1
|
Rushendran R, Singh S A, Begum RF, Chitra V, Ali N, Prajapati BG. Bioinformatics Exploration of the Therapeutic Potential of Lotus Seed Compounds in Multiple Sclerosis: A Network Analysis of c-Jun Pathway. Drug Dev Res 2025; 86:e70038. [PMID: 39756059 DOI: 10.1002/ddr.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 01/07/2025]
Abstract
The central nervous system is affected by multiple sclerosis (MS), a chronic autoimmune illness characterized by axonal destruction, demyelination, and inflammation. This article summarizes the state of the field, highlighting its complexity and significant influence on people's quality of life. The research employs a network pharmacological approach, integrating systems biology, bioinformatics, and pharmacology to identify biomarkers associated with MS. Utilizing Nelumbo Nucifera (Lotus) seeds, the study involves toxicity assessments, biomolecule screening, and target prediction. Advanced computational methodologies are employed, including molecular docking and dynamic simulations, to assess potential therapeutic interactions. Biomolecule screening identifies eight active compounds from Lotus seeds, including Anonaine and Liriodenine. Target prediction reveals 264 common targets with MS-related genes. Protein-protein interaction analysis establishes a complex network, identifying central targets like SRC and AKT1. Bioinformatics enrichment analysis uncovers potential therapeutic candidates and pathways. A Biomolecule-Target-Pathway network diagram visualizes interactions, with Anonaine and Liriodenine exhibiting strong binding affinities in molecular docking studies. Molecular dynamics simulations provide insights into dynamic interactions. In conclusion, through advanced computational techniques, it unveils molecular interactions, potential therapies, and pathways, bridging predictions with practical applications. Anonaine and Liriodenine show promise in curbing MS biomarkers.
Collapse
Affiliation(s)
- Rapuru Rushendran
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College of Pharmacy, Chennai, India
| | - Ankul Singh S
- Department of Pharmacology, Dr. M.G.R Educational and Research Institute, Faculty of Pharmacy, Chennai, India
| | - Rukaiah Fatma Begum
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Vellapandian Chitra
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College of Pharmacy, Chennai, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bhupendra G Prajapati
- Department of Pharmaceutics, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, India
- Department of Industrial Pharmacy, Faculty of Pharmacy, Sanam Chandra Palace Campus, Silpakorn University, Nakhon Pathom, Thailand
| |
Collapse
|
2
|
Otálora-Alcaraz A, Reilly T, Oró-Nolla M, Sun MC, Costelloe L, Kearney H, Patra PH, Downer EJ. The NLRP3 inflammasome: A central player in multiple sclerosis. Biochem Pharmacol 2024; 232:116667. [PMID: 39647604 DOI: 10.1016/j.bcp.2024.116667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/10/2024]
Abstract
Multiple sclerosis (MS) is a neurological autoimmune condition associated with many symptoms including spasticity, pain, limb numbness and weakness. It is characterised by inflammatory demyelination and axonal degeneration of the brain and spinal cord. A range of disease-modifying therapies (DMTs) are available to suppress inflammatory disease activity in MS, however, there is a pressing need for new therapeutic avenues as DMTs have a limited ability to suppress confirmed disability progression. A body of literature indicates that innate immune inflammation is linked to MS progression. The nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing protein 3 (NLRP3) inflammasome has a well-established function in innate immunity which is closely associated with the pathogenesis of neuroinflammatory conditions. Evidence suggests that the inflammasome may be a therapeutic target in disorders such as MS and at present, inhibitors of the NLRP3 inflammasome are in pre-clinical development. Therefore, this review systematically highlights the pathogenic role of inflammasomes in MS, presenting an overview of research evidence linking inflammasome-related polymorphisms to MS susceptibility, and gathering evidence investigating NLRP3 biomarkers in MS. The role of the NLRP3 inflammasome in murine models of MS is furthermore discussed. Finally, a significant component of this review focuses on evidence that NLRP3 signalling components are novel drug targets in MS. Overall this review defines the role of the inflammasome in MS pathogenesis and identifies inflammasome inhibitor targets that warrant full investigation in MS and related disorders.
