1
|
Mahanta CS, Hansdah S, Khuntia K, Jena BB, Swain BR, Acharya S, Dash BP, Debata PR, Satapathy R. Novel carboranyl-BODIPY conjugates: design, synthesis and anti-cancer activity. RSC Adv 2024; 14:34643-34660. [PMID: 39479484 PMCID: PMC11521004 DOI: 10.1039/d4ra07241c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
A series of four carboranyl-BODIPY conjugates (o-CB-10, m-CB-15, Me-o-CB-28, and Me-o-CB-35) and one phenylene-BODIPY conjugate (PB-20) were synthesized. The carboranyl-BODIPY conjugates incorporate boron clusters, specifically ortho- and meta-carboranes, covalently linked to BODIPY fluorophores while the phenylene-BODIPY conjugate features a phenylene ring covalently linked to BODIPY fluorophore. The newly synthesized conjugates were characterized by 1H NMR, 13C NMR, 11B NMR, 19F NMR, FT-IR, and high-resolution mass spectral analysis. In vitro cytotoxicity of the synthesized conjugates has been evaluated against the HeLa cervical cancer cell line. The study reveals that o-CB-10 shows a maximum cell death potential at lower concentrations (12.03 μM) and inhibited cell proliferation and migration in cancer (HeLa) cells. Additionally, flow cytometry study reveals that o-CB-10 and Me-o-CB-28 arrest the cell cycle at the S phase. The results indicate that the carboranyl-BODIPY conjugates have the potential to be effective anticancer agents.
Collapse
Affiliation(s)
| | - Sunitee Hansdah
- Department of Zoology Maharaja Sriram Chandra Bhanja Deo University Sri Ram Chandra Vihar, Takatpur, Mayurbhanj Baripada 757003 Odisha India
| | - Kabita Khuntia
- Department of Zoology Maharaja Sriram Chandra Bhanja Deo University Sri Ram Chandra Vihar, Takatpur, Mayurbhanj Baripada 757003 Odisha India
| | - Bibhuti Bhusan Jena
- Department of Chemistry Ravenshaw University College Square Cuttack 753003 Odisha India
| | - Biswa Ranjan Swain
- Department of Chemistry Ravenshaw University College Square Cuttack 753003 Odisha India
| | - Subhadeep Acharya
- Department of Chemistry Ravenshaw University College Square Cuttack 753003 Odisha India
| | | | - Priya Ranjan Debata
- Department of Zoology Maharaja Sriram Chandra Bhanja Deo University Sri Ram Chandra Vihar, Takatpur, Mayurbhanj Baripada 757003 Odisha India
| | - Rashmirekha Satapathy
- Department of Chemistry Ravenshaw University College Square Cuttack 753003 Odisha India
| |
Collapse
|
2
|
Bendellaa M, Cave C, Godard A, Dalonneau F, Sickinger A, Goze C, Maury O, Le Gendre P, Bodio E, Busser B, Sancey L. WazaGaY: An Innovative Aza-BODIPY-Derived Near-Infrared Fluorescent Probe for Enhanced Tumor Imaging. J Med Chem 2024; 67:16635-16648. [PMID: 39289797 DOI: 10.1021/acs.jmedchem.4c01435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Aza-BODIPYs represent a class of fluorophores in which the π-conjugated system is rigidified and stabilized by a boron atom. A promising strategy to enhance their fluorescence properties involves replacing the boron atom with a metal ion. Here, we describe the synthesis and characterization of a water-soluble derivative where the metal is a gallium(III) ion, termed WazaGaY (water-soluble aza-GaDIPY). Water solubility is ensured by two ammonium substituents, inducing a bathochromic shift and a significant increase in quantum yield compared to that of the dimethylamino analog. The cellular behavior of WazaGaY-1 was observed across different tumor cells. In vivo, the distribution and safety profiles were determined, and tumor uptake was assessed in various tumor types. Following intravenous injection, WazaGaY-1 enabled clear discrimination of tumors engrafted subcutaneously in mice with high tumor-to-muscle ratios (ranging from 7 to 20), even in the absence of specific conjugation. Its potential as a contrast agent for fluorescence-guided surgery was confirmed.
Collapse
Affiliation(s)
- Mohamed Bendellaa
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences (IAB), Grenoble 38000, France
| | - Charlotte Cave
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne, CNRS UMR 6302, Dijon 21078, France
| | - Amélie Godard
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne, CNRS UMR 6302, Dijon 21078, France
| | - Fabien Dalonneau
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences (IAB), Grenoble 38000, France
| | | | - Christine Goze
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne, CNRS UMR 6302, Dijon 21078, France
| | - Olivier Maury
- CNRS, ENS de Lyon, CNRS, LCH, UMR 5182, Lyon F-69342, France
| | - Pierre Le Gendre
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne, CNRS UMR 6302, Dijon 21078, France
| | - Ewen Bodio
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne, CNRS UMR 6302, Dijon 21078, France
- Nantes Université, CNRS, CEISAM, UMR 6230, Nantes F-44000, France
- Institut Universitaire de France (IUF), Paris 75005, France
| | - Benoit Busser
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences (IAB), Grenoble 38000, France
- Institut Universitaire de France (IUF), Paris 75005, France
- Grenoble Alpes University Hospital (CHUGA), Grenoble 38043, France
| | - Lucie Sancey
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences (IAB), Grenoble 38000, France
| |
Collapse
|
3
|
Pinjari D, Patil Y, Misra R. Near-Infrared Absorbing Aza-BODIPY Dyes for Optoelectronic Applications. Chem Asian J 2024; 19:e202400167. [PMID: 38733151 DOI: 10.1002/asia.202400167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Organic dyes that absorb light in the visible to near-infrared region have garnered significant interest, owing to their extensive utility in organic photovoltaics and various biomedical applications. Aza-boron-dipyrromethene (Aza-BODIPY) dyes are a class of chromophores with impressive photophysical properties such as tunable absorption from the visible region towards near infrared (NIR) region, high molar absorptivity, and fluorescence quantum yield. In this review, we discuss the developments in the aza-BODIPYs, related to their synthetic routes, photophysical properties and their applications. Their design strategies, modifications in chemical structures, mode/position of attachment, and their impact on photo-physical properties are reviewed. The potential applications of aza-BODIPY derivatives such as organic solar cells, photodynamic therapy, boron-neutron capture therapy, fluorescence sensors, photo-redox catalysis, photoacoustic probes and optoelectronic devices are explained.
