1
|
Yang S, Zhang M, Loredo A, Soares D, Wu Y, Xiao H. Sulfur-tetrazine as highly efficient visible-light activatable photo-trigger for designing photoactivatable fluorescence biomolecules. J Mater Chem B 2024; 12:10839-10849. [PMID: 39420843 PMCID: PMC11527557 DOI: 10.1039/d4tb01817f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Light-activated fluorescence represents a potent tool for investigating subcellular structures and dynamics, offering enhanced control over the temporal and spatial aspects of the fluorescence signal. While alkyl-substituted tetrazine has previously been reported as a photo-trigger for various fluorophore scaffolds, its limited photochemical efficiency and high activation energy have constrained its widespread application at the biomolecular level. In this study, we demonstrate that a single sulfur atom substitution of tetrazine greatly enhances the photochemical properties of tetrazine conjugates and significantly improves their photocleavage efficiency. Notably, the resulting sulfur-tetrazine can be activated using a lower-energy light source, thus transforming it into a valuable visible-light photo-trigger. To introduce this photo-trigger into biological systems, we have developed a series of visible-light activatable small molecular dyes, along with a photoactivatable noncanonical amino acid containing sulfur-tetrazine. Using the Genetic Code Expansion technology, this novel amino acid is genetically incorporated into fluorescent protein molecules, serving as a phototrigger to create an innovative photoactivatable protein. These advancements in tetrazine-scaffold photo-trigger design open up new avenues for generating photoactivatable biomolecules, promising to greatly facilitate the exploration of biological functions and structures.
Collapse
Affiliation(s)
- Shudan Yang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, USA.
| | - Mengxi Zhang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, USA.
| | - Axel Loredo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, USA.
| | - David Soares
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, USA.
| | - Yulun Wu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, USA.
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, USA.
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas, 77005, USA
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas, 77005, USA
- SynthX Center, Rice University, 6100 Main Street, Houston, Texas, 77005, USA
| |
Collapse
|
2
|
Lv T, Wang C, Zhou J, Feng X, Zhang L, Fan Z. Mechanism and role of nuclear laminin B1 in cell senescence and malignant tumors. Cell Death Discov 2024; 10:269. [PMID: 38824174 PMCID: PMC11144256 DOI: 10.1038/s41420-024-02045-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024] Open
Abstract
Nuclear lamin B1 (LMNB1) is a member of the nuclear lamin protein family. LMNB1 can maintain and ensure the stability of nuclear structure and influence the process of cell senescence by regulating chromatin distribution, DNA replication and transcription, gene expression, cell cycle, etc. In recent years, several studies have shown that the abnormal expression of LMNB1, a classical biomarker of cell senescence, is highly correlated with the progression of various malignant tumors; LMNB1 is therefore considered a new potential tumor marker and therapeutic target. However, the mechanism of action of LMNB1 is influenced by many factors, which are difficult to clarify at present. This article focuses on the recent progress in understanding the role of LMNB1 in cell senescence and malignant tumors and offers insights that could contribute to elucidating the mechanism of action of LMNB1 to provide a new direction for further research.
Collapse
Affiliation(s)
- Tingcong Lv
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Cong Wang
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Jialin Zhou
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiao Feng
- School of Chemistry, Dalian University of Technology, Dalian, China.
| | - Lijun Zhang
- Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, the Third People's Hospital of Dalian, Faculty of Medicine, Dalian University of Technology, Dalian, China.
| | - Zhe Fan
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China.
- Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, the Third People's Hospital of Dalian, Faculty of Medicine, Dalian University of Technology, Dalian, China.
| |
Collapse
|
3
|
Shu J, Deng H, Zhang Y, Wu F, He J. Cancer cell response to extrinsic and intrinsic mechanical cue: opportunities for tumor apoptosis strategies. Regen Biomater 2024; 11:rbae016. [PMID: 38476678 PMCID: PMC10932484 DOI: 10.1093/rb/rbae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Increasing studies have revealed the importance of mechanical cues in tumor progression, invasiveness and drug resistance. During malignant transformation, changes manifest in either the mechanical properties of the tissue or the cellular ability to sense and respond to mechanical signals. The major focus of the review is the subtle correlation between mechanical cues and apoptosis in tumor cells from a mechanobiology perspective. To begin, we focus on the intracellular force, examining the mechanical properties of the cell interior, and outlining the role that the cytoskeleton and intracellular organelle-mediated intracellular forces play in tumor cell apoptosis. This article also elucidates the mechanisms by which extracellular forces guide tumor cell mechanosensing, ultimately triggering the activation of the mechanotransduction pathway and impacting tumor cell apoptosis. Finally, a comprehensive examination of the present status of the design and development of anti-cancer materials targeting mechanotransduction is presented, emphasizing the underlying design principles. Furthermore, the article underscores the need to address several unresolved inquiries to enhance our comprehension of cancer therapeutics that target mechanotransduction.
