1
|
Crosson T, Bhat S, Wang JC, Salaun C, Fontaine E, Roversi K, Herzog H, Rafei M, Blunck R, Talbot S. Cytokines reprogram airway sensory neurons in asthma. Cell Rep 2024; 43:115045. [PMID: 39661516 DOI: 10.1016/j.celrep.2024.115045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/01/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
Nociceptor neurons play a crucial role in maintaining the body's homeostasis by detecting and responding to potential environmental dangers. However, this function can be detrimental during allergic reactions, as vagal nociceptors contribute to immune cell infiltration, bronchial hypersensitivity, and mucus imbalance in addition to causing pain and coughing. Despite this, the specific mechanisms by which nociceptors acquire pro-inflammatory characteristics during allergic reactions are not yet fully understood. In this study, we investigate the changes in the molecular profile of airway nociceptor neurons during allergic airway inflammation and identify the signals driving such reprogramming. Using retrograde tracing and lineage reporting, we identify a specific class of inflammatory vagal nociceptor neurons that exclusively innervate the airways. In the ovalbumin mouse model of allergic airway inflammation, these neurons undergo significant reprogramming characterized by the upregulation of the neuropeptide Y (NPY) receptor Npy1r. A screening of cytokines and neurotrophins reveals that interleukin 1β (IL-1β), IL-13, and brain-derived neurotrophic factor (BDNF) drive part of this reprogramming. IL-13 triggers Npy1r overexpression in nociceptors via the JAK/STAT6 pathway. In parallel, NPY is released into the bronchoalveolar fluid of asthmatic mice, which limits the excitability of nociceptor neurons. Single-cell RNA sequencing of lung immune cells reveals that a cell-specific knockout of NPY1R in nociceptor neurons in asthmatic mice altered T cell infiltration. Opposite findings are observed in asthmatic mice in which nociceptor neurons are chemically ablated. In summary, allergic airway inflammation reprograms airway nociceptor neurons to acquire a pro-inflammatory phenotype, while a compensatory mechanism involving NPY1R limits the activity of nociceptor neurons.
Collapse
Affiliation(s)
- Theo Crosson
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Shreyas Bhat
- Centre Interdisciplinaire sur le Cerveau et l'Apprentissage, Université de Montréal, Montreal, QC, Canada; Département de Physique, Université de Montréal, Montreal, QC, Canada
| | - Jo-Chiao Wang
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Clara Salaun
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Eleanne Fontaine
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Katiane Roversi
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Herbert Herzog
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Moutih Rafei
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Rikard Blunck
- Centre Interdisciplinaire sur le Cerveau et l'Apprentissage, Université de Montréal, Montreal, QC, Canada; Département de Physique, Université de Montréal, Montreal, QC, Canada
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
2
|
Crosson T, Bhat S, Wang JC, Salaun C, Fontaine E, Roversi K, Herzog H, Rafei M, Blunck R, Talbot S. Cytokines reprogram airway sensory neurons in asthma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.26.525731. [PMID: 39345572 PMCID: PMC11429693 DOI: 10.1101/2023.01.26.525731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Nociceptor neurons play a crucial role in maintaining the body's homeostasis by detecting and responding to potential dangers in the environment. However, this function can be detrimental during allergic reactions, since vagal nociceptors can contribute to immune cell infiltration, bronchial hypersensitivity, and mucus imbalance, in addition to causing pain and coughing. Despite this, the specific mechanisms by which nociceptors acquire pro-inflammatory characteristics during allergic reactions are not yet fully understood. In this study, we aimed to investigate the molecular profile of airway nociceptor neurons during allergic airway inflammation and identify the signals driving such reprogramming. Using retrograde tracing and lineage reporting, we identified a unique class of inflammatory vagal nociceptor neurons that exclusively innervate the airways. In the ovalbumin mouse model of airway inflammation, these neurons undergo significant reprogramming characterized by the upregulation of the NPY receptor Npy1r. A screening of cytokines and neurotrophins revealed that IL-1β, IL-13 and BDNF drive part of this reprogramming. IL-13 triggered Npy1r overexpression in nociceptors via the JAK/STAT6 pathway. In parallel, sympathetic neurons and macrophages release NPY in the bronchoalveolar fluid of asthmatic mice, which limits the excitability of nociceptor neurons. Single-cell RNA sequencing of lung immune cells has revealed that a cell-specific knockout of Npy1r in nociceptor neurons in asthmatic mice leads to an increase in airway inflammation mediated by T cells. Opposite findings were observed in asthmatic mice in which nociceptor neurons were chemically ablated. In summary, allergic airway inflammation reprograms airway nociceptor neurons to acquire a pro-inflammatory phenotype, while a compensatory mechanism involving NPY1R limits nociceptor neurons' activity.
