1
|
Lencioni G, Gregori A, Toledo B, Rebelo R, Immordino B, Amrutkar M, Xavier CPR, Kocijančič A, Pandey DP, Perán M, Castaño JP, Walsh N, Giovannetti E. Unravelling the complexities of resistance mechanism in pancreatic cancer: Insights from in vitro and ex-vivo model systems. Semin Cancer Biol 2024; 106-107:217-233. [PMID: 39299411 DOI: 10.1016/j.semcancer.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis and rising global deaths. Late diagnosis, due to absent early symptoms and biomarkers, limits treatment mainly to chemotherapy, which soon encounters resistance. PDAC treatment innovation is hampered by its complex and heterogeneous resistant nature, including mutations in key genes and a stromal-rich, immunosuppressive tumour microenvironment. Recent studies on PDAC resistance stress the need for suitable in vitro and ex vivo models to replicate its complex molecular and microenvironmental landscape. This review summarises advances in these models, which can aid in combating chemoresistance and serve as platforms for discovering new therapeutics. Immortalised cell lines offer homogeneity, unlimited proliferation, and reproducibility, but while many gemcitabine-resistant PDAC cell lines exist, fewer models are available for resistance to other drugs. Organoids from PDAC patients show promise in mimicking tumour heterogeneity and chemosensitivity. Bioreactors, co-culture systems and organotypic slices, incorporating stromal and immune cells, are being developed to understand tumour-stroma interactions and the tumour microenvironment's role in drug resistance. Lastly, another innovative approach is three-dimensional bioprinting, which creates tissue-like structures resembling PDAC architecture, allowing for drug screening. These advanced models can guide researchers in selecting optimal in vitro tests, potentially improving therapeutic strategies and patient outcomes.
Collapse
Affiliation(s)
- Giulia Lencioni
- Fondazione Pisana per La Scienza, San Giuliano Terme, Italy; Department of Biology, University of Pisa, Pisa, Italy
| | - Alessandro Gregori
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Belén Toledo
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén E-23071, Spain
| | - Rita Rebelo
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands; Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto 4200-135, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, Porto 4200-135, Portugal; Department of Biological Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal
| | - Benoît Immordino
- Fondazione Pisana per La Scienza, San Giuliano Terme, Italy; Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Manoj Amrutkar
- Department of Pathology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Cristina P R Xavier
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto 4200-135, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, Porto 4200-135, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra, Portugal
| | - Anja Kocijančič
- Centre for Embryology and Healthy Development, Department of Microbiology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Deo Prakash Pandey
- Centre for Embryology and Healthy Development, Department of Microbiology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén E-23071, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Naomi Walsh
- Life Sciences Institute, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Elisa Giovannetti
- Fondazione Pisana per La Scienza, San Giuliano Terme, Italy; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Amaro F, Carvalho M, Bastos MDL, Guedes de Pinho P, Pinto J. Metabolomics Reveals Tyrosine Kinase Inhibitor Resistance-Associated Metabolic Events in Human Metastatic Renal Cancer Cells. Int J Mol Sci 2024; 25:6328. [PMID: 38928035 PMCID: PMC11204329 DOI: 10.3390/ijms25126328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The development of resistance to tyrosine kinase inhibitors (TKIs) is a major cause of treatment failure in metastatic renal cell carcinoma (mRCC). A deeper understanding of the metabolic mechanisms associated with TKI resistance is critical for refining therapeutic strategies. In this study, we established resistance to sunitinib and pazopanib by exposing a parental Caki-1 cell line to increasing concentrations of sunitinib and pazopanib. The intracellular and extracellular metabolome of sunitinib- and pazopanib-resistant mRCC cells were investigated using a nuclear magnetic resonance (NMR)-based metabolomics approach. Data analysis included multivariate and univariate methods, as well as pathway and network analyses. Distinct metabolic signatures in sunitinib- and pazopanib-resistant RCC cells were found for the first time in this study. A common metabolic reprogramming pattern was observed in amino acid, glycerophospholipid, and nicotinate and nicotinamide metabolism. Sunitinib-resistant cells exhibited marked alterations in metabolites involved in antioxidant defence mechanisms, while pazopanib-resistant cells showed alterations in metabolites associated with energy pathways. Sunitinib-resistant RCC cells demonstrated an increased ability to proliferate, whereas pazopanib-resistant cells appeared to restructure their energy metabolism and undergo alterations in pathways associated with cell death. These findings provide potential targets for novel therapeutic strategies to overcome TKI resistance in mRCC through metabolic regulation.