Collapse
Affiliation(s)
- Dilip Pinjari
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| | - Yuvraj Patil
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota, 58108, United States
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| |
Collapse
|
4
|
Brown EB, Gapare RL, Campbell JW, Alkaş A, Sequeira S, Hilborn JW, Greening SM, Robertson KN, Thompson A. A mild synthetic route to α-nitroso diaryl pyrroles. Org Biomol Chem 2024. [PMID: 39007871 DOI: 10.1039/d4ob00935e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
A new synthetic method to access α-nitroso pyrroles is presented. This method utilises the nitrosonium salt NOBF4, enabling short reaction times (<10 minutes) and avoiding the harsh acidic conditions usually associated with pyrrole nitrosation. Application of this procedure to diarylated pyrroles yielded several novel nitroso-pyrroles. Modifications to the method, through exclusion of air and inclusion of a mild base, allowed for the nitrosation of pyrroles bearing aryl groups substituted with electron-donating groups. Attempts to nitrosylate pyrroles bearing alkyl substituents resulted in the formation of a dimeric material composed of a pyrrolic unit and a 2-hydroxyimino-protected 1,5-dihydro-2H-pyrrol-2-one.
Collapse
Affiliation(s)
- Emily B Brown
- Department of Chemistry, Dalhousie University, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Rosinah Liandrah Gapare
- Department of Chemistry, Dalhousie University, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Jacob W Campbell
- Department of Chemistry, Dalhousie University, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Adil Alkaş
- Department of Chemistry, Dalhousie University, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Steve Sequeira
- Department of Chemistry, Dalhousie University, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - James W Hilborn
- Department of Chemistry, Dalhousie University, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Sarah M Greening
- Department of Chemistry, Dalhousie University, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Katherine N Robertson
- Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Alison Thompson
- Department of Chemistry, Dalhousie University, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
5
|
Marforio TD, Carboni A, Calvaresi M. In Vivo Application of Carboranes for Boron Neutron Capture Therapy (BNCT): Structure, Formulation and Analytical Methods for Detection. Cancers (Basel) 2023; 15:4944. [PMID: 37894311 PMCID: PMC10605826 DOI: 10.3390/cancers15204944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Carboranes have emerged as one of the most promising boron agents in boron neutron capture therapy (BNCT). In this context, in vivo studies are particularly relevant, since they provide qualitative and quantitative information about the biodistribution of these molecules, which is of the utmost importance to determine the efficacy of BNCT, defining their localization and (bio)accumulation, as well as their pharmacokinetics and pharmacodynamics. First, we gathered a detailed list of the carboranes used for in vivo studies, considering the synthesis of carborane derivatives or the use of delivery system such as liposomes, micelles and nanoparticles. Then, the formulation employed and the cancer model used in each of these studies were identified. Finally, we examined the analytical aspects concerning carborane detection, identifying the main methodologies applied in the literature for ex vivo and in vivo analysis. The present work aims to identify the current strengths and weakness of the use of carboranes in BNCT, establishing the bottlenecks and the best strategies for future applications.
Collapse
Affiliation(s)
| | - Andrea Carboni
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| |
Collapse
|
6
|
Monti Hughes A, Hu N. Optimizing Boron Neutron Capture Therapy (BNCT) to Treat Cancer: An Updated Review on the Latest Developments on Boron Compounds and Strategies. Cancers (Basel) 2023; 15:4091. [PMID: 37627119 PMCID: PMC10452654 DOI: 10.3390/cancers15164091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is a tumor-selective particle radiotherapy. It combines preferential boron accumulation in tumors and neutron irradiation. The recent initiation of BNCT clinical trials employing hospital-based accelerators rather than nuclear reactors as the neutron source will conceivably pave the way for new and more numerous clinical trials, leading up to much-needed randomized trials. In this context, it would be interesting to consider the implementation of new boron compounds and strategies that will significantly optimize BNCT. With this aim in mind, we analyzed, in this review, those articles published between 2020 and 2023 reporting new boron compounds and strategies that were proved therapeutically useful in in vitro and/or in vivo radiobiological studies, a critical step for translation to a clinical setting. We also explored new pathologies that could potentially be treated with BNCT and newly developed theranostic boron agents. All these radiobiological advances intend to solve those limitations and questions that arise during patient treatment in the clinical field, with BNCT and other therapies. In this sense, active communication between clinicians, radiobiologists, and all disciplines will improve BNCT for cancer patients, in a cost- and time-effective way.
Collapse
Affiliation(s)
- Andrea Monti Hughes
- Radiation Pathology Division, Department Radiobiology, National Atomic Energy Commission, San Martín, Buenos Aires B1650KNA, Argentina
- National Scientific and Technical Research Council, Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Naonori Hu
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan;
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan
| |
Collapse
|
7
|
Portu AM, Espain MS, Thorp SI, Trivillin VA, Curotto P, Monti Hughes A, Pozzi ECC, Garabalino MA, Palmieri MA, Granell PN, Golmar F, Schwint AE, Saint Martin G. Enhanced Resolution of Neutron Autoradiography with UV-C Sensitization to Study Boron Microdistribution in Animal Models. Life (Basel) 2023; 13:1578. [PMID: 37511953 PMCID: PMC10381447 DOI: 10.3390/life13071578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The assessment of boron microdistribution is essential to evaluate the suitability of boron neutron capture therapy (BNCT) in different biological models. In our laboratory, we have reported a methodology to produce cell imprints on polycarbonate through UV-C sensitization. The aim of this work is to extend the technique to tissue samples in order to enhance spatial resolution. As tissue structure largely differs from cultured cells, several aspects must be considered. We studied the influence of the parameters involved in the imprint and nuclear track formation, such as neutron fluence, different NTDs, etching and UV-C exposure times, tissue absorbance, thickness, and staining, among others. Samples from different biological models of interest for BNCT were used, exhibiting homogeneous and heterogeneous histology and boron microdistribution. The optimal conditions will depend on the animal model under study and the resolution requirements. Both the imprint sharpness and the fading effect depend on tissue thickness. While 6 h of UV-C was necessary to yield an imprint in CR-39, only 5 min was enough to observe clear imprints on Lexan. The information related to microdistribution of boron obtained with neutron autoradiography is of great relevance when assessing new boron compounds and administration protocols and also contributes to the study of the radiobiology of BNCT.