Collapse
Affiliation(s)
- Almudena Otálora-Alcaraz
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Thomas Reilly
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Martí Oró-Nolla
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Melody Cui Sun
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Lisa Costelloe
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Hugh Kearney
- MS Unit, Department of Neurology, St. James's Hospital, Dublin, Ireland; Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - Pabitra H Patra
- Transpharmation Ltd., London Biosciences Innovation Centre, London, United Kingdom
| | - Eric J Downer
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
3
|
Tinkey RA, Smith BC, Habean ML, Williams JL. BATF2 is a regulator of interferon-γ signaling in astrocytes during neuroinflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602938. [PMID: 39071355 PMCID: PMC11275732 DOI: 10.1101/2024.07.10.602938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Astrocytic interferon (IFN)γ signaling is associated with a reduction in neuroinflammation. We have previously shown that the benefits of astrocytic IFNγ arise from a variety of mechanisms; however, downstream effectors responsible for regulating this protection are unknown. We address this by identifying a specific transcription factor that may play a key role in modulating the consequences of IFNγ signaling. RNA-sequencing of primary human astrocytes treated with IFNγ revealed basic leucine zipper ATF-like transcription factor ( BATF )2 as a highly expressed interferon-specific gene. Primarily studied in the periphery, BATF2 has been shown to exert both inflammatory and protective functions; however, its function in the central nervous system (CNS) is unknown. Here, we demonstrate that human spinal cord astrocytes upregulate BATF2 transcript and protein in an IFNγ-specific manner. Additionally, we found that BATF2 prevents overexpression of interferon regulatory factor (IRF)1 and IRF1 targets such as Caspase-1, which are known downstream pro-inflammatory mediators. We also show that Batf2 -/- mice exhibit exacerbated clinical disease severity in a murine model of CNS autoimmunity, characterized by an increase in both CNS immune cell infiltration and demyelination. Batf2 -/- mice also exhibit increased astrocyte-specific expression of IRF1 and Caspase-1, suggesting an amplified interferon response in vivo . Further, we demonstrate that BATF2 is expressed primarily in astrocytes in MS lesions and that this expression is co-localized with IRF1. Collectively, our results further support a protective role for IFNγ and implicate BATF2 as a key suppressor of overactive immune signaling in astrocytes during neuroinflammation.
Collapse
|
4
|
Yan H, He L, Lv D, Yang J, Yuan Z. The Role of the Dysregulated JNK Signaling Pathway in the Pathogenesis of Human Diseases and Its Potential Therapeutic Strategies: A Comprehensive Review. Biomolecules 2024; 14:243. [PMID: 38397480 PMCID: PMC10887252 DOI: 10.3390/biom14020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
JNK is named after c-Jun N-terminal kinase, as it is responsible for phosphorylating c-Jun. As a member of the mitogen-activated protein kinase (MAPK) family, JNK is also known as stress-activated kinase (SAPK) because it can be activated by extracellular stresses including growth factor, UV irradiation, and virus infection. Functionally, JNK regulates various cell behaviors such as cell differentiation, proliferation, survival, and metabolic reprogramming. Dysregulated JNK signaling contributes to several types of human diseases. Although the role of the JNK pathway in a single disease has been summarized in several previous publications, a comprehensive review of its role in multiple kinds of human diseases is missing. In this review, we begin by introducing the landmark discoveries, structures, tissue expression, and activation mechanisms of the JNK pathway. Next, we come to the focus of this work: a comprehensive summary of the role of the deregulated JNK pathway in multiple kinds of diseases. Beyond that, we also discuss the current strategies for targeting the JNK pathway for therapeutic intervention and summarize the application of JNK inhibitors as well as several challenges now faced. We expect that this review can provide a more comprehensive insight into the critical role of the JNK pathway in the pathogenesis of human diseases and hope that it also provides important clues for ameliorating disease conditions.