Collapse
Affiliation(s)
- Théo Crosson
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Shreyas Bhat
- Centre Interdisciplinaire sur le Cerveau et l’Apprentissage, Université de Montréal, Canada
- Département de Physique, Université de Montréal, Canada
| | - Jo-Chiao Wang
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Clara Salaun
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Eleanne Fontaine
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Katiane Roversi
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | | | - Moutih Rafei
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Rikard Blunck
- Centre Interdisciplinaire sur le Cerveau et l’Apprentissage, Université de Montréal, Canada
- Département de Physique, Université de Montréal, Canada
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet. Sweden
- Department of Biomedical and Molecular Sciences, Queen’s University. Canada
| |
Collapse
|
3
|
Erol ÖD, Şenocak Ş, Aerts-Kaya F. The Role of Rab GTPases in the development of genetic and malignant diseases. Mol Cell Biochem 2024; 479:255-281. [PMID: 37060515 DOI: 10.1007/s11010-023-04727-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/01/2023] [Indexed: 04/16/2023]
Abstract
Small GTPases have been shown to play an important role in several cellular functions, including cytoskeletal remodeling, cell polarity, intracellular trafficking, cell-cycle, progression and lipid transformation. The Ras-associated binding (Rab) family of GTPases constitutes the largest family of GTPases and consists of almost 70 known members of small GTPases in humans, which are known to play an important role in the regulation of intracellular membrane trafficking, membrane identity, vesicle budding, uncoating, motility and fusion of membranes. Mutations in Rab genes can cause a wide range of inherited genetic diseases, ranging from neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD) to immune dysregulation/deficiency syndromes, like Griscelli Syndrome Type II (GS-II) and hemophagocytic lymphohistiocytosis (HLH), as well as a variety of cancers. Here, we provide an extended overview of human Rabs, discussing their function and diseases related to Rabs and Rab effectors, as well as focusing on effects of (aberrant) Rab expression. We aim to underline their importance in health and the development of genetic and malignant diseases by assessing their role in cellular structure, regulation, function and biology and discuss the possible use of stem cell gene therapy, as well as targeting of Rabs in order to treat malignancies, but also to monitor recurrence of cancer and metastasis through the use of Rabs as biomarkers. Future research should shed further light on the roles of Rabs in the development of multifactorial diseases, such as diabetes and assess Rabs as a possible treatment target.
Collapse
Affiliation(s)
- Özgür Doğuş Erol
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey
| | - Şimal Şenocak
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey.
