1
|
Elli FM, Mattinzoli D, Ikehata M, Bagnaresi F, Maffini MA, Del Sindaco G, Pagnano A, Lucca C, Messa P, Arosio M, Castellano G, Alfieri CM, Mantovani G. Targeted silencing of GNAS in a human model of osteoprogenitor cells results in the deregulation of the osteogenic differentiation program. Front Endocrinol (Lausanne) 2024; 15:1296886. [PMID: 38828417 PMCID: PMC11140044 DOI: 10.3389/fendo.2024.1296886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/22/2024] [Indexed: 06/05/2024] Open
Abstract
Introduction The dysregulation of cell fate toward osteoprecursor cells associated with most GNAS-based disorders may lead to episodic de novo extraskeletal or ectopic bone formation in subcutaneous tissues. The bony lesion distribution suggests the involvement of abnormal differentiation of mesenchymal stem cells (MSCs) and/or more committed precursor cells. Data from transgenic mice support the concept that GNAS is a crucial factor in regulating lineage switching between osteoblasts (OBs) and adipocyte fates. The mosaic nature of heterotopic bone lesions suggests that GNAS genetic defects provide a sensitized background for ectopic osteodifferentiation, but the underlying molecular mechanism remains largely unknown. Methods The effect of GNAS silencing in the presence and/or absence of osteoblastic stimuli was evaluated in the human L88/5 MSC line during osteodifferentiation. A comparison of the data obtained with data coming from a bony lesion from a GNAS-mutated patient was also provided. Results Our study adds some dowels to the current fragmented notions about the role of GNAS during osteoblastic differentiation, such as the premature transition of immature OBs into osteocytes and the characterization of the differences in the deposed bone matrix. Conclusion We demonstrated that our cell model partially replicates the in vivo behavior results, resulting in an applicable human model to elucidate the pathophysiology of ectopic bone formation in GNAS-based disorders.
Collapse
Affiliation(s)
- Francesca Marta Elli
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Deborah Mattinzoli
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Masami Ikehata
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Bagnaresi
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria A. Maffini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giulia Del Sindaco
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Angela Pagnano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Camilla Lucca
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Piergiorgio Messa
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Maura Arosio
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giuseppe Castellano
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Carlo M. Alfieri
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Forskolin enhanced the osteogenic differentiation of human dental pulp stem cells in vitro and in vivo. J Dent Sci 2023; 18:120-128. [PMID: 36643238 PMCID: PMC9831789 DOI: 10.1016/j.jds.2022.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/20/2022] [Indexed: 01/18/2023] Open
Abstract
Background/purpose Human dental pulp stem cells (hDPSCs) are multipotent adult stem cells that can differentiate into various lineages such as odontoblasts, osteoblasts, and chondrocytes. Regulation of hDPSCs differentiation with small-molecule compounds can be a useful tool for tissue engineering and regenerative therapy. Forskolin is an agonist of adenylate cyclase that promotes cyclic adenosine monophosphate production. However, the role of Forskolin in regulating the osteogenic differentiation of hDPSCs is still unknown. Materials and methods A cell counting kit-8 (CCK-8) assay was performed to screen out the safety concentrations of Forskolin. Following, quantitative polymerase chain reaction (qPCR) and alizarin red staining were performed to detect bone-related gene expression and mineralized deposit formation. Furthermore, we prepared cell sheets which were followed by a 3D culture for cell pellet formation. Finally, the hDPSC cell pellets were transplanted into immunodeficient mice. Results CCK-8 assay showed 5 μM and 10 μM Forskolin had no significant inhibition on the proliferation of hDPSCs. The qPCR indicated Forskolin (5, 10 μM) enhanced osteogenic differentiation of hDPSCs by upregulating bone-related genes. Alizarin red staining and its quantification analysis demonstrated Forskolin in 5 μM and 10 μM similarly enhanced the mineralized deposit formation of hDPSCs in vitro. After six weeks of transplantation, immunohistochemical stains showed that osteopontin expression and bone formation were significantly boosted in the Forskolin-treated group than in the normal osteogenic inducing group. Conclusion Our results indicate Forskolin enhances osteogenic differentiation of hDPSCs in vitro and boosts bone formation in vivo.