Collapse
Affiliation(s)
- Jun Shu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Huan Deng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Yu Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Fang Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Jing He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
4
|
Kim Y. The impact of altered lamin B1 levels on nuclear lamina structure and function in aging and human diseases. Curr Opin Cell Biol 2023; 85:102257. [PMID: 37806292 DOI: 10.1016/j.ceb.2023.102257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023]
Abstract
The role of lamin B1 in human health and aging has attracted increasing attention as mounting evidence reveals its significance in diverse cellular processes. Both upregulation and downregulation of lamin B1 have been implicated in age-associated organ dysfunctions and various human diseases, including central nervous system disorders. Additionally, lamin B1 levels undergo alterations in cancer cells, and a tumor-specific association exists between lamin B1 abundance and cancer aggressiveness. Investigating the connectivity between lamin B1 abundance and human health is of utmost importance for further research. This review presents recent advancements in understanding lamin B1's role in nuclear lamina function and its implications for human health.
Collapse
Affiliation(s)
- Youngjo Kim
- Department of Integrated Biomedical Science and Soonchunhyang Institute of Medi-Bioscience, Soonchunhyang University, Cheon-an 31151, Republic of Korea.
| |
Collapse
|
5
|
严 然, 陈 祥, 张 译, 王 梦, 李 顺, 刘 贻. [Advances in cell nuclear mechanobiology and its regulation mechanisms]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:617-624. [PMID: 37666750 PMCID: PMC10477395 DOI: 10.7507/1001-5515.202304036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/09/2023] [Indexed: 09/06/2023]
Abstract
As an important intracellular genetic and regulatory center, the nucleus is not only a terminal effector of intracellular biochemical signals, but also has a significant impact on cell function and phenotype through direct or indirect regulation of nuclear mechanistic cues after the cell senses and responds to mechanical stimuli. The nucleus relies on chromatin-nuclear membrane-cytoskeleton infrastructure to couple signal transduction, and responds to these mechanical stimuli in the intracellular and extracellular physical microenvironments. Changes in the morphological structure of the nucleus are the most intuitive manifestation of this mechanical response cascades and are the basis for the direct response of the nucleus to mechanical stimuli. Based on such relationships of the nucleus with cell behavior and phenotype, abnormal nuclear morphological changes are widely used in clinical practice as disease diagnostic tools. This review article highlights the latest advances in how nuclear morphology responds and adapts to mechanical stimuli. Additionally, this article will shed light on the factors that mechanically regulate nuclear morphology as well as the tumor physio-pathological processes involved in nuclear morphology and the underlying mechanobiological mechanisms. It provides new insights into the mechanisms that nuclear mechanics regulates disease development and its use as a potential target for diagnosis and treatment.