Collapse
Affiliation(s)
- Huaying Yan
- Department of Ultrasound, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (H.Y.); (L.H.)
| | - Lanfang He
- Department of Ultrasound, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (H.Y.); (L.H.)
| | - De Lv
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jun Yang
- Cancer Center and State Key Laboratory of Biotherapy, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Zhu Yuan
- Cancer Center and State Key Laboratory of Biotherapy, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
5
|
Remlinger J, Bagnoud M, Meli I, Massy M, Linington C, Chan A, Bennett JL, Hoepner R, Enzmann V, Salmen A. Modelling MOG antibody-associated disorder and neuromyelitis optica spectrum disorder in animal models: Spinal cord manifestations. Mult Scler Relat Disord 2023; 78:104892. [PMID: 37499337 DOI: 10.1016/j.msard.2023.104892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/18/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023]
Abstract
Antibodies to myelin oligodendrocyte glycoprotein (MOG-IgG) or aquaporin 4 (AQP4-IgG) are associated with CNS inflammatory disorders. We directly compared MOG35-55-induced experimental autoimmune encephalomyelitis exacerbated by MOG- and AQP4-IgG (versus isotype IgG, Iso-IgG). Disease severity was highest after MOG-IgG application. MOG- and AQP4-IgG administration increased disease incidence compared to Iso-IgG. Inflammatory lesions appeared earlier and with distinct localizations after AQP4-IgG administration. AQP4 intensity was more reduced after AQP4- than MOG-IgG administration at acute disease phase. The described models are suitable for comparative analyses of pathological features associated with MOG- and AQP4-IgG and the investigation of therapeutic interventions.
Collapse
Affiliation(s)
- Jana Remlinger
- Department of Neurology, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Bern, 3010, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, 3010, Switzerland
| | - Maud Bagnoud
- Department of Neurology, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Bern, 3010, Switzerland
| | - Ivo Meli
- Department of Neurology, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Bern, 3010, Switzerland
| | - Marine Massy
- Department of Neurology, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Bern, 3010, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, 3010, Switzerland
| | - Christopher Linington
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Andrew Chan
- Department of Neurology, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Bern, 3010, Switzerland
| | - Jeffrey L Bennett
- Departments of Neurology and Ophthalmology, Programs in Neuroscience and Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States of America
| | - Robert Hoepner
- Department of Neurology, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Bern, 3010, Switzerland
| | - Volker Enzmann
- Department of Ophthalmology, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Bern, 3010, Switzerland
| | - Anke Salmen
- Department of Neurology, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Bern, 3010, Switzerland.
| |
Collapse
|
6
|
Bagnoud M, Remlinger J, Massy M, Lodygin D, Salmen A, Chan A, Lühder F, Hoepner R. In Vivo and In Vitro Evidence for an Interplay between the Glucocorticoid Receptor and the Vitamin D Receptor Signaling. Cells 2023; 12:2291. [PMID: 37759513 PMCID: PMC10527904 DOI: 10.3390/cells12182291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Our previous work demonstrated that vitamin D (VitD) reduces experimental autoimmune encephalomyelitis (EAE) disease severity in wild-type (WT) but not in T cell-specific glucocorticoid (GC) receptor (GR)-deficient (GRlck) mice. This study aimed to investigate the interplay between the GR- and VitD receptor (VDR) signaling. In vivo, we confirmed the involvement of the GR in the VitD-induced effects in EAE using WT and GRlck mice. Furthermore, we observed that VitD-enhanced T cell apoptosis and T regulatory cell differentiation are diminished in vitro in CD3+ T cells of GRlck but not WT mice. Mechanistically, VitD does not appear to signal directly via the GR, as it does not bind to the GR, does not induce its nuclear translocation, and does not modulate the expression of two GR-induced genes. However, we observed that VitD enhances VDR protein expression in CD3+ T cells from WT but not GRlck mice in vitro, that the GR and the VDR spatially co-localize after VitD treatment, and that VitD does not modulate the expression of two VDR-induced genes in the absence of the GR. Our data suggest that a functional GR, specifically in T cells, is required for the VDR to signal appropriately to mediate the therapeutic effects of VitD.