Collapse
Affiliation(s)
- Agustina Mariana Portu
- National Atomic Energy Commission (CNEA), San Martín C1429BNP, Argentina
- National Scientific and Technological Research Council (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
- School of Science & Technology, National University of San Martín (UNSAM), San Martín B1650JKA, Argentina
| | - María Sol Espain
- National Atomic Energy Commission (CNEA), San Martín C1429BNP, Argentina
- National Scientific and Technological Research Council (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
- School of Science & Technology, National University of San Martín (UNSAM), San Martín B1650JKA, Argentina
| | - Silvia Inés Thorp
- National Atomic Energy Commission (CNEA), San Martín C1429BNP, Argentina
- National Scientific and Technological Research Council (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Verónica Andrea Trivillin
- National Atomic Energy Commission (CNEA), San Martín C1429BNP, Argentina
- National Scientific and Technological Research Council (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Paula Curotto
- National Atomic Energy Commission (CNEA), San Martín C1429BNP, Argentina
| | - Andrea Monti Hughes
- National Atomic Energy Commission (CNEA), San Martín C1429BNP, Argentina
- National Scientific and Technological Research Council (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | | | | | - Mónica Alejandra Palmieri
- Department of Biodiversity and Experimental Biology, Faculty of Exact and Natural Sciences, University of Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina
| | - Pablo Nicolás Granell
- Micro and Nanotechnology Centre of the Bicentennial (CNMB), National Institute of Industrial Technology (INTI), San Martín B1650JKA, Argentina
| | - Federico Golmar
- National Scientific and Technological Research Council (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
- School of Science & Technology, National University of San Martín (UNSAM), San Martín B1650JKA, Argentina
- Micro and Nanotechnology Centre of the Bicentennial (CNMB), National Institute of Industrial Technology (INTI), San Martín B1650JKA, Argentina
| | - Amanda Elena Schwint
- National Atomic Energy Commission (CNEA), San Martín C1429BNP, Argentina
- National Scientific and Technological Research Council (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | | |
Collapse
|
8
|
Teixidor F, Núñez R, Viñas C. Towards the Application of Purely Inorganic Icosahedral Boron Clusters in Emerging Nanomedicine. Molecules 2023; 28:molecules28114449. [PMID: 37298925 DOI: 10.3390/molecules28114449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Traditionally, drugs were obtained by extraction from medicinal plants, but more recently also by organic synthesis. Today, medicinal chemistry continues to focus on organic compounds and the majority of commercially available drugs are organic molecules, which can incorporate nitrogen, oxygen, and halogens, as well as carbon and hydrogen. Aromatic organic compounds that play important roles in biochemistry find numerous applications ranging from drug delivery to nanotechnology or biomarkers. We achieved a major accomplishment by demonstrating experimentally/theoretically that boranes, carboranes, as well as metallabis(dicarbollides), exhibit global 3D aromaticity. Based on the stability-aromaticity relationship, as well as on the progress made in the synthesis of derivatized clusters, we have opened up new applications of boron icosahedral clusters as key components in the field of novel healthcare materials. In this brief review, we present the results obtained at the Laboratory of Inorganic Materials and Catalysis (LMI) of the Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) with icosahedral boron clusters. These 3D geometric shape clusters, the semi-metallic nature of boron and the presence of exo-cluster hydrogen atoms that can interact with biomolecules through non-covalent hydrogen and dihydrogen bonds, play a key role in endowing these compounds with unique properties in largely unexplored (bio)materials.
Collapse
Affiliation(s)
- Francesc Teixidor
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, 08193 Bellaterra, Spain
| | - Rosario Núñez
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, 08193 Bellaterra, Spain
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, 08193 Bellaterra, Spain
| |
Collapse
|
9
|
Espector N, Portu AM, Espain MS, Leyva G, Saint Martin G. Measurement of an evaporation coefficient in tissue sections as a correction factor for 10B determination. Histochem Cell Biol 2023:10.1007/s00418-023-02200-w. [PMID: 37126141 DOI: 10.1007/s00418-023-02200-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
Boron neutron capture therapy (BNCT) is a cancer treatment option that combines preferential uptake of a boron compound in tumors and irradiation with thermal neutrons. For treatment planning, the boron concentration in different tissues must be considered. Neutron autoradiography using nuclear track detectors (NTD) can be applied to study both the concentration and microdistribution of boron in tissue samples. Histological sections are obtained from frozen tissue by cryosectioning. When the samples reach room temperature, they undergo an evaporation process, which leads to an increase in the boron concentration. To take this effect into account, certain correction factors (evaporation coefficients, CEv) must be applied. With this aim, a protocol was established to register and analyze mass variation of tissue sections, measured with a semimicro scale. Values of ambient temperature, pressure, and humidity were simultaneously recorded. Reproducible results of evaporation curves and CEv values were obtained for different tissue samples, which allowed the systematization of the procedure. This study could contribute to a more precise determination of boron concentration in tissue samples through the neutron autoradiography technique, which is of great relevance to make dosimetric calculations in BNCT.
Collapse
Affiliation(s)
- Natalia Espector
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), Av. General Paz 1499, San Martin, B1650KNA, Buenos Aires, Argentina
| | - Agustina Mariana Portu
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), Av. General Paz 1499, San Martin, B1650KNA, Buenos Aires, Argentina.
