1
|
du Preez C, Legoabe LJ, Jordaan A, Jesumoroti OJ, Warner DF, Beteck RM. Arylnitro monocarbonyl curcumin analogues: Synthesis and in vitro antitubercular evaluation. Chem Biol Drug Des 2023; 101:717-726. [PMID: 36350112 DOI: 10.1111/cbdd.14174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/07/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022]
Abstract
Curcumin is a natural product that has been reported to exhibit myriad pharmacological properties, one of which is antitubercular activity. It demonstrates antitubercular activity by directly inhibiting Mycobacterium tuberculosis (M.tb) and also enhances immune responses that ultimately lead to the elimination of M.tb by macrophages. This natural product is, however, unstable, and several analogues, noticeably monocarbonyl analogues, have been synthesized to overcome this challenge. Curcumin and its monocarbonyl analogues reported so far exhibit moderate antitubercular activity in the range of 7 to 16 μM. Herein, we report a straightforward synthesis of novel monocarbonyl curcumin analogues, their antitubercular activity, and the structure-activity relationship. The hit compound from this study, 3a, exhibits potent MIC90 values in the range of 0.2 to 0.9 μM in both ADC and CAS media.
Collapse
Affiliation(s)
- Charné du Preez
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Audrey Jordaan
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Omobolanle J Jesumoroti
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town, Observatory, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa.,Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), University of Cape Town, Rondebosch, South Africa
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Song Y, Qu X, Tao L, Gao H, Zhang Y, Zhai J, Gong J, Hu T. Exploration of the underlying mechanisms of isoniazid/rifampicin-induced liver injury in mice using an integrated proteomics and metabolomics approach. J Biochem Mol Toxicol 2022; 36:e23217. [PMID: 36111668 DOI: 10.1002/jbt.23217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/22/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2023]
Abstract
The hepatotoxic mechanism resulting from coadministration of isoniazid (INH) and rifampicin (RIF) are complex and studies remain inconclusive. To systematically explore the underlying mechanisms, an integrated mass-based untargeted metabolomics and label-free quantitative proteomics approach was used to clarify the mechanism of INH/RIF-induced liver injury. Thirty male mice were randomly divided into three groups: control (receiving orally administered vehicle solution), INH (150 mg/kg) + RIF (300 mg/kg) orally administered for either 7 or 14 days, respectively. Serum was collected for the analysis of biochemical parameters and liver samples were obtained for mass spectrum-based proteomics, metabolomics, and lipidomics analysis. Overall, 511 proteins, 31 metabolites, and 23 lipids were dysregulated and identified, and disordered biological pathways were identified. The network of integrated multiomics showed that glucose, lipid, and amino acid metabolism as well as energy metabolism were mainly dysregulated and led to oxidative stress, inflammation, liver steatosis, and cell death induced by INH and RIF. Coadministration of INH and RIF can induce liver injury by oxidative stress, inflammation, liver steatosis, and cell death, and the reduction in glutathione levels may play a critical role in these systematic changes and warrants further study.
Collapse
Affiliation(s)
- Yanqing Song
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Xiaoyu Qu
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Lina Tao
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Huan Gao
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Yueming Zhang
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Jinghui Zhai
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Jiawei Gong
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Tingting Hu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| |
Collapse
|
3
|
Wang MG, Wu SQ, Zhang MM, He JQ. Urine metabolomics and microbiome analyses reveal the mechanism of anti-tuberculosis drug-induced liver injury, as assessed for causality using the updated RUCAM: A prospective study. Front Immunol 2022; 13:1002126. [PMID: 36483548 PMCID: PMC9724621 DOI: 10.3389/fimmu.2022.1002126] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022] Open
Abstract
Background Anti-tuberculosis drug-induced liver injury (ATB-DILI) is one of the most common adverse reactions that brings great difficulties to the treatment of tuberculosis. Thus, early identification of individuals at risk for ATB-DILI is urgent. We conducted a prospective cohort study to analyze the urinary metabolic and microbial profiles of patients with ATB-DILI before drug administration. And machine learning method was used to perform prediction model for ATB-DILI based on metabolomics, microbiome and clinical data. Methods A total of 74 new TB patients treated with standard first-line anti-TB treatment regimens were enrolled from West China Hospital of Sichuan University. Only patients with an updated RUCAM score of 6 or more were accepted in this study. Nontargeted metabolomics and microbiome analyses were performed on urine samples prior to anti-tuberculosis drug ingestion to screen the differential metabolites and microbes between the ATB-DILI group and the non-ATB-DILI group. Integrating electronic medical records, metabolomics, and microbiome data, four machine learning methods was used, including random forest algorithm, artificial neural network, support vector machine with the linear kernel and radial basis function kernel. Results Of all included patients, 69 patients completed follow-up, with 