Collapse
Affiliation(s)
- 然 严
- 电子科技大学 生命科学与技术学院(成都 610054)School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- 成都中医药大学附属医院(成都 610072)Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| | - 祥燕 陈
- 电子科技大学 生命科学与技术学院(成都 610054)School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - 译兮 张
- 电子科技大学 生命科学与技术学院(成都 610054)School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - 梦 王
- 电子科技大学 生命科学与技术学院(成都 610054)School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - 顺 李
- 电子科技大学 生命科学与技术学院(成都 610054)School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - 贻尧 刘
- 电子科技大学 生命科学与技术学院(成都 610054)School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- 成都中医药大学附属医院(成都 610072)Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| |
Collapse
|
6
|
Ueda N, Maekawa M, Matsui TS, Deguchi S, Takata T, Katahira J, Higashiyama S, Hieda M. Inner Nuclear Membrane Protein, SUN1, is Required for Cytoskeletal Force Generation and Focal Adhesion Maturation. Front Cell Dev Biol 2022; 10:885859. [PMID: 35663386 PMCID: PMC9157646 DOI: 10.3389/fcell.2022.885859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/02/2022] [Indexed: 12/20/2022] Open
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex is composed of the inner nuclear membrane-spanning SUN proteins and the outer nuclear membrane-spanning nesprin proteins. The LINC complex physically connects the nucleus and plasma membrane via the actin cytoskeleton to perform diverse functions including mechanotransduction from the extracellular environment to the nucleus. Mammalian somatic cells express two principal SUN proteins, namely SUN1 and SUN2. We have previously reported that SUN1, but not SUN2, is essential for directional cell migration; however, the underlying mechanism remains elusive. Because the balance between adhesive force and traction force is critical for cell migration, in the present study, we focused on focal adhesions (FAs) and the actin cytoskeleton. We observed that siRNA-mediated SUN1 depletion did not affect the recruitment of integrin β1, one of the ubiquitously expressed focal adhesion molecules, to the plasma membrane. Consistently, SUN1-depleted cells normally adhered to extracellular matrix proteins, including collagen, fibronectin, laminin, and vitronectin. In contrast, SUN1 depletion reduced the activation of integrin β1. Strikingly, the depletion of SUN1 interfered with the incorporation of vinculin into the focal adhesions, whereas no significant differences in the expression of vinculin were observed between wild-type and SUN1-depleted cells. In addition, SUN1 depletion suppressed the recruitment of zyxin to nascent focal adhesions. These data indicate that SUN1 is involved in the maturation of focal adhesions. Moreover, disruption of the SUN1-containing LINC complex abrogates the actin cytoskeleton and generation of intracellular traction force, despite the presence of SUN2. Thus, a physical link between the nucleus and cytoskeleton through SUN1 is required for the proper organization of actin, thereby suppressing the incorporation of vinculin and zyxin into focal adhesions and the activation of integrin β1, both of which are dependent on traction force. This study provides insights into a previously unappreciated signaling pathway from the nucleus to the cytoskeleton, which is in the opposite direction to the well-known mechanotransduction pathways from the extracellular matrix to the nucleus.
Collapse
Affiliation(s)
- Nanami Ueda
- Department of Medical Technology, Ehime Prefectural University of Health Sciences, Tobe, Japan
| | - Masashi Maekawa
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Ehime University, Matsuyama, Japan
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | | | - Shinji Deguchi
- Division of Bioengineering, Osaka University, Toyonaka, Japan
| | - Tomoyo Takata
- Department of Medical Technology, Ehime Prefectural University of Health Sciences, Tobe, Japan
| | - Jun Katahira
- Department of Veterinary Sciences, Osaka Prefecture University, Sakai, Japan
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Ehime University, Matsuyama, Japan
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Japan
- Department of Oncogenesis and Growth Regulation, Osaka International Cancer Institute, Osaka, Japan
| | - Miki Hieda
- Department of Medical Technology, Ehime Prefectural University of Health Sciences, Tobe, Japan
- *Correspondence: Miki Hieda,
| |
Collapse
|
7
|
Bai H, Yang J, Meng S, Liu C. Oral Microbiota-Driven Cell Migration in Carcinogenesis and Metastasis. Front Cell Infect Microbiol 2022; 12:864479. [PMID: 35573798 PMCID: PMC9103474 DOI: 10.3389/fcimb.2022.864479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
The oral cavity harbors approximately 1,000 microbial species, and both pathogenic and commensal strains are involved in the development of carcinogenesis by stimulating chronic inflammation, affecting cell proliferation, and inhibiting cell apoptosis. Moreover, some substances produced by oral bacteria can also act in a carcinogenic manner. The link between oral microbiota and chronic inflammation as well as cell proliferation has been well established. Recently, increasing evidence has indicated the association of the oral microbiota with cell migration, which is crucial in regulating devastating diseases such as cancer. For instance, increased cell migration induced the spread of highly malignant cancer cells. Due to advanced technologies, the mechanistic understanding of cell migration in carcinogenesis and cancer metastasis is undergoing rapid progress. Thus, this review addressed the complexities of cell migration in carcinogenesis and cancer metastasis. We also integrate recent findings on the molecular mechanisms by which the oral microbiota regulates cell migration, with emphasis on the effect of the oral microbiota on adhesion, polarization, and guidance. Finally, we also highlight critical techniques, such as intravital microscopy and superresolution microscopy, for studies in this field.