- Comisión Nacional de Investigaciones Científicas y Técnicas (CONICET), Capital Federal, Buenos Aires, Argentina.
| | - María Sol Espain
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), Av. General Paz 1499, San Martin, B1650KNA, Buenos Aires, Argentina
- Comisión Nacional de Investigaciones Científicas y Técnicas (CONICET), Capital Federal, Buenos Aires, Argentina
| | - Gabriela Leyva
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), Av. General Paz 1499, San Martin, B1650KNA, Buenos Aires, Argentina
| | - Gisela Saint Martin
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), Av. General Paz 1499, San Martin, B1650KNA, Buenos Aires, Argentina
| |
Collapse
|
10
|
Gardette V, Motto-Ros V, Alvarez-Llamas C, Sancey L, Duponchel L, Busser B. Laser-Induced Breakdown Spectroscopy Imaging for Material and Biomedical Applications: Recent Advances and Future Perspectives. Anal Chem 2023; 95:49-69. [PMID: 36625118 DOI: 10.1021/acs.analchem.2c04910] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Vincent Gardette
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622 Villeurbanne, France
| | - Vincent Motto-Ros
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622 Villeurbanne, France
| | - César Alvarez-Llamas
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622 Villeurbanne, France
| | - Lucie Sancey
- Univ. Grenoble Alpes, Institute for Advanced Biosciences, Inserm U 1209/CNRS 5309, 38000 Grenoble, France
| | - Ludovic Duponchel
- Univ. Lille, CNRS, UMR 8516 - LASIRE - Laboratoire de Spectroscopie pour Les Interactions, La Réactivité et L'Environnement, Lille F-59000, France
| | - Benoit Busser
- Univ. Grenoble Alpes, Institute for Advanced Biosciences, Inserm U 1209/CNRS 5309, 38000 Grenoble, France.,Department of Laboratory Medicine, Grenoble Alpes University Hospital, 38000 Grenoble, France.,Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|
11
|
Sonkaya Ö, Soylukan C, Pamuk Algi M, Algi F. Aza-BODIPY-based Fluorescent and Colorimetric Sensors and Probes. Curr Org Synth 2023; 20:20-60. [PMID: 35170414 DOI: 10.2174/1570179419666220216123033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/30/2021] [Accepted: 12/18/2021] [Indexed: 12/16/2022]
Abstract
Aza-boron-dipyrromethenes (Aza-BODIPYs) represent an important class of chromophores absorbing and emitting in the near-infrared (NIR) region. They have unique optical and electronic features and higher physiological and photo stability than other NIR dyes. Especially after the development of facile synthetic routes, Aza-BODIPYs have become indispensable fluors that can find various applications ranging from chemosensors, bioimaging, phototherapy, solar energy materials, photocatalysis, photon upconversion, lasers, and optoelectronics. Herein, we review Aza-BODIPY based fluorescent and colorimetric chemosensors. We show the potential and untapped toolbox of Aza-BODIPY based fluorescent and colorimetric chemosensors. Hence, we divide the fluorescent and colorimetric chemosensors and probes into five sections according to the target analytes. The first section begins with the chemosensors developed for pH. Next, we discuss Aza-BODIPY based ion sensors, including metal ions and anions. Finally, we present the chemosensors and probes concerning reactive oxygen (ROS) and nitrogen species (RNS) along with biologically relevant species in the last two sections. We believe that Aza-BODIPYs are still in their infancy, and they have a promising future for translation from the bench to real biomedical and materials science applications. After two decades of intensive research, it seems that there are many more to come in this already fertile field. Overall, we hope that future work will further expand the applications of Aza-BODIPY in many areas.
Collapse
Affiliation(s)
- Ömer Sonkaya
- Department of Chemistry, Aksaray University, TR-68100 Aksaray, Turkey
- ASUBTAM Memduh Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
| | - Caner Soylukan
- ASUBTAM Memduh Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
- Department of Biotechnology & ASUBTAM Memduh Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
| | - Melek Pamuk Algi
- Department of Chemistry, Aksaray University, TR-68100 Aksaray, Turkey
- ASUBTAM Memduh Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
| | - Fatih Algi
- ASUBTAM Memduh Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
- Department of Biotechnology & ASUBTAM Memduh Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
| |
Collapse
|
12
|
Godard A, Galán LA, Rouillon J, Al Shehimy S, Tajani W, Cave C, Malacea-Kabbara R, Rousselin Y, Le Gendre P, Fihey A, Bendellaa M, Busser B, Sancey L, Le Guennic B, Bucher C, Maury O, Goze C, Bodio E. Al(III) and Ga(III) Bisphenolate Azadipyrromethene-Based “N 2O 2” Complexes as Efficient NIR-Fluorophores. Inorg Chem 2022; 62:5067-5080. [PMID: 36541863 DOI: 10.1021/acs.inorgchem.2c03918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aza-boron-dipyrromethenes (Aza-BODIPYs) are an increasingly studied class of fluorophores. They can be seen as an azadipyrromethene ("aza-DIPY") ligand rigidified by a metalloid, a boron atom. Based on this idea, a series of complexes of group 13 metals (aluminum and gallium) have been synthesized and characterized. The impact of the metal and of the nature of the substituents of aza-DIPY core were investigated. The photophysical and electrochemical properties were determined, and an X-ray structure of an azaGaDIPY was obtained. These data reveal that azaGaDIPY and azaAlDIPY exhibit significant red-shifted fluorescence compared to their analogue aza-BODIPY. Their emission can go up to 800 nm for the maximum emission length and up to NIR-II for the emission tail. This, associated with their electrochemical stability (no metal release whether oxidized or reduced) makes them a promising class of fluorophores for optical medical imaging. Moreover, X-ray structure and molecular modeling studies have shown that this redshift seems to be more due to the geometry around the boron/metal than to the nature of the metal.