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey.
| |
Collapse
|
4
|
Sun Q, Weng RX, Li JH, Li YC, Xu JT, Li R, Lu X, Xu GY. Rab27a-mediated exosome secretion in anterior cingulate cortex contributes to colorectal visceral pain in adult mice with neonatal maternal deprivation. Am J Physiol Gastrointest Liver Physiol 2023; 325:G356-G367. [PMID: 37529842 DOI: 10.1152/ajpgi.00029.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
Chronic visceral pain is a common symptom of irritable bowel syndrome (IBS). Exosomes are involved in the development of pain. Rab27a can mediate the release of exosomes. The purpose of this study is to investigate how Rab27a-mediated exosome secretion in the anterior cingulate cortex (ACC) regulates visceral hyperalgesia induced with neonatal maternal deprivation (NMD) in adult mice. The colorectal distension method was adopted to measure visceral pain. The BCA protein assay kit was applied to detect the exosome protein concentration. Western blotting, quantitative PCR, and immunofluorescence technique were adopted to detect the expression of Rab27a and the markers of exosomes. Exosomes extracted from ACC were more in NMD mice than in control (CON) mice. Injection of the exosome-specific inhibitor GW4869 in ACC attenuated colorectal visceral pain of NMD mice. Injection of NMD-derived exosomes produced colorectal visceral pain in CON mice. Rab27a was upregulated in ACC of NMD mice. Rab27a was highly expressed in ACC neurons of NMD mice, rather than astrocytes and microglia. Injection of Rab27a-siRNA reduced the release of exosomes and attenuated the colorectal visceral pain in NMD mice. This study suggested that overexpression of Rab27a increased exosome secretion in ACC neurons, thus contributing to visceral hyperalgesia in NMD mice.NEW & NOTEWORTHY This work demonstrated that the expression of Rab27a in the anterior cingulate cortex was upregulated, which mediated multivesicular bodies trafficking to the plasma membrane and led to the increased release of neuronal exosomes, thus contributing to colorectal visceral pain in neonatal maternal deprivation (NMD) mice. Blocking the release of exosomes or downregulation of Rab27a could alleviate colorectal visceral pain in NMD mice. These data may provide a promising strategy for the treatment of visceral pain in irritable bowel syndrome patients.
Collapse
Affiliation(s)
- Qian Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, People's Republic of China
| | - Rui-Xia Weng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, People's Republic of China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jia-Hui Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, People's Republic of China
| | - Yong-Chang Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, People's Republic of China
| | - Ji-Tian Xu
- Department of Physiology and Neurobiology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Rui Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xiaomin Lu
- Department of Oncology, Hai'an People's Hospital, Nantong, People's Republic of China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
5
|
Shen Y, Gao Y, Fu J, Wang C, Tang Y, Chen S, Zhao Y. Lack of Rab27a attenuates foam cell formation and macrophage inflammation in uremic apolipoprotein E knockout mice. J Mol Histol 2023:10.1007/s10735-023-10125-w. [PMID: 37166546 DOI: 10.1007/s10735-023-10125-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
As the most common cardiovascular disease, atherosclerosis (AS), is a leading cause of high mortality in patients with chronic renal failure. Rab27a has been reported to regulate the progression of cardiovascular and renal diseases. Nevertheless, little studies investigated the role and mechanism of Rab27a in uremic-accelerated AS (UAAS). An animal model of UAAS was established in apolipoprotein E knockout (apoE-/-) mice using 5/6 nephrectomy (NX). We conducted in vitro and in vivo functional experiments to explore the role of Rab27a in UAAS, including the presence of oxidized low-density lipoprotein (ox-LDL). Rab27a expression was upregulated in the plaque tissues of NX apoE-/- mice. The knockout of Rab27a (Rab27a-/-) reduced AS-induced artery injury, as manifested by the reductions of plaque area, collagen deposition, inflammation and lipid droplet. Besides, cholesterol efflux was increased, while the expression of lipid metabolism-related proteins and the secretions of pro-inflammatory factors were decreased in ox-LDL-induced NX Rab27a-/- apoE-/- mice group. Further, Rab27a deletion inhibited the activation of nuclear factor κB (NF-κB) pathway. In conclusion, our study indicated that Rab27a deficiency attenuated foam cell formation and macrophage inflammation, depending on the NF-κB pathway activation, to inhibit AS progression in uremic apoE-/- mice. This finding may provide a new targeting strategy for UAAS therapy.