Collapse
Affiliation(s)
- Huimin Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shu Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Shu Meng, ; Chengcheng Liu,
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Shu Meng, ; Chengcheng Liu,
| |
Collapse
|
8
|
Kaczmarczyk LS, Levi N, Segal T, Salmon-Divon M, Gerlitz G. CTCF supports preferentially short lamina-associated domains. Chromosome Res 2022; 30:123-136. [PMID: 35239049 DOI: 10.1007/s10577-022-09686-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 01/06/2023]
Abstract
More than one third of the mammalian genome is in a close association with the nuclear lamina, thus these genomic regions were termed lamina-associated domains (LADs). This association is fundamental for many aspects of chromatin biology including transcription, replication, and DNA damage repair. LADs association with the nuclear envelope is thought to be dependent on two major mechanisms: The first mechanism is the interaction between nuclear membrane proteins such as LBR with heterochromatin modifications that are enriched in LADs chromatin. The second mechanism is based on proteins that bind the borders of the LADs and support the association of the LADs with the nuclear envelope. Two factors were suggested to support the second mechanism: CCCTC-binding factor (CTCF) and YY1 based on their enriched binding to LADs borders. However, this mechanism has not been proven yet at a whole genome level. Here, to test if CTCF supports the LADs landscape, we generated melanoma cells with a partial loss of function (pLoF) of CTCF by the CRISPR-Cas9 system and determined the LADs landscape by lamin B ChIP-seq analysis. We found that under regular growth conditions, CTCF pLoF led to modest changes in the LADs landscape that included an increase in the signal of 2% of the LADs and a decrease in the signal of 8% of the LADs. However, CTCF importance for the LADs landscape was much higher upon induction of a chromatin stress. We induced chromatin stress by inhibiting RNA polymerase II, an intervention that is known to alter chromatin compaction and supercoiling. Notably, only in CTCF pLoF cells, the chromatin stress led to the dissociation of 7% of the LADs from the lamina. The CTCF-dependent LADs had almost three times shorter median length than the non-affected LADs, were enriched in CTCF binding at their borders, and were higher in their facultative-status (cell-type specific). Thus, it appears that CTCF is a key factor in facilitating the association of short facultative LADs with the nuclear lamina upon chromatin stress.
Collapse
Affiliation(s)
- Lukasz Stanislaw Kaczmarczyk
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, 40700, Ariel, Israel
| | - Nehora Levi
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, 40700, Ariel, Israel
| | - Tamar Segal
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, 40700, Ariel, Israel
| | - Mali Salmon-Divon
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, 40700, Ariel, Israel.
- Adelson School of Medicine, Ariel University, 40700, Ariel, Israel.
| | - Gabi Gerlitz
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, 40700, Ariel, Israel.
| |
Collapse
|
9
|
The Expression of the Senescence-Associated Biomarker Lamin B1 in Human Breast Cancer. Diagnostics (Basel) 2022; 12:diagnostics12030609. [PMID: 35328162 PMCID: PMC8947068 DOI: 10.3390/diagnostics12030609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/27/2022] [Accepted: 02/27/2022] [Indexed: 12/04/2022] Open
Abstract
Senescence is a major response to cancer chemotherapy and has been linked to unfavorable therapy outcomes. Lamin B1 is a component of the nuclear lamina that plays a pivotal role in chromatin stability. Downregulation of lamin B1 represents an established biomarker for cellular senescence. However, the protein expression level of lamin B1 in malignant tissue, particularly of the breast, has not been previously described. In this work, we investigated lamin B1 protein expression in normal breast epithelium, malignant breast tissue (including adjacent non-malignant tissue) and in malignant tissue exposed to neoadjuvant chemotherapy (NAC) using immunohistochemistry (IHC) in three patient groups (n = 15, n = 87, and n = 43, respectively). Our results indicate that lamin B1 mean positive expression was 93% in normal breast epithelium and 88% in malignant breast cells, but significantly decreased (mean: 55%, p < 0.001) in malignant breast tissue after exposure to NAC, suggestive of senescence induction. No significant association between lamin B1 expression and other clinicopathological characteristics or survival of breast cancer patients was recorded. To our knowledge, this is the first report that established the baseline protein expression level of lamin B1 in normal and malignant breast tissue, and its reduction following exposure to chemotherapy. In conclusion, lamin B1 downregulation can be used reliably as a component of multiple biomarker batteries to identify therapy-induced senescence (TIS) in clinical cancer.