Collapse
Affiliation(s)
- Maud Bagnoud
- Department of Neurology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (J.R.); (M.M.); or (A.S.); (A.C.); (R.H.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Jana Remlinger
- Department of Neurology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (J.R.); (M.M.); or (A.S.); (A.C.); (R.H.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Marine Massy
- Department of Neurology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (J.R.); (M.M.); or (A.S.); (A.C.); (R.H.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Dmitri Lodygin
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, 37075 Göttingen, Germany; (D.L.); (F.L.)
| | - Anke Salmen
- Department of Neurology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (J.R.); (M.M.); or (A.S.); (A.C.); (R.H.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Andrew Chan
- Department of Neurology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (J.R.); (M.M.); or (A.S.); (A.C.); (R.H.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Fred Lühder
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, 37075 Göttingen, Germany; (D.L.); (F.L.)
| | - Robert Hoepner
- Department of Neurology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (J.R.); (M.M.); or (A.S.); (A.C.); (R.H.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
7
|
Remlinger J, Bagnoud M, Meli I, Massy M, Hoepner R, Linington C, Chan A, Bennett JL, Enzmann V, Salmen A. Modeling MOG Antibody-Associated Disorder and Neuromyelitis Optica Spectrum Disorder in Animal Models: Visual System Manifestations. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200141. [PMID: 37429715 PMCID: PMC10691219 DOI: 10.1212/nxi.0000000000200141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/15/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Mechanisms of visual impairment in aquaporin 4 antibody (AQP4-IgG) seropositive neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody (MOG-IgG)-associated disorder (MOGAD) are incompletely understood. The respective impact of optic nerve demyelination and primary and secondary retinal neurodegeneration are yet to be investigated in animal models. METHODS Active MOG35-55 experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6Jrj mice, and monoclonal MOG-IgG (8-18C5, murine), recombinant AQP4-IgG (rAb-53, human), or isotype-matched control IgG (Iso-IgG, human) was administered 10 days postimmunization. Mobility impairment was scored daily. Visual acuity by optomotor reflex and ganglion cell complex thickness (GCC, 3 innermost retinal layers) by optical coherence tomography (OCT) were longitudinally assessed. Histopathology of optic nerve and retina was investigated during presymptomatic, acute, and chronic disease phases for immune cells, demyelination, complement deposition, natural killer (NK) cell, AQP4, and astrocyte involvement, retinal ganglion cells (RGCs), and Müller cell activation. Groups were compared by nonparametric tests with a p value <0.05 indicating statistical significance. RESULTS Visual acuity decreased from baseline to chronic phase in MOG-IgG (mean ± standard error of the mean: 0.54 ± 0.01 to 0.46 ± 0.02 cycles/degree, p < 0.05) and AQP4-IgG EAE (0.54 ± 0.01 to 0.43 ± 0.02, cycles/degree, p < 0.05). Immune cell infiltration of optic nerves started in presymptomatic AQP4-IgG, but not in MOG-IgG EAE (5.85 ± 2.26 vs 0.13 ± 0.10 macrophages/region of interest [ROI] and 1.88 ± 0.63 vs 0.15 ± 0.06 T cells/ROI, both p < 0.05). Few NK cells, no complement deposition, and stable glial fibrillary acid protein and AQP4 fluorescence intensity characterized all EAE optic nerves. Lower GCC thickness (Spearman correlation coefficient r = -0.44, p < 0.05) and RGC counts (r = -0.47, p < 0.05) correlated with higher mobility impairment. RGCs decreased from presymptomatic to chronic disease phase in MOG-IgG (1,705 ± 51 vs 1,412 ± 45, p < 0.05) and AQP4-IgG EAE (1,758 ± 14 vs 1,526 ± 48, p < 0.01). Müller cell activation was not observed in either model. DISCUSSION In a multimodal longitudinal characterization of visual outcome in animal models of MOGAD and NMOSD, differential retinal injury and optic nerve involvement were not conclusively clarified. Yet optic nerve inflammation was earlier in AQP4-IgG-associated pathophysiology. Retinal atrophy determined by GCC thickness (OCT) and RGC counts correlating with mobility impairment in the chronic phase of MOG-IgG and AQP4-IgG EAE may serve as a generalizable marker of neurodegeneration.