Collapse
Affiliation(s)
- Filipa Amaro
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; (M.C.); (M.d.L.B.); (P.G.d.P.)
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Márcia Carvalho
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; (M.C.); (M.d.L.B.); (P.G.d.P.)
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- RISE-UFP, Health Research Network, Faculty of Health Sciences, University Fernando Pessoa, 4200-150 Porto, Portugal
| | - Maria de Lourdes Bastos
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; (M.C.); (M.d.L.B.); (P.G.d.P.)
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; (M.C.); (M.d.L.B.); (P.G.d.P.)
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Joana Pinto
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; (M.C.); (M.d.L.B.); (P.G.d.P.)
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
3
|
Teng T, Shi H, Fan Y, Guo P, Zhang J, Qiu X, Feng J, Huang H. Metabolic responses to the occurrence and chemotherapy of pancreatic cancer: biomarker identification and prognosis prediction. Sci Rep 2024; 14:6938. [PMID: 38521793 PMCID: PMC10960848 DOI: 10.1038/s41598-024-56737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024] Open
Abstract
As the most malignant tumor, the prognosis of pancreatic cancer is not ideal even in the small number of patients who can undergo radical surgery. As a highly heterogeneous tumor, chemotherapy resistance is a major factor leading to decreased efficacy and postoperative recurrence of pancreatic cancer. In this study, nuclear magnetic resonance (NMR)-based metabolomics was applied to identify serum metabolic characteristics of pancreatic ductal adenocarcinoma (PDAC) and screen the potential biomarkers for its diagnosis. Metabolic changes of patients with different CA19-9 levels during postoperative chemotherapy were also monitored and compared to identify the differential metabolites that may affect the efficacy of chemotherapy. Finally, 19 potential serum biomarkers were screened to serve the diagnosis of PDAC, and significant metabolic differences between the two CA19-9 stratifications of PDAC were involved in energy metabolism, lipid metabolism, amino acid metabolism, and citric acid metabolism. Enrichment analysis of metabolic pathways revealed six shared pathways by PDAC and chemotherapy such as alanine, aspartate and glutamate metabolism, arginine biosynthesis, glutamine and glutamate metabolism, citrate cycle, pyruvate metabolism, and glycogolysis/gluconeogeneis. The similarity between the metabolic characteristics of PDAC and the metabolic responses to chemotherapy provided a reference for clinical prediction of benefits of postoperative chemotherapy in PDAC patients.
Collapse
Affiliation(s)
- Tianhong Teng
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Han Shi
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yanying Fan
- Fuzhou Children Hospital of Fujian Province, Fuzhou, Fujian, China
| | - Pengfei Guo
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Jin Zhang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Xinyu Qiu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China.
| | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.
| |
Collapse
|
4
|
Scianò F, Terrana F, Pecoraro C, Parrino B, Cascioferro S, Diana P, Giovannetti E, Carbone D. Exploring the therapeutic potential of focal adhesion kinase inhibition in overcoming chemoresistance in pancreatic ductal adenocarcinoma. Future Med Chem 2024; 16:271-289. [PMID: 38269431 DOI: 10.4155/fmc-2023-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/27/2023] [Indexed: 01/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the leading causes of cancer-related deaths worldwide. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase often overexpressed in PDAC. FAK has been linked to cell migration, survival, proliferation, angiogenesis and adhesion. This review first highlights the chemoresistant nature of PDAC. Second, the role of FAK in PDAC cancer progression and resistance is carefully described. Additionally, it discusses recent developments of FAK inhibitors as valuable drugs in the treatment of PDAC, with a focus on diamine-substituted-2,4-pyrimidine-based compounds, which represent the most potent class of FAK inhibitors in clinical trials for the treatment of PDAC disease. To conclude, relevant computational studies performed on FAK inhibitors are reported to highlight the key structural features required for interaction with the protein, with the aim of optimizing this novel targeted therapy.