Collapse
|
10
|
Evangelisti C, Rusciano I, Mongiorgi S, Ramazzotti G, Lattanzi G, Manzoli L, Cocco L, Ratti S. The wide and growing range of lamin B-related diseases: from laminopathies to cancer. Cell Mol Life Sci 2022; 79:126. [PMID: 35132494 PMCID: PMC8821503 DOI: 10.1007/s00018-021-04084-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/18/2022]
Abstract
B-type lamins are fundamental components of the nuclear lamina, a complex structure that acts as a scaffold for organization and function of the nucleus. Lamin B1 and B2, the most represented isoforms, are encoded by LMNB1 and LMNB2 gene, respectively. All B-type lamins are synthesized as precursors and undergo sequential post-translational modifications to generate the mature protein. B-type lamins are involved in a wide range of nuclear functions, including DNA replication and repair, regulation of chromatin and nuclear stiffness. Moreover, lamins B1 and B2 regulate several cellular processes, such as tissue development, cell cycle, cellular proliferation, senescence, and DNA damage response. During embryogenesis, B-type lamins are essential for organogenesis, in particular for brain development. As expected from the numerous and pivotal functions of B-type lamins, mutations in their genes or fluctuations in their expression levels are critical for the onset of several diseases. Indeed, a growing range of human disorders have been linked to lamin B1 or B2, increasing the complexity of the group of diseases collectively known as laminopathies. This review highlights the recent findings on the biological role of B-type lamins under physiological or pathological conditions, with a particular emphasis on brain disorders and cancer.
Collapse
Affiliation(s)
- Camilla Evangelisti
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Isabella Rusciano
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Shmelev ME, Titov SI, Belousov AS, Farniev VM, Zhmenia VM, Lanskikh DV, Penkova AO, Kumeiko VV. Cell and Tissue Nanomechanics: From Early Development to Carcinogenesis. Biomedicines 2022; 10:345. [PMID: 35203554 PMCID: PMC8961777 DOI: 10.3390/biomedicines10020345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/22/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Cell and tissue nanomechanics, being inspired by progress in high-resolution physical mapping, has recently burst into biomedical research, discovering not only new characteristics of normal and diseased tissues, but also unveiling previously unknown mechanisms of pathological processes. Some parallels can be drawn between early development and carcinogenesis. Early embryogenesis, up to the blastocyst stage, requires a soft microenvironment and internal mechanical signals induced by the contractility of the cortical actomyosin cytoskeleton, stimulating quick cell divisions. During further development from the blastocyst implantation to placenta formation, decidua stiffness is increased ten-fold when compared to non-pregnant endometrium. Organogenesis is mediated by mechanosignaling inspired by intercellular junction formation with the involvement of mechanotransduction from the extracellular matrix (ECM). Carcinogenesis dramatically changes the mechanical properties of cells and their microenvironment, generally reproducing the structural properties and molecular organization of embryonic tissues, but with a higher stiffness of the ECM and higher cellular softness and fluidity. These changes are associated with the complete rearrangement of the entire tissue skeleton involving the ECM, cytoskeleton, and the nuclear scaffold, all integrated with each other in a joint network. The important changes occur in the cancer stem-cell niche responsible for tumor promotion and metastatic growth. We expect that the promising concept based on the natural selection of cancer cells fixing the most invasive phenotypes and genotypes by reciprocal regulation through ECM-mediated nanomechanical feedback loop can be exploited to create new therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Mikhail E. Shmelev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Sergei I. Titov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Andrei S. Belousov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Vladislav M. Farniev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Valeriia M. Zhmenia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Daria V. Lanskikh
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Alina O. Penkova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
| | - Vadim V. Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (M.E.S.); (S.I.T.); (A.S.B.); (V.M.F.); (V.M.Z.); (D.V.L.); (A.O.P.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
12
|
Ovsiannikova NL, Lavrushkina SV, Ivanova AV, Mazina LM, Zhironkina OA, Kireev II. Lamin A as a Determinant of Mechanical Properties of the Cell Nucleus in Health and Disease. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1288-1300. [PMID: 34903160 DOI: 10.1134/s0006297921100102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 06/14/2023]
Abstract
One of the main factors associated with worse prognosis in oncology is metastasis, which is based on the ability of tumor cells to migrate from the primary source and to form secondary tumors. The search for new strategies to control migration of metastatic cells is one of the urgent issues in biomedicine. One of the strategies to stop spread of cancer cells could be regulation of the nuclear elasticity. Nucleus, as the biggest and stiffest cellular compartment, determines mechanical properties of the cell as a whole, and, hence, could prevent cell migration through the three-dimensional extracellular matrix. Nuclear rigidity is maintained by the nuclear lamina, two-dimensional network of intermediate filaments in the inner nuclear membrane (INM). Here we present the most significant factors defining nucleus rigidity, discuss the role of nuclear envelope composition in the cell migration, as well consider possible approaches to control lamina composition in order to change plasticity of the cell nucleus and ability of the tumor cells to metastasize.