Collapse
Affiliation(s)
- Jana Remlinger
- From the Department of Neurology (J.R., M.B., I.M., M.M., R.H., A.C., A.S.), Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (J.R., M.M.), University of Bern, Switzerland; Institute of Infection (C.L.), Immunity and Inflammation, University of Glasgow, UK; Departments of Neurology and Ophthalmology (J.L.B.), Programs in Neuroscience and Immunology, University of Colorado Anschutz Medical Campus, Aurora; and Department of Ophthalmology (V.E.), Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Switzerland
| | - Maud Bagnoud
- From the Department of Neurology (J.R., M.B., I.M., M.M., R.H., A.C., A.S.), Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (J.R., M.M.), University of Bern, Switzerland; Institute of Infection (C.L.), Immunity and Inflammation, University of Glasgow, UK; Departments of Neurology and Ophthalmology (J.L.B.), Programs in Neuroscience and Immunology, University of Colorado Anschutz Medical Campus, Aurora; and Department of Ophthalmology (V.E.), Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Switzerland
| | - Ivo Meli
- From the Department of Neurology (J.R., M.B., I.M., M.M., R.H., A.C., A.S.), Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (J.R., M.M.), University of Bern, Switzerland; Institute of Infection (C.L.), Immunity and Inflammation, University of Glasgow, UK; Departments of Neurology and Ophthalmology (J.L.B.), Programs in Neuroscience and Immunology, University of Colorado Anschutz Medical Campus, Aurora; and Department of Ophthalmology (V.E.), Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Switzerland
| | - Marine Massy
- From the Department of Neurology (J.R., M.B., I.M., M.M., R.H., A.C., A.S.), Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (J.R., M.M.), University of Bern, Switzerland; Institute of Infection (C.L.), Immunity and Inflammation, University of Glasgow, UK; Departments of Neurology and Ophthalmology (J.L.B.), Programs in Neuroscience and Immunology, University of Colorado Anschutz Medical Campus, Aurora; and Department of Ophthalmology (V.E.), Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Switzerland
| | - Robert Hoepner
- From the Department of Neurology (J.R., M.B., I.M., M.M., R.H., A.C., A.S.), Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (J.R., M.M.), University of Bern, Switzerland; Institute of Infection (C.L.), Immunity and Inflammation, University of Glasgow, UK; Departments of Neurology and Ophthalmology (J.L.B.), Programs in Neuroscience and Immunology, University of Colorado Anschutz Medical Campus, Aurora; and Department of Ophthalmology (V.E.), Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Switzerland
| | - Christopher Linington
- From the Department of Neurology (J.R., M.B., I.M., M.M., R.H., A.C., A.S.), Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (J.R., M.M.), University of Bern, Switzerland; Institute of Infection (C.L.), Immunity and Inflammation, University of Glasgow, UK; Departments of Neurology and Ophthalmology (J.L.B.), Programs in Neuroscience and Immunology, University of Colorado Anschutz Medical Campus, Aurora; and Department of Ophthalmology (V.E.), Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Switzerland
| | - Andrew Chan
- From the Department of Neurology (J.R., M.B., I.M., M.M., R.H., A.C., A.S.), Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (J.R., M.M.), University of Bern, Switzerland; Institute of Infection (C.L.), Immunity and Inflammation, University of Glasgow, UK; Departments of Neurology and Ophthalmology (J.L.B.), Programs in Neuroscience and Immunology, University of Colorado Anschutz Medical Campus, Aurora; and Department of Ophthalmology (V.E.), Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Switzerland
| | - Jeffrey L Bennett
- From the Department of Neurology (J.R., M.B., I.M., M.M., R.H., A.C., A.S.), Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (J.R., M.M.), University of Bern, Switzerland; Institute of Infection (C.L.), Immunity and Inflammation, University of Glasgow, UK; Departments of Neurology and Ophthalmology (J.L.B.), Programs in Neuroscience and Immunology, University of Colorado Anschutz Medical Campus, Aurora; and Department of Ophthalmology (V.E.), Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Switzerland
| | - Volker Enzmann
- From the Department of Neurology (J.R., M.B., I.M., M.M., R.H., A.C., A.S.), Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (J.R., M.M.), University of Bern, Switzerland; Institute of Infection (C.L.), Immunity and Inflammation, University of Glasgow, UK; Departments of Neurology and Ophthalmology (J.L.B.), Programs in Neuroscience and Immunology, University of Colorado Anschutz Medical Campus, Aurora; and Department of Ophthalmology (V.E.), Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Switzerland
| | - Anke Salmen
- From the Department of Neurology (J.R., M.B., I.M., M.M., R.H., A.C., A.S.), Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (J.R., M.M.), University of Bern, Switzerland; Institute of Infection (C.L.), Immunity and Inflammation, University of Glasgow, UK; Departments of Neurology and Ophthalmology (J.L.B.), Programs in Neuroscience and Immunology, University of Colorado Anschutz Medical Campus, Aurora; and Department of Ophthalmology (V.E.), Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Switzerland.