Collapse
Affiliation(s)
- Yan Shen
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Shaanxi, 710061, Xi'an, China.
| | - Yajuan Gao
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Shaanxi, 710061, Xi'an, China
| | - Jiani Fu
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Shaanxi, 710061, Xi'an, China
| | - Cui Wang
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Shaanxi, 710061, Xi'an, China
| | - Yali Tang
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Shaanxi, 710061, Xi'an, China
| | - Shengnan Chen
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Shaanxi, 710061, Xi'an, China
| | - Yan Zhao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
6
|
Wang H, Teng J, Wang M, Zhang Y, Liu X, Liu Z. Expression and significant roles of the lncRNA NEAT1/miR-493-5p/Rab27A axis in ulcerative colitis. Immun Inflamm Dis 2023; 11:e814. [PMID: 37249278 PMCID: PMC10187010 DOI: 10.1002/iid3.814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/26/2023] [Accepted: 03/05/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) have been reported to play regulatory roles in ulcerative colitis (UC). In this study, we aimed to determine the specific roles and action mechanism of the nuclear paraspeckle assembly transcript 1 (NEAT1) in UC. METHODS Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to determine the lncRNA NEAT1 and miR-493-5p expression levels in patients with UC and healthy volunteers. We determine the forecast linkage points of NEAT1 and miR-493-5p using Starbase and those of miR-493-5p and Rab27A using TargetScan, and further verified them using a double luciferase gene reporter kit. RT-qPCR and Western blot analysis were used to determine the lncRNA NEAT1, miR-493-5p, and Rab27A expression levels in lipopolysaccharide (LPS)-induced Caco-2 cells. Flow cytometry and cell counting kit-8 were used to assess Caco-2 cell viability. Tumor necrosis factor-α, interleukin (IL)-6, IL-8, and IL-1β levels were determined via an enzyme-linked immunosorbent assay. RESULTS Expression levels of NEAT1 were upregulated and those of miR-493-5p were downregualted in 10 ng/mL LPS-treated Caco-2 cells and patients with UC. Dual-luciferase gene reporter assay revealed that miR-493-5p is linked to NEAT1, and Rab27A is a downstream target of miR-493-5p. Overexpression of miR-493-5p inhibited the apoptosis and inflammation in LPS-treated Caco-2 cells. Moreover, downregulation of lncRNA NEAT1 expression also inhibited the apoptosis and inflammation in LPS-treated Caco-2 cells, which was reversed by Rab27A plasmid cotransfection. CONCLUSION Our results revealed that NEAT1 participates in UC progression by inhibiting miR-493-5p expression.
Collapse
Affiliation(s)
- Hecheng Wang
- Department of Clinical Skills Experiment CenterThe Third Affiliated Hospital of Qiqihar Medical UniversityQiqiharChina
| | - Jiadan Teng
- Department of Endoscopy CenterThe Third Affiliated Hospital of Qiqihar Medical UniversityQiqiharChina
| | - Mingtao Wang
- Department of GastroenterologyThe Third Affiliated Hospital of Qiqihar Medical UniversityQiqiharChina
| | - Yuhang Zhang
- Department of Endoscopy CenterThe Third Affiliated Hospital of Qiqihar Medical UniversityQiqiharChina
| | - Xiaoshuang Liu
- Department of Endoscopy CenterThe Third Affiliated Hospital of Qiqihar Medical UniversityQiqiharChina
| | - Zhuya Liu
- Department of Endoscopy CenterThe Third Affiliated Hospital of Qiqihar Medical UniversityQiqiharChina
| |
Collapse
|
7
|
Mato-Basalo R, Lucio-Gallego S, Alarcón-Veleiro C, Sacristán-Santos M, Quintana MDPM, Morente-López M, de Toro FJ, Silva-Fernández L, González-Rodríguez A, Arufe MC, Labora JAF. Action Mechanisms of Small Extracellular Vesicles in Inflammaging. Life (Basel) 2022; 12:life12040546. [PMID: 35455036 PMCID: PMC9028066 DOI: 10.3390/life12040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/05/2023] Open
Abstract
The accumulation process of proinflammatory components in the body due to aging influences intercellular communication and is known as inflammaging. This biological mechanism relates the development of inflammation to the aging process. Recently, it has been reported that small extracellular vesicles (sEVs) are mediators in the transmission of paracrine senescence involved in inflammatory aging. For this reason, their components, as well as mechanisms of action of sEVs, are relevant to develop a new therapy called senodrugs (senolytics and senomorphic) that regulates the intercellular communication of inflammaging. In this review, we include the most recent and relevant studies on the role of sEVs in the inflammatory aging process and in age-related diseases such as cancer and type 2 diabetes.