16 (23.19%) patients developing ATB-DILI after antituberculosis treatment. Finally, 14 ATB-DILI patients and 30 age- and sex-matched non-ATB-DILI patients were subjected to urinary metabolomic and microbiome analysis. A total of 28 major differential metabolites were screened out, involving bile secretion, nicotinate and nicotinamide metabolism, tryptophan metabolism, ABC transporters, etc. Negativicoccus and Actinotignum were upregulated in the ATB-DILI group. Multivariate analysis also showed significant metabolic and microbial differences between the non-ATB-DILI and severe ATB-DILI groups. Finally, the four models showed high accuracy in predicting ATB-DILI, with the area under the curve of more than 0.85 for the training set and 1 for the validation set. Conclusion This study characterized the metabolic and microbial profile of ATB-DILI risk individuals before drug ingestion for the first time. Metabolomic and microbiome characteristics in patient urine before anti-tuberculosis drug ingestion may predict the risk of liver injury after ingesting anti-tuberculosis drugs. Machine learning algorithms provides a new way to predict the occurrence of ATB-DILI among tuberculosis patients.
Collapse
Affiliation(s)
- Ming-Gui Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China,Department of Emergency Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shou-Quan Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Meng-Meng Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jian-Qing He
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Jian-Qing He, ;
| |
Collapse
|
4
|
Hou W, Nsengimana B, Yan C, Nashan B, Han S. Involvement of endoplasmic reticulum stress in rifampicin-induced liver injury. Front Pharmacol 2022; 13:1022809. [PMCID: PMC9630567 DOI: 10.3389/fphar.2022.1022809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Rifampicin is a first-line antituberculosis drug. Hepatocyte toxicity caused by rifampicin is a significant clinical problem. However, the specific mechanism by which rifampicin causes liver injury is still poorly understood. Endoplasmic reticulum (ER) stress can have both protective and proapoptotic effects on an organism, depending on the environmental state of the organism. While causing cholestasis and oxidative stress in the liver, rifampicin also activates ER stress in different ways, including bile acid accumulation and cytochrome p450 (CYP) enzyme-induced toxic drug metabolites via pregnane X receptor (PXR). The short-term stress response helps the organism resist toxicity, but when persisting, the response aggravates liver damage. Therefore, ER stress may be closely related to the “adaptive” mechanism and the apoptotic toxicity of rifampicin. This article reviews the functional characteristics of ER stress and its potentially pathogenic role in liver injury caused by rifampicin.
Collapse
Affiliation(s)
- Wanqing Hou
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bernard Nsengimana
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chuyun Yan
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bjorn Nashan
- Department of Organ Transplantation Center, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Shuxin Han
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Shuxin Han,
| |
Collapse
|
5
|
Zhuang X, Li L, Liu T, Zhang R, Yang P, Wang X, Dai L. Mechanisms of isoniazid and rifampicin-induced liver injury and the effects of natural medicinal ingredients: A review. Front Pharmacol 2022; 13:1037814. [PMID: 36299895 PMCID: PMC9589499 DOI: 10.3389/fphar.2022.1037814] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/29/2022] [Indexed: 11/28/2022] Open
Abstract
Isoniazid (INH) and rifampicin (RFP) are the first-line medications for tuberculosis treatment, and liver injury is the major adverse effect. Natural medicinal ingredients provide distinct benefits in alleviating patients’ symptoms, lowering the liver injury risk, delaying disease progression, and strengthening the body’s ability to heal. This paper summarises the recent research on the mechanisms of INH and RFP-induced liver injury and the effects of natural medicinal ingredients. It is believed that INH-induced liver injury may be attributed to oxidative stress, mitochondrial dysfunction, drug metabolic enzymes, protoporphyrin IX accumulation, endoplasmic reticulum stress, bile transport imbalance, and immune response. RFP-induced liver injury is mainly related to cholestasis, endoplasmic reticulum stress, and liver lipid accumulation. However, the combined effect of INH and RFP on liver injury risk is still uncertain. RFP can increase INH-induced hepatotoxicity by regulating the expression of drug-metabolizing enzymes and transporters. In contrast, INH can antagonize RFP-induced liver injury by reducing the total bilirubin level in the blood. Sagittaria sagittifolia polysaccharide, quercetin, gallic acid, and other natural medicinal ingredients play protective roles on INH and RFP-induced liver injury by enhancing the body’s antioxidant capacity, regulating metabolism, inhibiting cell apoptosis, and reducing the inflammatory response. There are still many gaps in the literature on INH and RFP-induced liver injury mechanisms and the effects of natural medicinal ingredients. Thus, further research should be carried out from the perspectives of liver injury phenotype, injury markers, in vitro and in vivo liver injury model construction, and liver-gut axis. This paper comprehensively reviewed the literature on mechanisms involved in INH and RFP-induced liver injury and the status of developing new drugs against INH and RFP-induced liver injury. In addition, this review also highlighted the uses and advantages of natural medicinal ingredients in treating drug-induced liver injury.