| |
Collapse
|
8
|
Zierfuss B, Buda A, Villoria-González A, Logist M, Fabjan J, Parzer P, Battin C, Vandersteene S, Dijkstra IME, Waidhofer-Söllner P, Grabmeier-Pfistershammer K, Steinberger P, Kemp S, Forss-Petter S, Berger J, Weinhofer I. Saturated very long-chain fatty acids regulate macrophage plasticity and invasiveness. J Neuroinflammation 2022; 19:305. [PMID: 36528616 PMCID: PMC9759912 DOI: 10.1186/s12974-022-02664-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022] Open
Abstract
Saturated very long-chain fatty acids (VLCFA, ≥ C22), enriched in brain myelin and innate immune cells, accumulate in X-linked adrenoleukodystrophy (X-ALD) due to inherited dysfunction of the peroxisomal VLCFA transporter ABCD1. In its severest form, X-ALD causes cerebral myelin destruction with infiltration of pro-inflammatory skewed monocytes/macrophages. How VLCFA levels relate to macrophage activation is unclear. Here, whole transcriptome sequencing of X-ALD macrophages indicated that VLCFAs prime human macrophage membranes for inflammation and increased expression of factors involved in chemotaxis and invasion. When added externally to mimic lipid release in demyelinating X-ALD lesions, VLCFAs did not activate toll-like receptors in primary macrophages. In contrast, VLCFAs provoked pro-inflammatory responses through scavenger receptor CD36-mediated uptake, cumulating in JNK signalling and expression of matrix-degrading enzymes and chemokine release. Following pro-inflammatory LPS activation, VLCFA levels increased also in healthy macrophages. With the onset of the resolution, VLCFAs were rapidly cleared in control macrophages by increased peroxisomal VLCFA degradation through liver-X-receptor mediated upregulation of ABCD1. ABCD1 deficiency impaired VLCFA homeostasis and prolonged pro-inflammatory gene expression upon LPS treatment. Our study uncovers a pivotal role for ABCD1, a protein linked to neuroinflammation, and associated peroxisomal VLCFA degradation in regulating macrophage plasticity.
Collapse
Affiliation(s)
- Bettina Zierfuss
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
- Department of Neuroscience, Centre de Recherche du CHUM, Université de Montréal, Montréal, H2X 0A9, Canada
| | - Agnieszka Buda
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Andrea Villoria-González
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Maxime Logist
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
- Department of Chronic Diseases and Metabolism, Translational Research in GastroIntestinal Disorders, KU Leuven, 3000, Leuven, Belgium
| | - Jure Fabjan
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Patricia Parzer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Claire Battin
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Streggi Vandersteene
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Inge M E Dijkstra
- Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Petra Waidhofer-Söllner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Katharina Grabmeier-Pfistershammer
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Stephan Kemp
- Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Isabelle Weinhofer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria.