Collapse
Affiliation(s)
- Amélie Godard
- Institut de Chimie Moléculaire de l’Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS UMR 6302, F-21000 Dijon, France
| | - Laura Abad Galán
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, F-69342 Lyon, France
| | - Jean Rouillon
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, F-69342 Lyon, France
| | - Shaymaa Al Shehimy
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, F-69342 Lyon, France
| | - Wassima Tajani
- Institut de Chimie Moléculaire de l’Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS UMR 6302, F-21000 Dijon, France
| | - Charlotte Cave
- Institut de Chimie Moléculaire de l’Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS UMR 6302, F-21000 Dijon, France
| | - Raluca Malacea-Kabbara
- Institut de Chimie Moléculaire de l’Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS UMR 6302, F-21000 Dijon, France
| | - Yoann Rousselin
- Institut de Chimie Moléculaire de l’Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS UMR 6302, F-21000 Dijon, France
| | - Pierre Le Gendre
- Institut de Chimie Moléculaire de l’Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS UMR 6302, F-21000 Dijon, France
| | - Arnaud Fihey
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35000 Rennes, France
| | - Mohamed Bendellaa
- Univ. Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Benoit Busser
- Univ. Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000 Grenoble, France
- Department of Clinical Biochemistry, Grenoble Alpes University Hospital, 38043 Grenoble, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Lucie Sancey
- Univ. Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Boris Le Guennic
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35000 Rennes, France
| | - Christophe Bucher
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, F-69342 Lyon, France
| | - Olivier Maury
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, F-69342 Lyon, France
| | - Christine Goze
- Institut de Chimie Moléculaire de l’Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS UMR 6302, F-21000 Dijon, France
| | - Ewen Bodio
- Institut de Chimie Moléculaire de l’Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS UMR 6302, F-21000 Dijon, France
| |
Collapse
|
13
|
Coninx S, Kalot G, Godard A, Bodio E, Goze C, Sancey L, Auzély-Velty R. Tailored hyaluronic acid-based nanogels as theranostic boron delivery systems for boron neutron cancer therapy. Int J Pharm X 2022; 4:100134. [PMID: 36304136 PMCID: PMC9594117 DOI: 10.1016/j.ijpx.2022.100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Boron-rich nanocarriers possess great potential for advanced boron neutron capture therapy (BNCT) as an effective radiation treatment for invasive malignant tumors. If additionally, they can be imaged in a non-invasive and real-time manner allowing the assessment of local boron concentration, they could serve for dose calculation and image-guided BNCT to enhance tumor treatment efficacy. To meet this challenge, this study describes the design of a theranostic nanogel, enriched in 10B and fluorescent dye, to achieve selective imaging, and sufficient accumulation of boron at the tumor site. The boron-rich and fluorescent nanogels can be easily obtained via temperature triggered-assembly of hyaluronic acid (HA) modified with a thermoresponsive terpolymer. The latter was specifically designed to enable the efficient encapsulation of the fluorescent dye – an aza‑boron-dipyrromethene (aza-BODIPY) – linked to 10B-enriched sodium borocaptate (BSH), in addition to induce nanogel formation below room temperature, and to enable their core-crosslinking by hydrazone bond formation. The HA nanogel considerably concentrates aza-BODIPY-BSH into the hydrophobic nanodomains made of the terpolymer chains. Here, we present the detailed synthesis of the HA-terpolymer conjugate, nanogel formation, and characterization in terms of size, morphology, and stability upon storage, as well as the biological behavior of the boron nanocarrier using real-time fluorescence imaging in cells and in vivo. This work suggested the potential of the theranostic HA nanogel as a boron delivery system for the implementation of BNCT in brain cancer and sarcoma.
Collapse
Affiliation(s)
- Simon Coninx
- Université Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, Grenoble, France
| | - Ghadir Kalot
- Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, 38000 Grenoble, France
| | - Amélie Godard
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne-Franche-Comté, CNRS UMR, 6302 Dijon, France
| | - Ewen Bodio
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne-Franche-Comté, CNRS UMR, 6302 Dijon, France
| | - Christine Goze
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne-Franche-Comté, CNRS UMR, 6302 Dijon, France
| | - Lucie Sancey
- Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, 38000 Grenoble, France
| | - Rachel Auzély-Velty
- Université Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, Grenoble, France,Corresponding author.
| |
Collapse
|
14
|
Neumolotov NK, Selivanov NA, Bykov AY, Klyukin IN, Novikov AS, Zhdanov AP, Zhizin KY, Kuznetsov NT. New Methods for Preparation of the Monofluorosubstituted Derivative of the closo-Borate Anion [2-B10H9F]2–, Its Properties, and Analysis of Its Reactivity. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622600861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Busser B, Bulin AL, Gardette V, Elleaume H, Pelascini F, Bouron A, Motto-Ros V, Sancey L. Visualizing the cerebral distribution of chemical elements: A challenge met with LIBS elemental imaging. J Neurosci Methods 2022; 379:109676. [PMID: 35850297 DOI: 10.1016/j.jneumeth.2022.109676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
Biological tissues contain various metals and metalloids ions with central role in the regulation of several pathophysiological functions. In parallel, the development and the evaluation of novel nanocompounds for biomedicine require the monitoring of their biodistribution in tissues of interest. Therefore, researchers need to use reliable and accessible techniques to detect and quantify major and trace elements in space-resolved manner. In this communication, we report how Laser-Induced Breakdown Spectroscopy (LIBS) can be used to image the distribution of chemical elements in brain tissues.
Collapse
Affiliation(s)
- Benoit Busser
- Univ. Grenoble Alpes, INSERM U1209, CNRS, UMR 5309, Institute for Advanced Biosciences (IAB), 38000 Grenoble, France; Grenoble Alpes University Hospital, 38700 Grenoble, France; Institut Universitaire de France (IUF), France.
| | - Anne-Laure Bulin
- Univ. Grenoble Alpes, INSERM U1209, CNRS, UMR 5309, Institute for Advanced Biosciences (IAB), 38000 Grenoble, France; Univ. Grenoble Alpes, INSERM, UA07 STROBE, 38000 Grenoble, France.
| | - Vincent Gardette
- Institut Lumière Matière, UMR 5306, Univ. Lyon 1, CNRS, 69622 Villeurbanne, France.
| | - Hélène Elleaume
- Univ. Grenoble Alpes, INSERM, UA07 STROBE, 38000 Grenoble, France.
| | | | - Alexandre Bouron
- Univ. Grenoble Alpes, INSERM, CEA, UMR 1292, 38000 Grenoble, France.