Collapse
Affiliation(s)
- Xiuping Zhuang
- School of Pharmacy, Binzhou Medical University, Yantai, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Li Li
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianyi Liu
- Grade Three Laboratory of Traditional Chinese Medicine Preparation of the National Administration of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rui Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peimin Yang
- Grade Three Laboratory of Traditional Chinese Medicine Preparation of the National Administration of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin Wang
- Grade Three Laboratory of Traditional Chinese Medicine Preparation of the National Administration of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Xin Wang, ; Long Dai,
| | - Long Dai
- School of Pharmacy, Binzhou Medical University, Yantai, China
- *Correspondence: Xin Wang, ; Long Dai,
| |
Collapse
|
6
|
Determination of metabolic phenotype and potential biomarkers in the liver of heroin addicted mice with hepatotoxicity. Life Sci 2021; 287:120103. [PMID: 34743944 DOI: 10.1016/j.lfs.2021.120103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Heroin is a semi-synthetic opioid that is commonly abused drugs in the world. It can cause hepatic injury and lead to multiple organs dysfunction to its addicts. Only a few reports exist on the metabolic changes and mechanisms in the liver of heroin-addicted mice with hepatic injury. METHODS Twelve adult male Kunming mice (30-40 g) were divided into two groups randomly. The mice in the heroin-addicted group were injected subcutaneously in the first ten days with an increased dosage of heroin from 10 mg/kg to 55 mg/kg. The dosage was then stabilized at 55 mg/kg for three days. The control group was injected with the same amount of saline in the same manner. The hepatic injury was confirmed through the combination of histopathological observation and aminotransferase (AST) and alanine aminotransferase (ALT) determination. The withdrawal symptoms were recorded and used for assessment of heroin addiction. Eventually, liver metabolic biomarkers of heroin-addicted mice with hepatotoxicity were measured using UHPLC-MS/MS. RESULTS Biochemical analysis and histopathological observation showed that heroin-addicted mice had a liver injury. The liver metabolites of heroin-addicted mice changed significantly. Metabonomics analysis revealed 41 metabolites in the liver of addicted heroin mice as biomarkers involving 34 metabolic pathways. Among them, glutathione metabolism, taurine and hypotaurine metabolism, vitamin B2 metabolism, riboflavin metabolism, and single-carbon metabolism pathways were markedly dispruted. CONCLUSIONS Heroin damages the liver and disrupts the liver's metabolic pathways. Glutathione, taurine, riboflavin, 4-pyridoxate, folic acid, and methionine are important metabolic biomarkers, which may be key targets of heroin-induced liver damage. Thus, this study provides an in-depth understanding of the mechanisms of heroin-induced hepatotoxicity and potential biomarkers of liver damage.