| |
Collapse
|
9
|
Kumar N, Singh A, Gulati HK, Bhagat K, Kaur K, Kaur J, Dudhal S, Duggal A, Gulati P, Singh H, Singh JV, Bedi PMS. Phytoconstituents from ten natural herbs as potent inhibitors of main protease enzyme of SARS-COV-2: In silico study. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021. [PMID: 35403086 DOI: 10.1016/j.phyplu.2021.100139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Lack of treatment of novel Coronavirus disease led to the search of specific antivirals that are capable to inhibit the replication of the virus. The plant kingdom has demonstrated to be an important source of new molecules with antiviral potential. PURPOSE The present study aims to utilize various computational tools to identify the most eligible drug candidate that have capabilities to halt the replication of SARS-COV-2 virus by inhibiting Main protease (Mpro) enzyme. METHODS We have selected plants whose extracts have inhibitory potential against previously discovered coronaviruses. Their phytoconstituents were surveyed and a library of 100 molecules was prepared. Then, computational tools such as molecular docking, ADMET and molecular dynamic simulations were utilized to screen the compounds and evaluate them against Mpro enzyme. RESULTS All the phytoconstituents showed good binding affinities towards Mpro enzyme. Among them laurolitsine possesses the highest binding affinity i.e. -294.1533 kcal/mol. On ADMET analysis of best three ligands were simulated for 1.2 ns, then the stable ligand among them was further simulated for 20 ns. Results revealed that no conformational changes were observed in the laurolitsine w.r.t. protein residues and low RMSD value suggested that the Laurolitsine-protein complex was stable for 20 ns. CONCLUSION Laurolitsine, an active constituent of roots of Lindera aggregata, was found to be having good ADMET profile and have capabilities to halt the activity of the enzyme. Therefore, this makes laurolitsine a good drug candidate for the treatment of COVID-19.
Collapse
Key Words
- ACE-2, Angiotensin converting enzyme- 2
- ADMET
- ADMET, absorption, Distribution, metabolism, excretion and toxicity
- Ala, Alanine
- Approx., approximately
- Arg, arginine
- Asn, Asparagine
- Asp, Aspartic acid
- CADD, Computer Aided Drug Design
- CHARMM, Chemistry at Harvard Macromolecular Mechanics
- COV, coronavirus
- COVID, Novel corona-virus disease
- Covid-19
- Cys, cysteine
- DSBDS, Dassault's Systems Biovia's Discovery studio
- Gln, Glutamine
- Glu, glutamate
- Gly, Glycine
- His, histidine
- Ile, isoleucine
- K, Kelvin
- Kcal/mol, kilo calories per mol
- Leu, Leucine
- Leu, leucine
- Lys, Lysine
- MD, Molecular Dynamics
- Met, Methionine
- MoISA, Molecular Surface Area
- Molecular dynamic simulations
- Mpro protein
- Mpro, Main protease enzyme
- N protein, nucleocapsid protein
- NI, N-(4-methylpyridin-3-yl) acetamide inhibitor
- NPT, amount of substance (N), pressure (P) and temperature (T)
- NVT, amount of substance (N), volume (V) and temperature (T)
- Natural Antiviral herbs
- PDB, protein data bank
- PPB, plasma protein binding
- PSA, Polar Surface Area
- Phi, Phenylalanine
- Pro, Proline
- RCSB, Research Collaboratory for Structural Bioinformatics
- RMS, Root Mean Square
- RMSD, Root Mean Square Deviation
- RMSF, root mean square fluctuations
- RNA, Ribonucleic acid
- SAR-COV-2, severe acute respiratory syndrome coronavirus 2
- SDF, structure data format
- Ser, serine
- T, Temperature
- Thr, Threonine
- Trp, Tryptophan
- Tyr, Tyrosine
- Val, Valine
- kDa, kilo Dalton
- nCOV-19, Novel Coronavirus 2019
- ns/nsec, nano seconds
- ps, pentoseconds
- rGyr, Radius of gyration
- w.r.t., with respect to
- Å, angstrom
- α, alpha
- β, beta
Collapse
Affiliation(s)
- Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
- Drug and Pollution testing Lab, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Harmandeep Kaur Gulati
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Kavita Bhagat
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Komalpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Jaspreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Shilpa Dudhal
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Amit Duggal
- Drugs Control Wing, Sector 16, Chandigarh, India, 160015
| | - Puja Gulati
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab, India, 147301
| | - Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Jatinder Vir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | | |
Collapse
|
10
|
Understanding Abnormal c-JNK/p38MAPK Signaling Overactivation Involved in the Progression of Multiple Sclerosis: Possible Therapeutic Targets and Impact on Neurodegenerative Diseases. Neurotox Res 2021; 39:1630-1650. [PMID: 34432262 DOI: 10.1007/s12640-021-00401-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 12/16/2022]
Abstract