Collapse
Affiliation(s)
- Fabio Scianò
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Francesca Terrana
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Camilla Pecoraro
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Barbara Parrino
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Stella Cascioferro
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Patrizia Diana
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc) De Boelelaan 1117, Amsterdam, 1081HV, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, San Giuliano Terme, Pisa, 56017, Italy
| | - Daniela Carbone
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| |
Collapse
|
5
|
Bergonzini C, Gregori A, Hagens TMS, van der Noord VE, van de Water B, Zweemer AJM, Coban B, Capula M, Mantini G, Botto A, Finamore F, Garajova I, McDonnell LA, Schmidt T, Giovannetti E, Danen EHJ. ABCB1 overexpression through locus amplification represents an actionable target to combat paclitaxel resistance in pancreatic cancer cells. J Exp Clin Cancer Res 2024; 43:4. [PMID: 38163893 PMCID: PMC10759666 DOI: 10.1186/s13046-023-02879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest types of cancer and the chemotherapies such as gemcitabine/nab-paclitaxel are confronted with intrinsic or acquired resistance. The aim of this study was to investigate mechanisms underlying paclitaxel resistance in PDAC and explore strategies to overcome it. METHODS Three paclitaxel (PR) and gemcitabine resistant (GR) PDAC models were established. Transcriptomics and proteomics were used to identify conserved mechanisms of drug resistance. Genetic and pharmacological approaches were used to overcome paclitaxel resistance. RESULTS Upregulation of ABCB1 through locus amplification was identified as a conserved feature unique to PR cells. ABCB1 was not affected in any of the GR models and no cross resistance was observed. The ABCB1 inhibitor verapamil or siRNA-mediated ABCB1 depletion sensitized PR cells to paclitaxel and prevented efflux of ABCB1 substrates in all models. ABCB1 expression was associated with a trend towards shorter survival in patients who had received gemcitabine/nab-paclitaxel treatment. A pharmacological screen identified known and novel kinase inhibitors that attenuate efflux of ABCB1 substrates and sensitize PR PDAC cells to paclitaxel. CONCLUSION Upregulation of ABCB1 through locus amplification represents a novel, conserved mechanism of PDAC paclitaxel resistance. Kinase inhibitors identified in this study can be further (pre) clinically explored as therapeutic strategies to overcome paclitaxel resistance in PDAC.
Collapse
Affiliation(s)
- Cecilia Bergonzini
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Alessandro Gregori
- Physics of Life Processes, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Tessa M S Hagens
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Vera E van der Noord
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Bob van de Water
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Annelien J M Zweemer
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Bircan Coban
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Mjriam Capula
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, San Giuliano, Pisa, Italy
| | - Giulia Mantini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Asia Botto
- Proteomics and Metabolomics Lab, Fondazione Pisana Per La Scienza, San Giuliano, Pisa, Italy
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Francesco Finamore
- Proteomics and Metabolomics Lab, Fondazione Pisana Per La Scienza, San Giuliano, Pisa, Italy
| | - Ingrid Garajova
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Liam A McDonnell
- Proteomics and Metabolomics Lab, Fondazione Pisana Per La Scienza, San Giuliano, Pisa, Italy
| | - Thomas Schmidt
- Physics of Life Processes, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands.
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, San Giuliano, Pisa, Italy.
| | - Erik H J Danen
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
6
|
Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, Kabiri H, Salehian-Dehkordi H, Abdolvand M, Salmanizadeh S, Rashidi M, Niazmand A, Ahmadi S, Feizbakhshan S, Kabiri S, Vatandoost N, Ranjbarnejad T. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer 2023; 22:189. [PMID: 38017433 PMCID: PMC10683363 DOI: 10.1186/s12943-023-01873-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023] Open
Abstract
The advent of iPSCs has brought about a significant transformation in stem cell research, opening up promising avenues for advancing cancer treatment. The formation of cancer is a multifaceted process influenced by genetic, epigenetic, and environmental factors. iPSCs offer a distinctive platform for investigating the origin of cancer, paving the way for novel approaches to cancer treatment, drug testing, and tailored medical interventions. This review article will provide an overview of the science behind iPSCs, the current limitations and challenges in iPSC-based cancer therapy, the ethical and social implications, and the comparative analysis with other stem cell types for cancer treatment. The article will also discuss the applications of iPSCs in tumorigenesis, the future of iPSCs in tumorigenesis research, and highlight successful case studies utilizing iPSCs in tumorigenesis research. The conclusion will summarize the advancements made in iPSC-based tumorigenesis research and the importance of continued investment in iPSC research to unlock the full potential of these cells.