Collapse
|
8
|
Li R, Ou M, Yang S, Huang J, Chen J, Xiong D, Xiao L, Wu S. Change in Cav3.2 T-Type Calcium Channel Induced by Varicella-Zoster Virus Participates in the Maintenance of Herpetic Neuralgia. Front Neurol 2021; 12:741054. [PMID: 34917013 PMCID: PMC8671009 DOI: 10.3389/fneur.2021.741054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Pain, as the most prevalent neurological complication of herpes zoster (HZ), may occur before or during the rash onset or even after the rash has recovered. Particularly, postherpetic neuralgia (PHN) is a refractory chronic condition, usually defined as pain persisting for 3 months or longer from the onset of HZ. Pain evoked by HZ impairs the normal physical and emotional functions of the patients, severely reducing their quality of life. However, how zoster-associated pain occurs and develops into PHN are elusive, making PHN difficult to predict. Uncovering the pathogenesis of zoster-associated pain (or HN) helps us to better understand the onset of PHN and supports developing more effective treatments. In this study, we successfully constructed a model for zoster-associated pain through varicella-zoster virus (VZV) infections of mouse footpads and pain behavior assessments. Next, we used the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Gene Ontology (GO) to analyze PHN rodent dorsal root ganglion (DRG) gene microarray data and found that calcium signal disorder might be involved in the onset of PHN. By using reverse transcription real-time fluorescent quantitative PCR (RT-qPCR) and Western blotting, we confirmed that VZV infection could significantly upregulate the expression of T-type calcium channel Cav3.2 in DRG and spinal dorsal horn (SDH). Intrathecal administration of Cav3.2 blocker (2R/S)-6-prenylnaringenin (6-PNG) relieved mechanical and thermal hyperalgesia induced by VZV. Taken together, our data indicated that VZV might participate in the occurrence and development of HN by upregulating the expression of Cav3.2 in DRG and SDH. These findings will help to reveal the underlying mechanisms on long-lasting pain and PHN formation, providing a new insight that Cav3.2 can be the promising drug target for remitting PHN.