| | - Vincent Motto-Ros
- Institut Lumière Matière, UMR 5306, Univ. Lyon 1, CNRS, 69622 Villeurbanne, France.
| | - Lucie Sancey
- Univ. Grenoble Alpes, INSERM U1209, CNRS, UMR 5309, Institute for Advanced Biosciences (IAB), 38000 Grenoble, France.
| |
Collapse
|
16
|
Challenges and opportunities in the development of metal-based anticancer theranostic agents. Biosci Rep 2022; 42:231168. [PMID: 35420649 PMCID: PMC9109461 DOI: 10.1042/bsr20212160] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Around 10 million fatalities were recorded worldwide in 2020 due to cancer and statistical projections estimate the number to increase by 60% in 2040. With such a substantial rise in the global cancer burden, the disease will continue to impose a huge socio-economic burden on society. Currently, the most widely used clinical treatment modality is cytotoxic chemotherapy using platinum drugs which is used to treat variety of cancers. Despite its clinical success, critical challenges like resistance, off-target side effects and cancer variability often reduce its overall therapeutic efficiency. These challenges require faster diagnosis, simultaneous therapy and a more personalized approach toward cancer management. To this end, small-molecule ‘theranostic’ agents have presented a viable solution combining diagnosis and therapy into a single platform. In this review, we present a summary of recent efforts in the design and optimization of metal-based small-molecule ‘theranostic’ anticancer agents. Importantly, we highlight the advantages of a theranostic candidate over the purely therapeutic or diagnostic agent in terms of evaluation of its biological properties.
Collapse
|
17
|
Importance of radiobiological studies for the advancement of boron neutron capture therapy (BNCT). Expert Rev Mol Med 2022; 24:e14. [PMID: 35357286 DOI: 10.1017/erm.2022.7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Boron neutron capture therapy (BNCT) is a tumour selective particle radiotherapy, based on the administration of boron carriers incorporated preferentially by tumour cells, followed by irradiation with a thermal or epithermal neutron beam. BNCT clinical results to date show therapeutic efficacy, associated with an improvement in patient quality of life and prolonged survival. Translational research in adequate experimental models is necessary to optimise BNCT for different pathologies. This review recapitulates some examples of BNCT radiobiological studies for different pathologies and clinical scenarios, strategies to optimise boron targeting, enhance BNCT therapeutic effect and minimise radiotoxicity. It also describes the radiobiological mechanisms induced by BNCT, and the importance of the detection of biomarkers to monitor and predict the therapeutic efficacy and toxicity of BNCT alone or combined with other strategies. Besides, there is a brief comment on the introduction of accelerator-based neutron sources in BNCT. These sources would expand the clinical BNCT services to more patients, and would help to make BNCT a standard treatment modality for various types of cancer. Radiobiological BNCT studies have been of utmost importance to make progress in BNCT, being essential to design novel, safe and effective clinical BNCT protocols.
Collapse
|
18
|
Dai Q, Yang Q, Bao X, Chen J, Han M, Wei Q. The Development of Boron Analysis and Imaging in Boron Neutron Capture Therapy (BNCT). Mol Pharm 2022; 19:363-377. [PMID: 35040321 DOI: 10.1021/acs.molpharmaceut.1c00810] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Boron neutron capture therapy (BNCT) is a selective biological targeted nuclide technique for cancer therapy. It has the following attractive features: good targeting, high effectiveness, and causes slight damage to surrounding healthy tissue compared with other traditional methods. It has been considered as one of the promising methods for the treatment of various cancers. Measuring 10B concentrations is vital for BNCT. However, the existing technology and equipment cannot satisfy the real-time and accurate measurement requirements, and more efficient methods are in demand. The development of methods and imaging applied in BNCT to help measure boron concentration is described in this review.
Collapse
Affiliation(s)
- Qi Dai
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China.,Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, P.R. China
| | - QiYao Yang
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xiaoyan Bao
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jiejian Chen
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, P.R. China
| | - Min Han
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Qichun Wei
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
19
|
Preis E, Schulze J, Gutberlet B, Pinnapireddy SR, Jedelská J, Bakowsky U. The chorioallantoic membrane as a bio-barrier model for the evaluation of nanoscale drug delivery systems for tumour therapy. Adv Drug Deliv Rev 2021; 174:317-336. [PMID: 33905805 DOI: 10.1016/j.addr.2021.04.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/29/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
In 2010, the European Parliament and the European Union adopted a directive on the protection of animals used for scientific purposes. The directive aims to protect animals in scientific research, with the final goal of complete replacement of procedures on live animals for scientific and educational purposes as soon as it is scientifically viable. Furthermore, the directive announces the implementation of the 3Rs principle: "When choosing methods, the principles of replacement, reduction and refinement should be implemented through a strict hierarchy of the requirement to use alternative methods." The visibility, accessibility, and the rapid growth of the chorioallantoic membrane (CAM) offers a clear advantage for various manipulations and for the simulation of different Bio-Barriers according to the 3R principle. The extensive vascularisation on the CAM provides an excellent substrate for the cultivation of tumour cells or tumour xenografts which could be used for the therapeutic evaluation of nanoscale drug delivery systems. The tumour can be targeted either by topical application, intratumoural injection or i.v. injection. Different application sites and biological barriers can be examined within a single model.