Collapse
Affiliation(s)
- Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fereshteh Behdarvand Dehkordi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Hamidreza Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Mohammad Abdolvand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Sharareh Salmanizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar-Jereeb Street, Isfahan, 81746-73441, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saba Ahmadi
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Sara Feizbakhshan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saber Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
7
|
Brumskill S, Barrera LN, Calcraft P, Phillips C, Costello E. Inclusion of cancer-associated fibroblasts in drug screening assays to evaluate pancreatic cancer resistance to therapeutic drugs. J Physiol Biochem 2023; 79:223-234. [PMID: 34865180 PMCID: PMC9905179 DOI: 10.1007/s13105-021-00857-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterised by a pro-inflammatory stroma and multi-faceted microenvironment that promotes and maintains tumorigenesis. However, the models used to test new and emerging therapies for PDAC have not increased in complexity to keep pace with our understanding of the human disease. Promising therapies that pass pre-clinical testing often fail in pancreatic cancer clinical trials. The objective of this study was to investigate whether changes in the drug-dosing regimen or the addition of cancer-associated fibroblasts (CAFs) to current existing models can impact the efficacy of chemotherapy drugs used in the clinic. Here, we reveal that gemcitabine and paclitaxel markedly reduce the viability of pancreatic cell lines, but not CAFs, when cultured in 2D. Following the use of an in vitro drug pulsing experiment, PDAC cell lines showed sensitivity to gemcitabine and paclitaxel. However, CAFs were less sensitive to pulsing with gemcitabine compared to their response to paclitaxel. We also identify that a 3D co-culture model of MIA PaCa-2 or PANC-1 with CAFs showed an increased chemoresistance to gemcitabine when compared to standard 2D mono-cultures a difference to paclitaxel which showed no measurable difference between the 2D and 3D models, suggesting a complex interaction between the drug in study and the cell type used. Changes to standard 2D mono-culture-based assays and implementation of 3D co-culture assays lend complexity to established models and could provide tools for identifying therapies that will match clinically the success observed with in vitro models, thereby aiding in the discovery of novel therapies.
Collapse
Affiliation(s)
- Sarah Brumskill
- Institute of Translational Medicine, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 2nd Floor Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
- Redx Oncology, Alderley Park, Macclesfield, Cheshire, UK
| | - Lawrence N Barrera
- Institute of Translational Medicine, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 2nd Floor Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| | - Peter Calcraft
- Redx Oncology, Alderley Park, Macclesfield, Cheshire, UK
| | | | - Eithne Costello
- Institute of Translational Medicine, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 2nd Floor Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK.
| |
Collapse
|
8
|
Gautam SK, Basu S, Aithal A, Dwivedi NV, Gulati M, Jain M. Regulation of pancreatic cancer therapy resistance by chemokines. Semin Cancer Biol 2022; 86:69-80. [PMID: 36064086 PMCID: PMC10370390 DOI: 10.1016/j.semcancer.2022.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy characterized by high resistance and poor response to chemotherapy. In addition, the poorly immunogenic pancreatic tumors constitute an immunosuppressive tumor microenvironment (TME) that render immunotherapy-based approaches ineffective. Understanding the mechanisms of therapy resistance, identifying new targets, and developing effective strategies to overcome resistance can significantly impact the management of PDAC patients. Chemokines are small soluble factors that are significantly deregulated during PDAC pathogenesis, contributing to tumor growth, metastasis, immune cell trafficking, and therapy resistance. Thus far, different chemokine pathways have been explored as therapeutic targets in PDAC, with some promising results in recent clinical trials. Particularly, immunotherapies such as immune check point blockade therapies and CAR-T cell therapies have shown promising results when combined with chemokine targeted therapies. Considering the emerging pathological and clinical significance of chemokines in PDAC, we reviewed major chemokine-regulated pathways leading to therapy resistance and the ongoing endeavors to target chemokine signaling in PDAC. This review discusses the role of chemokines in regulating therapy resistance in PDAC and highlights the continuing efforts to target chemokine-regulated pathways to improve the efficacy of various treatment modalities.