Collapse
|
7
|
Li Y, Li L, Sha X, Zhang K, Li G, Ma Y, Zhou J, Hao Y, Zhang Z, Cui X, Tang PF, Wang L, Wang H. Instant hydrogelation encapsulates drugs onto implants intraoperatively against osteoarticular tuberculosis. J Mater Chem B 2021; 9:8056-8066. [PMID: 34491255 DOI: 10.1039/d1tb00997d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Osteoarticular Tuberculosis (TB) is a challenging issue because of its chronicity and recurrence. Many drug delivery systems (DDSs) have been developed for general chemotherapy. Herein, we take advantage of instant hydrogelation to in situ encapsulate drugs onto implants intraoperatively, optimizing the drug release profile against osteoarticular TB. First-line chemodrugs, i.e. rifampicin (RFP) and isoniazid (INH) are firstly loaded on tricalcium phosphate (TCP). Then, the encapsulating hydrogel is fabricated by dipping in chitosan (CS) and β-glycerophosphate (β-GP) solution and heating at 80 °C for 40 min. The hydrogel encapsulation inhibits explosive drug release initially, but maintains long-term drug release (INH, 158 days; RFP, 53 days) in vitro. Therefore, this technique could inhibit bone destruction and inflammation from TB effectively in vivo, better than our previous ex situ prepared DDSs. The encapsulating technology, i.e. instant hydrogelation of drug-loaded implants, shows potential for regulating the type and ratio of drugs, elastic and viscous modulus of the hydrogel according to the state of illness intraoperatively for optimal drug release.
Collapse
Affiliation(s)
- Yuan Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China. .,Department of Orthopedic Medicine, The 4th Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Beijing 100000, China.
| | - Litao Li
- Department of Orthopedic Medicine, The 4th Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Beijing 100000, China.
| | - Xiaoling Sha
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China. .,Department of Orthopedic Medicine, The 4th Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Beijing 100000, China.
| | - Kuo Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China.
| | - Guang Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China. .,Department of Orthopedic Medicine, The 4th Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Beijing 100000, China.
| | - Yiguang Ma
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China. .,Department of Orthopedic Medicine, The 4th Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Beijing 100000, China.
| | - Jin Zhou
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
| | - Yanfei Hao
- The 8th Medical Center of Chinese PLA General Hospital, No. 17 Heishanhu Road, Beijing 100091, China
| | - Zhong Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Xu Cui
- Department of Orthopedic Medicine, The 4th Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Beijing 100000, China.
| | - Pei-Fu Tang
- Department of Orthopedic Medicine, The 4th Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Beijing 100000, China.
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China.
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China.
| |
Collapse
|
8
|
Kotsyumbas GI, Vretsona NP. Histological and histochemical changes in the peripheral organs of the immune system of dogs in cases of isoniazid poisoning. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Most publications on isoniazid poisoning in dogs are devoted to clinical diagnostics, treatment, and prevention of the disease. Histological and histochemical changes are not fully described, though they are important in assessing the toxic effects of isoniazid. Isoniazid is used to treat tuberculosis in humans. Dogs are hypersensitive to this drug. The article highlights the results of macroscopic, histological, and histochemical studies of the dogs’ lymph nodes and spleen in cases of isoniazid poisoning. A pathological examination of 19 corpses of dogs of different ages was performed, during which isoniazid poisoning was posthumously diagnosed, based on anamnesis, clinical signs, pathological autopsy, histological, and histochemical examination. Samples of lymph nodes and spleen were fixed in a 10% aqueous neutral formalin solution, Carnoy’s solution, and Bouin’s fixative. Histoсuts were prepared using a sled microtome and stained with hematoxylin and eosin. Staining was also performed according to the techniques suggested by McManus, Brachet, and Perls. The pathomorphological changes in lymph nodes and spleen were characterized by disorganization of vascular walls and connective tissue fibers of the stroma, dilatation of veins, their overflow with hemolyzed blood, and, in cases of the long clinical course, thrombosis of small vessels. Intravascular hemolysis of erythrocytes resulted in an excessive formation of hemosiderin. Histochemically, the spleen and lymph nodes showed a significant increase in the number of hemosiderophages in the spleen’s red and white pulp and the lymph nodes’ central sinuses and pulp cords. In the spleen, mucoid swelling and necrobiotic changes in the wall structures of the arterioles and arteries progressed with a narrowing of their lumen in dogs suffering from the long clinical course. Increased permeability of the microcirculatory tract vessels of the spleen and lymph nodes, transudate formation, and the destructive changes in the reticular skeleton accompanied hemodynamic violations. A sharp change in blood rheology caused the violation of trophism and metabolism in the immune system. Lymphoid elements of the lymph nodes and white pulp of the spleen were in a state of karyorrhexis and karyolysis. The morphological study of the immune system’s peripheral organs suggests that dogs poisoned by isoniazid demonstrate hemodynamic disorders, changes in the physicochemical properties of blood (hemolysis of erythrocytes and thrombosis). This is the basis of trophic disorders, metabolic malfunctions, and the development of dystrophic processes in all structural elements of the spleen and lymph nodes.
Collapse
|