Demyelination, immune dysregulation, and neuroinflammation are the most common triggers of motor neuron disorders such as multiple sclerosis (MS). MS is a chronic demyelinating neurodegenerative disease of the central nervous system caused by abnormal immune activation, which causes myelin sheath damage. Cell signal transduction pathways are required for a variety of physiological and pathological processes in the brain. When these signaling systems become overactive, they can lead to disease progression. In various physiological conditions, abnormal mitogen-activated protein kinase (MAPK) activation is associated with several physiological dysfunctions that cause neurodegeneration. Previous research indicates that c-JNK and p38MAPK signaling play critical roles in neuronal growth and differentiation. c-JNK/p38MAPK is a member of the MAPK family, which regulates metabolic pathways, cell proliferation, differentiation, and apoptosis that control certain neurological activities. During brain injuries, c-JNK/p38MAPK also affects neuronal elastic properties, nerve growth, and cognitive processing. This review systematically linked abnormal c-JNK/p38MAPK signaling activation to multiple neuropathological pathways in MS and related neurological dysfunctions. MS progression is linked to genetic defects, oligodendrocyte destruction, glial overactivation, and immune dysregulation. We concluded that inhibiting both the c-JNK/p38MAPK signaling pathways can promote neuroprotection and neurotrophic effects against the clinical-pathological presentation of MS and influence other neurological disorders. As a result, the potential benefits of c-JNK/p38MAPK downregulation for the development of disease-modifying treatment interventions in the future could include MS prevention and related neurocomplications.
Collapse
|
11
|
Guo YX, Zhang Y, Gao YH, Deng SY, Wang LM, Li CQ, Li X. Role of Plant-Derived Natural Compounds in Experimental Autoimmune Encephalomyelitis: A Review of the Treatment Potential and Development Strategy. Front Pharmacol 2021; 12:639651. [PMID: 34262447 PMCID: PMC8273381 DOI: 10.3389/fphar.2021.639651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system that is mainly mediated by pathological T-cells. Experimental autoimmune encephalomyelitis (EAE) is a well-known animal model of MS that is used to study the underlying mechanism and offers a theoretical basis for developing a novel therapy for MS. Good therapeutic effects have been observed after the administration of natural compounds and their derivatives as treatments for EAE. However, there has been a severe lag in the research and development of drug mechanisms related to MS. This review examines natural products that have the potential to effectively treat MS. The relevant data were consulted in order to elucidate the regulated mechanisms acting upon EAE by the flavonoids, glycosides, and triterpenoids derived from natural products. In addition, novel technologies such as network pharmacology, molecular docking, and high-throughput screening have been gradually applied in natural product development. The information provided herein can help improve targeting and timeliness for determining the specific mechanisms involved in natural medicine treatment and lay a foundation for further study.
Collapse
Affiliation(s)
- Yu-Xin Guo
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yu-Han Gao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Si-Ying Deng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Li-Mei Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cui-Qin Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
12
|
Therapeutic potential of the target on NLRP3 inflammasome in multiple sclerosis. Pharmacol Ther 2021; 227:107880. [PMID: 33901504 DOI: 10.1016/j.pharmthera.2021.107880] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
Inflammasomes are multi-protein macromolecular complexes that typically comprise of three units, a sensor, an adaptor and procaspase-1. The assembly of each inflammasome is dictated by a unique pattern recognition receptors (PRRs) in response to pathogen-associated molecular patterns (PAMPs) or other endogenous danger-associated molecular patterns (DAMPs) in the cytosol of the host cells, and promote the maturation and secretion of IL-1β and IL-18 during the inflammatory process. Specific inflammasomes are involved in the host defense response against different pathogens, and the latter have evolved multiple corresponding mechanisms to inhibit inflammasome activation. The nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome is the best understood in terms of molecular mechanisms, and is a promising therapeutic target in immune-related disorders. Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory demyelination of white matter in the central nervous system, increased levels of IL-1β in the cerebrospinal fluid (CSF) of relapsed patients, and deposition of caspase-1 in the spinal cord. The direct involvement of the NLRP3 inflammasome in the occurrence and development of MS was ascertained in the experimental autoimmune encephalomyelitis (EAE) animal model. In this review, we have focused on the mechanisms underlying activation of the NLRP3 inflammasome in MS or EAE, as well as inhibitors that specifically target the complex and alleviate disease progression, in order to unearth new therapeutic strategies against MS.
Collapse
|