Collapse
Affiliation(s)
- Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Soumi Basu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Abhijit Aithal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Nidhi V Dwivedi
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Mansi Gulati
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| |
Collapse
|
9
|
Busato D, Mossenta M, Dal Bo M, Macor P, Toffoli G. The Proteoglycan Glypican-1 as a Possible Candidate for Innovative Targeted Therapeutic Strategies for Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2022; 23:ijms231810279. [PMID: 36142190 PMCID: PMC9499405 DOI: 10.3390/ijms231810279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/19/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) accounts for 90% of all pancreatic cancers, with a 5-year survival rate of 7% and 80% of patients diagnosed with advanced or metastatic malignancies. Despite recent advances in diagnostic testing, surgical techniques, and systemic therapies, there remain limited options for the effective treatment of PDAC. There is an urgent need to develop targeted therapies that are able to differentiate between cancerous and non-cancerous cells to reduce side effects and better inhibit tumor growth. Antibody-targeted strategies are a potentially effective option for introducing innovative therapies. Antibody-based immunotherapies and antibody-conjugated nanoparticle-based targeted therapies with antibodies targeting specific tumor-associated antigens (TAA) can be proposed. In this context, glypican-1 (GPC1), which is highly expressed in PDAC and not expressed or expressed at very low levels in non-malignant lesions and healthy pancreatic tissues, is a useful TAA that can be achieved by a specific antibody-based immunotherapy and antibody-conjugated nanoparticle-based targeted therapy. In this review, we describe the main clinical features of PDAC. We propose the proteoglycan GPC1 as a useful TAA for PDAC-targeted therapies. We also provide a digression on the main developed approaches of antibody-based immunotherapy and antibody-conjugated nanoparticle-based targeted therapy, which can be used to target GPC1.
Collapse
Affiliation(s)
- Davide Busato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
- Correspondence: ; Tel.: +39-0434-659816
| | - Monica Mossenta
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| |
Collapse
|
10
|
Voisin T, Nicole P, Gratio V, Chassac A, Mansour D, Rebours V, Couvelard A, Couvineau A. The Orexin-A/OX1R System Induces Cell Death in Pancreatic Cancer Cells Resistant to Gemcitabine and Nab-Paclitaxel Treatment. Front Oncol 2022; 12:904327. [PMID: 35747788 PMCID: PMC9209740 DOI: 10.3389/fonc.2022.904327] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/13/2022] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents the fourth cause of cancer-associated death in the West. This type of cancer has a very poor prognosis notably due to the development of chemoresistance when treatments including gemcitabine and Abraxane (Nab-paclitaxel) were prescribed. The identification of new treatment circumventing this chemoresistance represents a key challenge. Previous studies demonstrated that the activation of orexin receptor type 1 (OX1R), which was ectopically expressed in PDAC, by its natural ligand named orexin-A (OxA), led to anti-tumoral effect resulting in the activation of mitochondrial pro-apoptotic mechanism. Here, we demonstrated that OxA inhibited the pancreatic cancer cell (AsPC-1) growth and inhibited the tumor volume in preclinical models as effectively as gemcitabine and Nab-paclitaxel. Moreover, the combination therapy including OxA plus gemcitabine or OxA plus Nab-paclitaxel was additive on the inhibition of cancer cell growth and tumor development. More importantly, the treatment by OxA of chemoresistant tumors to gemcitabine or Nab-paclitaxel obtained by successive xenografts in mice revealed that OxA was able to induce a strong inhibition of tumor development, whereas no OxA resistance was identified in tumors. The OX1R/OxA system might be an innovative and powerful alternative treatment of chemoresistant PDAC.