Collapse
Affiliation(s)
- Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Jan Schulze
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Bernd Gutberlet
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Shashank Reddy Pinnapireddy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; CSL Behring Innovation GmbH, Emil-von-Behring-Str. 76, 35041 Marburg, Germany
| | - Jarmila Jedelská
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; Center for Tumor Biology and Immunology, Core Facility for Small Animal MRI, Hans-Meerwein Str. 3, 35043 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| |
Collapse
|
20
|
Raskolupova VI, Popova TV, Zakharova OD, Nikotina AE, Abramova TV, Silnikov VN. Human Serum Albumin Labelling with a New BODIPY Dye Having a Large Stokes Shift. Molecules 2021; 26:2679. [PMID: 34063643 PMCID: PMC8124464 DOI: 10.3390/molecules26092679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 12/02/2022] Open
Abstract
BODIPY dyes are photostable neutral derivatives of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene. These are widely used as chemosensors, laser materials, and molecular probes. At the same time, BODIPY dyes have small or moderate Stokes shifts like most other fluorophores. Large Stokes shifts are preferred for fluorophores because of higher sensitivity of such probes and sensors. The new boron containing BODIPY dye was designed and synthesized. We succeeded to perform an annulation of pyrrole ring with coumarin heterocyclic system and achieved a remarkable difference in absorption and emission maximum of obtained fluorophore up to 100 nm. This BODIPY dye was equipped with linker arm and was functionalized with a maleimide residue specifically reactive towards thiol groups of proteins. BODIPY residue equipped with a suitable targeting protein core can be used as a suitable imaging probe and agent for Boron Neutron Capture Therapy (BNCT). As the most abundant protein with a variety of physiological functions, human serum albumin (HSA) has been used extensively for the delivery and improvement of therapeutic molecules. Thiolactone chemistry provides a powerful tool to prepare albumin-based multimodal constructions. The released sulfhydryl groups of the homocysteine functional handle in thiolactone modified HSA were labeled with BODIPY dye to prepare a labeled albumin-BODIPY dye conjugate confirmed by MALDI-TOF-MS, UV-vis, and fluorescent emission spectra. Cytotoxicity of the resulting conjugate was investigated. This study is the basis for a novel BODIPY dye-albumin theranostic for BNCT. The results provide further impetus to develop derivatives of HSA for delivery of boron to cancer cells.
Collapse
Affiliation(s)
- Valeria I. Raskolupova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; (V.I.R.); (T.V.P.); (O.D.Z.); (A.E.N.); (V.N.S.)
- Faculty of Natural Sciences, Novosibirsk State University, Pirogova St., 2, 630090 Novosibirsk, Russia
| | - Tatyana V. Popova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; (V.I.R.); (T.V.P.); (O.D.Z.); (A.E.N.); (V.N.S.)
- Faculty of Natural Sciences, Novosibirsk State University, Pirogova St., 2, 630090 Novosibirsk, Russia
| | - Olga D. Zakharova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; (V.I.R.); (T.V.P.); (O.D.Z.); (A.E.N.); (V.N.S.)
| | - Anastasia E. Nikotina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; (V.I.R.); (T.V.P.); (O.D.Z.); (A.E.N.); (V.N.S.)
- Faculty of Natural Sciences, Novosibirsk State University, Pirogova St., 2, 630090 Novosibirsk, Russia
| | - Tatyana V. Abramova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; (V.I.R.); (T.V.P.); (O.D.Z.); (A.E.N.); (V.N.S.)
| | - Vladimir N. Silnikov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; (V.I.R.); (T.V.P.); (O.D.Z.); (A.E.N.); (V.N.S.)
| |
Collapse
|
21
|
Lescure R, Privat M, Pliquett J, Massot A, Baffroy O, Busser B, Bellaye PS, Collin B, Denat F, Bettaïeb A, Sancey L, Paul C, Goze C, Bodio E. Near-infrared emitting fluorescent homobimetallic gold(I) complexes displaying promising in vitro and in vivo therapeutic properties. Eur J Med Chem 2021; 220:113483. [PMID: 33915372 DOI: 10.1016/j.ejmech.2021.113483] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022]
Abstract
Three near-infrared (NIR-I) optical theranostic systems were synthesized, characterized and studied in vitro and in vivo. These original homo-bimetallic gold(I)-based aza-BODIPY complexes proved to be trackable through near-infrared optical imaging in cells and in mice. They display anti-proliferative properties in micromolar range against human and murine cancer cell lines (4T1, MDA-MB-231, CT26, and SW480). Moreover, the injection of the most promising theranostic agent in CT26 tumor-bearing BALB/c mice induced a significant anti-cancer activity.
Collapse
Affiliation(s)
- Robin Lescure
- ICMUB UMR6302, CNRS, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Malorie Privat
- ICMUB UMR6302, CNRS, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France; Laboratoire d'Immunologie et Immunothérapie des Cancers (LIIC, EA7269), EPHE, PSL Research, University, F-75000, Paris, France, Université de Bourgogne Franche Comté, F-21000, Dijon, France
| | - Jacques Pliquett
- ICMUB UMR6302, CNRS, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France; Laboratoire d'Immunologie et Immunothérapie des Cancers (LIIC, EA7269), EPHE, PSL Research, University, F-75000, Paris, France, Université de Bourgogne Franche Comté, F-21000, Dijon, France
| | - Aurélie Massot
- Laboratoire d'Immunologie et Immunothérapie des Cancers (LIIC, EA7269), EPHE, PSL Research, University, F-75000, Paris, France, Université de Bourgogne Franche Comté, F-21000, Dijon, France
| | - Océane Baffroy
- ICMUB UMR6302, CNRS, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Benoit Busser
- Institute for Advanced Biosciences, Centre de Recherche UGA / INSERM U1209 / CNRS UMR5309, F-38700, La Tronche, France; Grenoble Alpes University Hospital, F-38042, Grenoble, France
| | - Pierre-Simon Bellaye
- Centre Georges François Leclerc, Service de médecine nucléaire, plateforme d'imagerie et de radiothérapie préclinique, 1 rue Professeur Marion, BP77980, 21079, Dijon Cedex, France
| | - Bertrand Collin
- ICMUB UMR6302, CNRS, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France; Centre Georges François Leclerc, Service de médecine nucléaire, plateforme d'imagerie et de radiothérapie préclinique, 1 rue Professeur Marion, BP77980, 21079, Dijon Cedex, France
| | - Franck Denat
- ICMUB UMR6302, CNRS, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Ali Bettaïeb
- Laboratoire d'Immunologie et Immunothérapie des Cancers (LIIC, EA7269), EPHE, PSL Research, University, F-75000, Paris, France, Université de Bourgogne Franche Comté, F-21000, Dijon, France
| | - Lucie Sancey
- Institute for Advanced Biosciences, Centre de Recherche UGA / INSERM U1209 / CNRS UMR5309, F-38700, La Tronche, France
| | - Catherine Paul
- Laboratoire d'Immunologie et Immunothérapie des Cancers (LIIC, EA7269), EPHE, PSL Research, University, F-75000, Paris, France, Université de Bourgogne Franche Comté, F-21000, Dijon, France.