Collapse
Affiliation(s)
- Natalia L Ovsiannikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Svetlana V Lavrushkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anastasia V Ivanova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ludmila M Mazina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Oxana A Zhironkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Igor I Kireev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Moscow, 117198, Russia
| |
Collapse
|
13
|
Ratti S, Rusciano I, Mongiorgi S, Neri I, Cappellini A, Cortelli P, Suh PG, McCubrey JA, Manzoli L, Cocco L, Ramazzotti G. Lamin B1 Accumulation's Effects on Autosomal Dominant Leukodystrophy (ADLD): Induction of Reactivity in the Astrocytes. Cells 2021; 10:2566. [PMID: 34685544 PMCID: PMC8534128 DOI: 10.3390/cells10102566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/30/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Autosomal dominant leukodystrophy (ADLD) is an extremely rare and fatal neurodegenerative disease due to the overexpression of the nuclear lamina component Lamin B1. Many aspects of the pathology still remain unrevealed. This work highlights the effect of Lamin B1 accumulation on different cellular functions in an ADLD astrocytic in vitro model. Lamin B1 overexpression induces alterations in cell survival signaling pathways with GSK3β inactivation, but not the upregulation of β-catenin targets, therefore resulting in a reduction in astrocyte survival. Moreover, Lamin B1 build up affects proliferation and cell cycle progression with an increase of PPARγ and p27 and a decrease of Cyclin D1. These events are also associated to a reduction in cell viability and an induction of apoptosis. Interestingly, ADLD astrocytes trigger a tentative activation of survival pathways that are ineffective. Finally, astrocytes overexpressing Lamin B1 show increased immunoreactivity for both GFAP and vimentin together with NF-kB phosphorylation and c-Fos increase, suggesting astrocytes reactivity and substantial cellular activation. These data demonstrate that Lamin B1 accumulation is correlated to biochemical, metabolic, and morphologic remodeling, probably related to the induction of a reactive astrocytes phenotype that could be strictly associated to ADLD pathological mechanisms.
Collapse
Affiliation(s)
- Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (S.R.); (I.R.); (S.M.); (I.N.); (A.C.); (G.R.)
| | - Isabella Rusciano
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (S.R.); (I.R.); (S.M.); (I.N.); (A.C.); (G.R.)
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (S.R.); (I.R.); (S.M.); (I.N.); (A.C.); (G.R.)
| | - Irene Neri
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (S.R.); (I.R.); (S.M.); (I.N.); (A.C.); (G.R.)
| | - Alessandra Cappellini
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (S.R.); (I.R.); (S.M.); (I.N.); (A.C.); (G.R.)
| | - Pietro Cortelli
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40139 Bologna, Italy;
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC NeuroMet, 40139 Bologna, Italy
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu 41062, Korea;
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | - James A. McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA;
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (S.R.); (I.R.); (S.M.); (I.N.); (A.C.); (G.R.)
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (S.R.); (I.R.); (S.M.); (I.N.); (A.C.); (G.R.)
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (S.R.); (I.R.); (S.M.); (I.N.); (A.C.); (G.R.)
| |
Collapse
|
14
|
Deolal P, Mishra K. Regulation of diverse nuclear shapes: pathways working independently, together. Commun Integr Biol 2021; 14:158-175. [PMID: 34262635 PMCID: PMC8259725 DOI: 10.1080/19420889.2021.1939942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Membrane-bound organelles provide physical and functional compartmentalization of biological processes in eukaryotic cells. The characteristic shape and internal organization of these organelles is determined by a combination of multiple internal and external factors. The maintenance of the shape of nucleus, which houses the genetic material within a double membrane bilayer, is crucial for a seamless spatio-temporal control over nuclear and cellular functions. Dynamic morphological changes in the shape of nucleus facilitate various biological processes. Chromatin packaging, nuclear and cytosolic protein organization, and nuclear membrane lipid homeostasis are critical determinants of overall nuclear morphology. As such, a multitude of molecular players and pathways act together to regulate the nuclear shape. Here, we review the known mechanisms governing nuclear shape in various unicellular and multicellular organisms, including the non-spherical nuclei and non-lamin-related structural determinants. The review also touches upon cellular consequences of aberrant nuclear morphologies.
Collapse
Affiliation(s)
- Pallavi Deolal
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|