Collapse
|
3
|
Di Stefano AB, Urrata V, Trapani M, Moschella F, Cordova A, Toia F. Systematic review on spheroids from adipose‐derived stem cells: Spontaneous or artefact state? J Cell Physiol 2022; 237:4397-4411. [PMID: 36209478 PMCID: PMC10091738 DOI: 10.1002/jcp.30892] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022]
Abstract
Three-dimensional (3D) cell cultures represent the spontaneous state of stem cells with specific gene and protein molecular expression that are more alike the in vivo condition. In vitro two-dimensional (2D) cell adhesion cultures are still commonly employed for various cellular studies such as movement, proliferation and differentiation phenomena; this procedure is standardized and amply used in laboratories, however their representing the original tissue has recently been subject to questioning. Cell cultures in 2D require a support/substrate (flasks, multiwells, etc.) and use of fetal bovine serum as an adjuvant that stimulates adhesion that most likely leads to cellular aging. A 3D environment stimulates cells to grow in suspended aggregates that are defined as "spheroids." In particular, adipose stem cells (ASCs) are traditionally observed in adhesion conditions, but a recent and vast literature offers many strategies that obtain 3D cell spheroids. These cells seem to possess a greater ability in maintaining their stemness and differentiate towards all mesenchymal lineages, as demonstrated in in vitro and in vivo studies compared to adhesion cultures. To date, standardized procedures that form ASC spheroids have not yet been established. This systematic review carries out an in-depth analysis of the 76 articles produced over the past 10 years and discusses the similarities and differences in materials, techniques, and purposes to standardize the methods aimed at obtaining ASC spheroids as already described for 2D cultures.
Collapse
Affiliation(s)
- Anna Barbara Di Stefano
- BIOPLAST‐Laboratory of BIOlogy and Regenerative Medicine‐PLASTic Surgery, Plastic and Reconstructive Surgery Unit, Department of Surgical, Oncological and Oral Sciences University of Palermo Palermo Italy
| | - Valentina Urrata
- BIOPLAST‐Laboratory of BIOlogy and Regenerative Medicine‐PLASTic Surgery, Plastic and Reconstructive Surgery Unit, Department of Surgical, Oncological and Oral Sciences University of Palermo Palermo Italy
| | - Marco Trapani
- BIOPLAST‐Laboratory of BIOlogy and Regenerative Medicine‐PLASTic Surgery, Plastic and Reconstructive Surgery Unit, Department of Surgical, Oncological and Oral Sciences University of Palermo Palermo Italy
| | - Francesco Moschella
- BIOPLAST‐Laboratory of BIOlogy and Regenerative Medicine‐PLASTic Surgery, Plastic and Reconstructive Surgery Unit, Department of Surgical, Oncological and Oral Sciences University of Palermo Palermo Italy
| | - Adriana Cordova
- BIOPLAST‐Laboratory of BIOlogy and Regenerative Medicine‐PLASTic Surgery, Plastic and Reconstructive Surgery Unit, Department of Surgical, Oncological and Oral Sciences University of Palermo Palermo Italy
- Department of Surgical, Oncological and Oral Sciences, Unit of Plastic and Reconstructive Surgery University of Palermo Palermo Italy
- Department of D.A.I. Chirurgico, Plastic and Reconstructive Unit Azienda Ospedaliera Universitaria Policlinico “Paolo Giaccone” Palermo Italy
| | - Francesca Toia
- BIOPLAST‐Laboratory of BIOlogy and Regenerative Medicine‐PLASTic Surgery, Plastic and Reconstructive Surgery Unit, Department of Surgical, Oncological and Oral Sciences University of Palermo Palermo Italy
- Department of Surgical, Oncological and Oral Sciences, Unit of Plastic and Reconstructive Surgery University of Palermo Palermo Italy
- Department of D.A.I. Chirurgico, Plastic and Reconstructive Unit Azienda Ospedaliera Universitaria Policlinico “Paolo Giaccone” Palermo Italy
| |
Collapse
|
4
|
Zhang Z, Yang X, Cao X, Qin A, Zhao J. Current applications of adipose-derived mesenchymal stem cells in bone repair and regeneration: A review of cell experiments, animal models, and clinical trials. Front Bioeng Biotechnol 2022; 10:942128. [PMID: 36159705 PMCID: PMC9490047 DOI: 10.3389/fbioe.2022.942128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