Collapse
Affiliation(s)
- Thierry Voisin
- INSERM UMR1149/Inflammation Research Center (CRI), Université Paris Cité, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale Contre le Cancer”, DHU UNITY, Paris, France
| | - Pascal Nicole
- INSERM UMR1149/Inflammation Research Center (CRI), Université Paris Cité, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale Contre le Cancer”, DHU UNITY, Paris, France
| | - Valérie Gratio
- INSERM UMR1149/Inflammation Research Center (CRI), Université Paris Cité, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale Contre le Cancer”, DHU UNITY, Paris, France
| | - Anaïs Chassac
- Department of Pathology, Bichat Hospital, Université Paris Cité, Paris, France
| | - Dounia Mansour
- Department of Pathology, Bichat Hospital, Université Paris Cité, Paris, France
| | - Vinciane Rebours
- INSERM UMR1149/Inflammation Research Center (CRI), Université Paris Cité, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale Contre le Cancer”, DHU UNITY, Paris, France
- Department of Pancreatology, Beaujon Hospital, Université Paris Cité, Clichy, France
| | - Anne Couvelard
- INSERM UMR1149/Inflammation Research Center (CRI), Université Paris Cité, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale Contre le Cancer”, DHU UNITY, Paris, France
- Department of Pathology, Bichat Hospital, Université Paris Cité, Paris, France
| | - Alain Couvineau
- INSERM UMR1149/Inflammation Research Center (CRI), Université Paris Cité, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale Contre le Cancer”, DHU UNITY, Paris, France
- *Correspondence: Alain Couvineau,
| |
Collapse
|
11
|
Lu J, Li Y, Li YA, Wang L, Zeng AR, Ma XL, Qiang JW. In vivo detection of dysregulated choline metabolism in paclitaxel-resistant ovarian cancers with proton magnetic resonance spectroscopy. J Transl Med 2022; 20:92. [PMID: 35168606 PMCID: PMC8845351 DOI: 10.1186/s12967-022-03292-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/02/2022] [Indexed: 02/07/2023] Open
Abstract
Background Chemoresistance gradually develops during treatment of epithelial ovarian cancer (EOC). Metabolic alterations, especially in vivo easily detectable metabolites in paclitaxel (PTX)-resistant EOC remain unclear. Methods Xenograft models of the PTX-sensitive and PTX-resistant EOCs were built. Using a combination of in vivo proton-magnetic resonance spectroscopy (1H-MRS), metabolomics and proteomics, we investigated the in vivo metabolites and dysregulated metabolic pathways in the PTX-resistant EOC. Furthermore, we analyzed the RNA expression to validate the key enzymes in the dysregulated metabolic pathway. Results On in vivo 1H-MRS, the ratio of (glycerophosphocholine + phosphocholine) to (creatine + phosphocreatine) ((GPC + PC) to (Cr + PCr))(i.e. Cho/Cr) in the PTX-resistant tumors (1.64 [0.69, 4.18]) was significantly higher than that in the PTX-sensitive tumors (0.33 [0.10, 1.13]) (P = 0.04). Forty-five ex vivo metabolites were identified to be significantly different between the PTX-sensitive and PTX-resistant tumors, with the majority involved of lipids and lipid-like molecules. Spearman’s correlation coefficient analysis indicated in vivo and ex vivo metabolic characteristics were highly consistent, exhibiting the highest positive correlation between in vivo GPC + PC and ex vivo GPC (r = 0.885, P < 0.001). These metabolic data suggested that abnormal choline concentrations were the results from the dysregulated glycerophospholipid metabolism, especially choline metabolism. The proteomics data indicated that the expressions of key enzymes glycerophosphocholine phosphodiesterase 1 (GPCPD1) and glycerophosphodiester phosphodiesterase 1 (GDE1) were significantly lower in the PTX-resistant tumors compared to the PTX-sensitive tumors (both P < 0.01). Decreased expressions of GPCPD1 and GDE1 in choline metabolism led to an increased GPC levels in the PTX-resistant EOCs, which was observed as an elevated total choline (tCho) on in vivo 1H-MRS. Conclusions These findings suggested that dysregulated choline metabolism was associated with PTX-resistance in EOCs and the elevated tCho on in vivo 1H-MRS could be as an indicator for the PTX-resistance in EOCs. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03292-z.
Collapse
Affiliation(s)
- Jing Lu
- Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Ying Li
- Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Yong Ai Li
- Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Li Wang
- Department of Pathology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - An Rong Zeng
- Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Xiao Liang Ma
- Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Jin Wei Qiang
- Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China.
| |
Collapse
|
12
|
Gupta S, Kumar A, Tejavath KK. A pharmacognostic approach for mitigating pancreatic cancer: emphasis on herbal extracts and phytoconstituents. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00246-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Pancreatic cancer is studied as one of the most lethal cancers with currently no control of its lethality, mainly due to its late diagnosis and lack of foolproof treatment processes. Despite continuous efforts being made in looking for therapies to deal with cancer, it keeps on being a labyrinth for the researchers. Efforts like discovering new treatment options, repurposing existing drugs, are continuously made to deal with this cancer.