| | - Christine Goze
- ICMUB UMR6302, CNRS, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
| | - Ewen Bodio
- ICMUB UMR6302, CNRS, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
| |
Collapse
|
22
|
Theranostics in Boron Neutron Capture Therapy. Life (Basel) 2021; 11:life11040330. [PMID: 33920126 PMCID: PMC8070338 DOI: 10.3390/life11040330] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/15/2022] Open
Abstract
Boron neutron capture therapy (BNCT) has the potential to specifically destroy tumor cells without damaging the tissues infiltrated by the tumor. BNCT is a binary treatment method based on the combination of two agents that have no effect when applied individually: 10B and thermal neutrons. Exclusively, the combination of both produces an effect, whose extent depends on the amount of 10B in the tumor but also on the organs at risk. It is not yet possible to determine the 10B concentration in a specific tissue using non-invasive methods. At present, it is only possible to measure the 10B concentration in blood and to estimate the boron concentration in tissues based on the assumption that there is a fixed uptake of 10B from the blood into tissues. On this imprecise assumption, BNCT can hardly be developed further. A therapeutic approach, combining the boron carrier for therapeutic purposes with an imaging tool, might allow us to determine the 10B concentration in a specific tissue using a non-invasive method. This review provides an overview of the current clinical protocols and preclinical experiments and results on how innovative drug development for boron delivery systems can also incorporate concurrent imaging. The last section focuses on the importance of proteomics for further optimization of BNCT, a highly precise and personalized therapeutic approach.
Collapse
|
23
|
Šindelářová A, Pořízka P, Modlitbová P, Vrlíková L, Kiss K, Kaška M, Prochazka D, Vrábel J, Buchtová M, Kaiser J. Methodology for the Implementation of Internal Standard to Laser-Induced Breakdown Spectroscopy Analysis of Soft Tissues. SENSORS (BASEL, SWITZERLAND) 2021; 21:900. [PMID: 33572796 PMCID: PMC7866291 DOI: 10.3390/s21030900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
The improving performance of the laser-induced breakdown spectroscopy (LIBS) triggered its utilization in the challenging topic of soft tissue analysis. Alterations of elemental content within soft tissues are commonly assessed and provide further insights in biological research. However, the laser ablation of soft tissues is a complex issue and demands a priori optimization, which is not straightforward in respect to a typical LIBS experiment. Here, we focus on implementing an internal standard into the LIBS elemental analysis of soft tissue samples. We achieve this by extending routine methodology for optimization of soft tissues analysis with a standard spiking method. This step enables a robust optimization procedure of LIBS experimental settings. Considering the implementation of LIBS analysis to the histological routine, we avoid further alterations of the tissue structure. Therefore, we propose a unique methodology of sample preparation, analysis, and subsequent data treatment, which enables the comparison of signal response from heterogenous matrix for different LIBS parameters. Additionally, a brief step-by-step process of optimization to achieve the highest signal-to-noise ratio (SNR) is described. The quality of laser-tissue interaction is investigated on the basis of the zinc signal response, while selected experimental parameters (e.g., defocus, gate delay, laser energy, and ambient atmosphere) are systematically modified.
Collapse
Affiliation(s)
- Anna Šindelářová
- Central European Institute of Technology (CEITEC), Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic; (A.Š.); (P.M.); (D.P.); (J.V.); (J.K.)
| | - Pavel Pořízka
- Central European Institute of Technology (CEITEC), Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic; (A.Š.); (P.M.); (D.P.); (J.V.); (J.K.)
- Faculty of Mechanical Engineering (FME), Brno University of Technology, Technická 2896, 616 69 Brno, Czech Republic
| | - Pavlína Modlitbová
- Central European Institute of Technology (CEITEC), Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic; (A.Š.); (P.M.); (D.P.); (J.V.); (J.K.)
| | - Lucie Vrlíková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic; (L.V.); (M.B.)
| | - Kateřina Kiss
- Third Faculty of Medicine, Charles University, Ruská 2411, 100 00 Praha 10, Czech Republic;
- Faculty of Medicine in Hradec Kralove, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic;
| | - Milan Kaška
- Faculty of Medicine in Hradec Kralove, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic;
| | - David Prochazka
- Central European Institute of Technology (CEITEC), Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic; (A.Š.); (P.M.); (D.P.); (J.V.); (J.K.)
- Faculty of Mechanical Engineering (FME), Brno University of Technology, Technická 2896, 616 69 Brno, Czech Republic
| | - Jakub Vrábel
- Central European Institute of Technology (CEITEC), Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic; (A.Š.); (P.M.); (D.P.); (J.V.); (J.K.)
| | - Marcela Buchtová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic; (L.V.); (M.B.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology (CEITEC), Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic; (A.Š.); (P.M.); (D.P.); (J.V.); (J.K.)
- Faculty of Mechanical Engineering (FME), Brno University of Technology, Technická 2896, 616 69 Brno, Czech Republic
| |
Collapse
|
24
|
Shamova LI, Zatsikha YV, Nemykin VN. Synthesis pathways for the preparation of the BODIPY analogues: aza-BODIPYs, BOPHYs and some other pyrrole-based acyclic chromophores. Dalton Trans 2021; 50:1569-1593. [DOI: 10.1039/d0dt03964k] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This mini-review summarizes the synthesis strategies for the preparation and post-functionalization of aza-BODIPYs, BOPHYs, “half-Pcs”, biliazines, MB-DIPYs, semihemiporphyrazines, BOIMPYs, BOPPYs, BOPYPYs, BOAHYs, and BOAPYs.
Collapse
Affiliation(s)
| | | | - Victor N. Nemykin
- Department of Chemistry
- University of Manitoba
- Winnipeg
- Canada
- Department of Chemistry
| |
Collapse
|