In the field of orthopaedics, bone defects caused by severe trauma, infection, tumor resection, and skeletal abnormalities are very common. However, due to the lengthy and painful process of related surgery, people intend to shorten the recovery period and reduce the risk of rejection; as a result, more attention is being paid to bone regeneration with mesenchymal stromal cells, one of which is the adipose-derived mesenchymal stem cells (ASCs) from adipose tissue. After continuous subculture and cryopreservation, ASCs still have the potential for multidirectional differentiation. They can be implanted in the human body to promote bone repair after induction in vitro, solve the problems of scarce sources and large damage, and are expected to be used in the treatment of bone defects and non-union fractures. However, the diversity of its differentiation lineage and the lack of bone formation potential limit its current applications in bone disease. Here, we concluded the current applications of ASCs in bone repair, especially with the combination and use of physical and biological methods. ASCs alone have been proved to contribute to the repair of bone damage in vivo and in vitro. Attaching to bone scaffolds or adding bioactive molecules can enhance the formation of the bone matrix. Moreover, we further evaluated the efficiency of ASC-committed differentiation in the bone in conditions of cell experiments, animal models, and clinical trials. The results show that ASCs in combination with synthetic bone grafts and biomaterials may affect the regeneration, augmentation, and vascularization of bone defects on bone healing. The specific conclusion of different materials applied with ASCs may vary. It has been confirmed to benefit osteogenesis by regulating osteogenic signaling pathways and gene transduction. Exosomes secreted by ASCs also play an important role in osteogenesis. This review will illustrate the understanding of scientists and clinicians of the enormous promise of ASCs’ current applications and future development in bone repair and regeneration, and provide an incentive for superior employment of such strategies.
Collapse
Affiliation(s)
- Zhengyue Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People’s Hospital, Shanghai, China
| | - Xiao Yang
- Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiankun Cao
- Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - An Qin
- Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: An Qin, ; Jie Zhao,
| | - Jie Zhao
- Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: An Qin, ; Jie Zhao,
| |
Collapse
|
5
|
Awale GM, Barajaa MA, Kan HM, Lo KWH, Laurencin CT. Single-Dose Induction of Osteogenic Differentiation of Mesenchymal Stem Cells Using a Cyclic AMP Activator, Forskolin. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00262-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
6
|
Han X, Deng F, Zhu R, Li K, Yang S, Jin L, Ma Z, Ning C, Shi X, Li Y. Osteoimmune reaction caused by novel silicocarnotite bioceramic promoting osteogenesis through MAPK pathway. Biomater Sci 2022; 10:2877-2891. [DOI: 10.1039/d2bm00125j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The host immune response to implant is a key factor in determining the fate of bone grafts, which is thought to be a regulator of tissue regeneration. Figuring out the...
Collapse
|
7
|
Yarwood SJ. Special Issue on "New Advances in Cyclic AMP Signalling"-An Editorial Overview. Cells 2020; 9:cells9102274. [PMID: 33053803 PMCID: PMC7599692 DOI: 10.3390/cells9102274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023] Open
Abstract
The cyclic nucleotides 3′,5′-adenosine monophosphate (cyclic AMP) signalling system underlies the control of many biological events and disease processes in man. Cyclic AMP is synthesised by adenylate cyclase (AC) enzymes in order to activate effector proteins and it is then degraded by phosphodiesterase (PDE) enzymes. Research in recent years has identified a range of cell-type-specific cyclic AMP effector proteins, including protein kinase A (PKA), exchange factor directly activated by cyclic AMP (EPAC), cyclic AMP responsive ion channels (CICs), and the Popeye domain containing (POPDC) proteins, which participate in different signalling mechanisms. In addition, recent advances have revealed new mechanisms of action for cyclic AMP signalling, including new effectors and new levels of compartmentalization into nanodomains, involving AKAP proteins and targeted adenylate cyclase and phosphodiesterase enzymes. This Special Issue contains 21 papers that highlight advances in our current understanding of the biology of compartmentlised cyclic AMP signalling. This ranges from issues of pathogenesis and associated molecular pathways, functional assessment of novel nanodomains, to the development of novel tool molecules and new techniques for imaging cyclic AMP compartmentilisation. This editorial aims to summarise these papers within the wider context of cyclic AMP signalling.
Collapse
Affiliation(s)
- Stephen John Yarwood
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh Campus, Edinburgh EH14 4AS, UK
| |
Collapse
|