j.prp.2022.153847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
|
14
|
Shay C, Teng Y. Evaluating the Anticancer Activity of Natural Products Using a Novel 3D Culture Model. Methods Mol Biol 2022; 2343:159-164. [PMID: 34473320 DOI: 10.1007/978-1-0716-1558-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Natural products, particularly as anticancer agents, continue to provide prototypes for pharmacologically active compounds. Compared with traditional two-dimensional (2D) approaches, 3D cell cultures have shown a clear role in drug discovery and development as they more closely resemble in vivo cell environments and come closer to capturing the in vivo functions of organs and tissues. The growing interest in using more physiological in vitro cancer models has driven the adoption of 3D cell cultures in evaluating anticancer activities of natural products. Here, we establish a protocol to use a novel 3D culture system to evaluate the therapeutic efficacy of epigallocatechin gallate (EGCG), a plant-based natural compound, in head and neck cancer cells. Our findings reveal that the sensitivity of natural products in 3D culture models may differ markedly from that obtained using 2D cultures, suggesting that 3D models will become a more reliable alternative to minimize misleading data.
Collapse
Affiliation(s)
- Chloe Shay
- Department of Pediatrics, Emory Children's Center, Emory University, Atlanta, GA, USA
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA.
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
15
|
Ghosh A, Panda CK. Role of Pentacyclic Triterpenoid Acids in the Treatment of Bladder Cancer. Mini Rev Med Chem 2021; 22:1331-1340. [PMID: 34719363 DOI: 10.2174/1389557521666211022145052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/27/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
Bladder cancer carries a poor prognosis and has proven resistance to chemotherapy. Pentacyclic Triterpenoid Acids (PTAs) are natural bioactive compounds that have a well-known impact on cancer research because of their cytotoxic and chemopreventive activities. This review focuses on bladder cancer which can no longer be successfully treated by DNA damaging drugs. Unlike most of the existing drugs against bladder cancer, PTAs are non-toxic to normal cells. Collecting findings from both in vitro and in vivo studies, it has been concluded that PTAs may serve as promising agents in future bladder cancer therapy. In this review, the roles of various PTAs in bladder cancer have been explored, and their mechanisms of action in the treatment of bladder cancer have been described. Specific PTAs have been shortlisted from each of the chief skeletons of pentacyclic triterpenoids, which could be effective against bladder cancer because of their mode of action. This review thereby throws light on the multi targets and mechanisms of PTAs, which are responsible for their selective anticancer effects and provides guidelines for further research and development of new natural antitumor compounds.
Collapse
Affiliation(s)
- Anindita Ghosh
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata. India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata. India
| |
Collapse
|
16
|
Programmed Cell Death in Health and Disease. Cells 2021; 10:cells10071765. [PMID: 34359935 PMCID: PMC8303776 DOI: 10.3390/cells10071765] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 02/06/2023] Open
Abstract
Programmed cell death is a conserved evolutionary process of cell suicide that is central to the development and integrity of eukaryotic organisms [...].
Collapse
|
17
|
Xia Y, Chen R, Lu G, Li C, Lian S, Kang TW, Jung YD. Natural Phytochemicals in Bladder Cancer Prevention and Therapy. Front Oncol 2021; 11:652033. [PMID: 33996570 PMCID: PMC8120318 DOI: 10.3389/fonc.2021.652033] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Phytochemicals are natural small-molecule compounds derived from plants that have attracted attention for their anticancer activities. Some phytochemicals have been developed as first-line anticancer drugs, such as paclitaxel and vincristine. In addition, several phytochemicals show good tumor suppression functions in various cancer types. Bladder cancer is a malignant tumor of the urinary system. To date, few specific phytochemicals have been used for bladder cancer therapy, although many have been studied in bladder cancer cells and mouse models. Therefore, it is important to collate and summarize the available information on the role of phytochemicals in the prevention and treatment of bladder cancer. In this review, we summarize the effects of several phytochemicals including flavonoids, steroids, nitrogen compounds, and aromatic substances with anticancer properties and classify the mechanism of action of phytochemicals in bladder cancer. This review will contribute to facilitating the development of new anticancer drugs and strategies for the treatment of bladder cancer using phytochemicals.
Collapse
Affiliation(s)
- Yong Xia
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Ruijiao Chen
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Guangzhen Lu
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Changlin Li
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Sen Lian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Taek-Won Kang
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, South Korea
| | - Young Do Jung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, South Korea
| |
Collapse
|