Collapse
Affiliation(s)
- Rongzhen Li
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Mingxi Ou
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Shaomin Yang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Jiabin Huang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | | | - Donglin Xiong
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Lizu Xiao
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Songbin Wu
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
9
|
Messinger YH, Pozos TC, Griffiths AG, Mize WA, Olson DR, Smith AR. Delayed diagnosis of Griscelli syndrome type 2 with compound heterozygote RAB27A variants presenting with pulmonary failure. Pediatr Hematol Oncol 2021; 38:593-601. [PMID: 33792483 DOI: 10.1080/08880018.2021.1895925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yoav H Messinger
- Pediatric Hematology/Oncology, Cancer and Blood Disorders, Children's Minnesota, Minneapolis, Minnesota, USA
| | - Tamara C Pozos
- Department of Immunology, Children's Minnesota, Minneapolis, Minnesota, USA
| | - Anne G Griffiths
- Children's Respiratory and Critical Care, Children's Minnesota, Minneapolis, Minnesota, USA
| | - William A Mize
- Department of Radiology, Children's Minnesota, Minneapolis, Minnesota, USA
| | - Damon R Olson
- Pathology and Laboratory Medicine, Children's Minnesota, Minneapolis, Minnesota, USA
| | - Angela R Smith
- University of Minnesota Pediatric Blood and Marrow Transplantation/Cellular Therapy, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
10
|
Sheehan GD, Martin MK, Young VA, Powell R, Bhattacharjee A. Thermal hyperalgesia and dynamic weight bearing share similar recovery dynamics in a sciatic nerve entrapment injury model. NEUROBIOLOGY OF PAIN 2021; 10:100079. [PMID: 34917858 PMCID: PMC8665403 DOI: 10.1016/j.ynpai.2021.100079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022]
Abstract
The sciatic nerve cuff model of neuropathic pain exhibits pain recovery. Thermal hyperalgesia and dynamic weight bearing display similar pain recovery profiles, whereas mechanical allodynia persists. Dynamic weight bearing is a non-reflexive, pain assessment of ongoing pain during nerve entrapment.
Chronic constriction injuries (CCI) of the sciatic nerve are widely used nerve entrapment animal models of neuropathic pain. Two common pain behaviors observed following CCI are thermal hyperalgesia and mechanical allodynia, measured by the Hargreaves and von Frey tests, respectively. While thermal hyperalgesia tends to recover by 30 days, mechanical allodynia can persist for many more months thereafter. Consequently, mechanical allodynia has been used extensively as a measure of ‘chronic pain’ focusing on the circuitry changes that occur within the spinal cord. Here, using the sciatic nerve cuff variant of CCI in mice, we propose that in contrast to these evoked measures of nociceptive hypersensitivity, dynamic weight bearing provides a more clinically relevant behavioral measure for ongoing pain during nerve injury. We found that the effect of sciatic nerve cuff on the ratio of weight bearing by the injured relative to uninjured hindlimbs more closely resembled that of thermal hyperalgesia, following a trend toward recovery by 30 days. We also found an increase in the percent of body weight bearing by the contralateral paw that is not seen in the previously tested behaviors. These results demonstrate that dynamic weight bearing is a reliable measure of non-evoked neuropathic pain and suggest that thermal hyperalgesia, rather than mechanical allodynia, provides a proxy measure for nerve entrapment-induced ongoing pain.
Collapse
Affiliation(s)
- Garrett D. Sheehan
- Program in Neuroscience, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA
| | - Molly K. Martin
- Program in Neuroscience, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA
| | - Violet A. Young
- Program in Neuroscience, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA
| | - Rasheen Powell
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA
| | - Arin Bhattacharjee
- Program in Neuroscience, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA
- Corresponding author at: Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York USA.
| |
Collapse
|
11
|
Novel Insights into Molecular Mechanisms of Chronic Pain. Cells 2020; 9:cells9102220. [PMID: 33019536 PMCID: PMC7601569 DOI: 10.3390/cells9102220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/28/2022] Open
Abstract
Pain is the most frequent cause triggering patients to visit a physician. The worldwide incidence of chronic pain is in the range of 20% of adults, and chronic pain conditions are frequently associated with several comorbidities and a drastic decrease in patients’ quality of life. Although several approved analgesics are available, such therapy is often not satisfying due to insufficient efficacy and/or severe side effects. Therefore, novel strategies for the development of safe and highly efficacious pain killers are urgently needed. To reach this goal, it is necessary to clarify the causes and signal transduction cascades underlying the onset and progression of the different types of chronic pain. The papers in this Special Issue cover a wide variety of mechanisms involved in different pain types such as inflammatory, neuropathic or cancer pain. Therefore, the results summarized here might contribute to a better understanding of the mechanisms in chronic pain and thereby to the development of novel therapeutic strategies for pain patients.
Collapse
|