Main body
With the urge to get answers and the fact that nature has all roots of therapeutics, efforts are made in the direction of finding those answers for providing ministrations for pancreatic cancer from plant products. Plant products are used as treatment options either directly in the form of extracts or an alternative to them is individual phytochemicals that are either isolated from the plants or are commercially synthesized for various purposes. In this review, we put forward such pharmacognostic initiatives made in combating pancreatic cancer, focusing mainly on plant extracts and various phytochemicals; along with the mechanisms which they triggered to fulfill the need for cytotoxicity to pancreatic cancer cells (in vitro and in vivo).
Conclusion
This study will thus provide insights into new combination therapy that can be used and also give a clue on which plant product and phytoconstituent can be used in dealing with pancreatic cancer.
Graphical abstract
Collapse
|
13
|
Phan T, Nguyen VH, Buettner R, Morales C, Yang L, Wong P, Tsai W, Salazar MD, Gil Z, Diamond DJ, Rabinowitz JD, Rosen S, Melstrom LG. Inhibition of de novo pyrimidine synthesis augments Gemcitabine induced growth inhibition in an immunocompetent model of pancreatic cancer. Int J Biol Sci 2021; 17:2240-2251. [PMID: 34239352 PMCID: PMC8241727 DOI: 10.7150/ijbs.60473] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Leflunomide (Lef) is an agent used in autoimmune disorders that interferes with DNA synthesis. De Novo pyrimidine synthesis is a mechanism of Gemcitabine (Gem) resistance in pancreatic cancer. This study aims to assess the efficacy and changes in the tumor microenvironment of Lef monotherapy and in combination with Gem, in a syngeneic mouse model of pancreatic cancer. Methods: MTS proliferation assays were conducted to assess growth inhibition by Gem (0-20 nM), Lef (0-40 uM) and Gem+Lef in KPC (KrasLSL.G12D/+;p53R172H/+; PdxCretg/+) cells in vitro. An in vivo heterotopic KPC model was used and cohorts were treated with: PBS (control), Gem (75 mg/kg/q3d), Lef (40 mg/kg/d), or Gem+Lef. At d28 post-treatment, tumor burden, proliferation index (Ki67), and vascularity (CD31) were measured. Changes in the frequency of peripheral and intratumoral immune cell subsets were evaluated via FACS. Liquid chromatography-mass spectrometry was used for metabolomics profiling. Results: Lef inhibits KPC cell growth and synergizes with Gem in vitro (P<0.05; Combination Index 0.44 (<1 indicates synergy). In vivo, Lef alone and in combination with Gem delays KPC tumor progression (P<0.001). CTLA-4+T cells are also significantly decreased in tumors treated with Lef, Gem or in combination (Gem+Lef) compared to controls (P<0.05). Combination therapy also decreased the Ki67 and vascularity (P<0.01). Leflunomide inhibits de novo pyrimidine synthesis both in vitro (p<0.0001) and in vivo (p<0.05). Conclusions: In this study, we demonstrated that Gem+Lef inhibits pancreatic cancer growth, decrease T cell exhaustion, vascularity and as proof of principle inhibits de novo pyrimidine synthesis. Further characterization of changes in adaptive immunity are necessary to characterize the mechanism of tumor growth inhibition and facilitate translation to a clinical trial.
Collapse
Affiliation(s)
- Thuy Phan
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010
| | - Vu H. Nguyen
- Department of Hematology, City of Hope National Medical Center, Duarte, CA 91010
| | - Ralf Buettner
- Department of Hematology, City of Hope National Medical Center, Duarte, CA 91010
| | - Corey Morales
- Department of Hematology, City of Hope National Medical Center, Duarte, CA 91010
| | - Lifeng Yang
- Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Paul Wong
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010
| | - Weiman Tsai
- Department of Hematology, City of Hope National Medical Center, Duarte, CA 91010
| | | | - Ziv Gil
- Rambam Medical Center, Israel
| | - Don J Diamond
- Department of Hematology, City of Hope National Medical Center, Duarte, CA 91010
| | - Joshua D. Rabinowitz
- Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Steven Rosen
- Department of Hematology, City of Hope National Medical Center, Duarte, CA 91010
| | - Laleh G. Melstrom
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010
- ✉ Corresponding author: Laleh Melstrom MD, City of Hope National Medical Center, Department of Surgery and Immuno-oncology, 1500 E Duarte Road, Duarte, CA 91010. E-mail: ; Phone: 626 218 0282; Fax: 626 218 1113
| |
Collapse
|