1
|
Rademacher S, Preußner M, Rehm MC, Fuchs J, Heyd F, Eickholt BJ. PTEN controls alternative splicing of autism spectrum disorder-associated transcripts in primary neurons. Brain 2025; 148:47-54. [PMID: 39323327 DOI: 10.1093/brain/awae306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/12/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024] Open
Abstract
Phosphatase and tensin homologue (PTEN) is the main antagonist of the phosphatidylinositol-3-kinase (PI3K)/AKT/mTOR signalling pathway and mutated in 10%-20% of individuals with autism spectrum disorder (ASD) exhibiting macrocephaly. Hyperactive mTOR signalling is responsible for some aspects during PTEN-ASD progression, e.g. neuronal hypertrophy and -excitability, but PI3K/mTOR-independent processes have additionally been described. There is emerging evidence that PTEN regulates gene transcription, spliceosome formation and pre-mRNA splicing independently of PI3K/mTOR. Altered splicing is a hallmark of brains from individuals with idiopathic and PTEN-ASD, however, molecular mechanisms are yet to be identified. We performed RNA-sequencing (RNA-Seq), followed by analysis of altered transcript splicing in Pten-deficient primary cortical mouse neurons, which we compared with published data from PTEN-deficient human neuronal stem cells. This analysis identified that transcripts were globally mis-spliced in a developmentally regulated fashion and cluster in synaptic and gene expression regulatory processes. Strikingly, splicing defects following Pten-deficiency represent a significant number of other known ASD-susceptibility genes. Furthermore, we show that exons with strong 3' splice sites are more frequently mis-spliced under Pten-deficient conditions. Our study indicates that PTEN-ASD is a multifactorial condition involving the dysregulation of other known ASD-susceptibility genes.
Collapse
Affiliation(s)
- Sebastian Rademacher
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Molecular Biology and Biochemistry, Berlin 10117, Germany
| | - Marco Preußner
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Berlin 14195, Germany
| | - Marie C Rehm
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Molecular Biology and Biochemistry, Berlin 10117, Germany
| | - Joachim Fuchs
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Molecular Biology and Biochemistry, Berlin 10117, Germany
| | - Florian Heyd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Berlin 14195, Germany
| | - Britta J Eickholt
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Molecular Biology and Biochemistry, Berlin 10117, Germany
| |
Collapse
|
2
|
Signoria I, Zwartkruis MM, Geerlofs L, Perenthaler E, Faller KM, James R, McHale-Owen H, Green JW, Kortooms J, Snellen SH, Asselman FL, Gillingwater TH, Viero G, Wadman RI, van der Pol WL, Groen EJ. Patient-specific responses to SMN2 splice-modifying treatments in spinal muscular atrophy fibroblasts. Mol Ther Methods Clin Dev 2024; 32:101379. [PMID: 39655308 PMCID: PMC11626024 DOI: 10.1016/j.omtm.2024.101379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
The availability of three therapies for the neuromuscular disease spinal muscular atrophy (SMA) highlights the need to match patients to the optimal treatment. Two of these treatments (nusinersen and risdiplam) target splicing of SMN2, but treatment outcomes vary from patient to patient. An incomplete understanding of the complex interactions among SMA genetics, SMN protein and mRNA levels, and gene-targeting treatments, limits our ability to explain this variability and identify optimal treatment strategies for individual patients. To address this, we analyzed responses to nusinersen and risdiplam in 45 primary fibroblast cell lines. Pre-treatment SMN2-FL, SMN2Δ7 mRNA, and SMN protein levels were influenced by SMN2 copy number, age, and sex. After treatment, SMN and mRNA levels were more heterogeneous. In 43% of patients, response to both therapies was similar, but in 57% one treatment led to a significantly higher SMN increase than the other treatment. Younger age, higher SMN2 copy number, and higher SMN levels before treatment predicted better in vitro efficacy. These findings showcase patient-derived fibroblasts as a tool for identifying molecular predictors for personalized treatment.
Collapse
Affiliation(s)
- Ilaria Signoria
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Maria M. Zwartkruis
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lotte Geerlofs
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | | | - Kiterie M.E. Faller
- Edinburgh Medical School: Biomedical Sciences and Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Rachel James
- Edinburgh Medical School: Biomedical Sciences and Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK
| | - Harriet McHale-Owen
- Edinburgh Medical School: Biomedical Sciences and Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK
| | - Jared W. Green
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Joris Kortooms
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Sophie H. Snellen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Fay-Lynn Asselman
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Thomas H. Gillingwater
- Edinburgh Medical School: Biomedical Sciences and Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK
| | | | - Renske I. Wadman
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - W. Ludo van der Pol
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Ewout J.N. Groen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| |
Collapse
|
3
|
Chudakova D, Kuzenkova L, Fisenko A, Savostyanov K. In Search of Spinal Muscular Atrophy Disease Modifiers. Int J Mol Sci 2024; 25:11210. [PMID: 39456991 PMCID: PMC11508272 DOI: 10.3390/ijms252011210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
The 5q Spinal Muscular Atrophy (SMA) is a hereditary autosomal recessive disease caused by defects in the survival motor neuron (SMN1) gene encoding survival motor neuron (SMN) protein. Currently, it is the leading cause of infantile mortality worldwide. SMA is a progressive neurodegenerative disease with "continuum of clinical severity", which can be modulated by genetic and epigenetic factors known as disease modifiers (DMs). Individuals (even siblings) with the same defects in SMN1 gene might have strikingly different types of SMA, supposedly due to the impact of DMs. There are several therapeutic options for SMA, all of them focusing on the restoration of the SMN protein levels to normal. Determining DMs and the pathways in which they are involved might aid in enhancing existing curative approaches. Furthermore, DMs might become novel therapeutic targets or prognostic biomarkers of the disease. This narrative review provides a brief overview of the genetics and pathobiology of SMA, and its bona fide modifiers. We describe novel, emerging DMs, approaches and tools used to identify them, as well as their potential mechanisms of action and impact on disease severity. We also propose several disease-modifying molecular mechanisms which could provide a partial explanation of the staggering variability of SMA phenotypes.
Collapse
Affiliation(s)
| | | | | | - Kirill Savostyanov
- National Medical Research Center of Children’s Health of the Ministry of Health of the Russian Federation, 119991 Moscow, Russia
| |
Collapse
|
4
|
Riboldi GM, Faravelli I, Rinchetti P, Lotti F. SMN post-translational modifications in spinal muscular atrophy. Front Cell Neurosci 2023; 17:1092488. [PMID: 36874214 PMCID: PMC9981653 DOI: 10.3389/fncel.2023.1092488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/26/2023] [Indexed: 02/19/2023] Open
Abstract
Since its first identification as the gene responsible for spinal muscular atrophy (SMA), the range of survival motor neuron (SMN) protein functions has increasingly expanded. This multimeric complex plays a crucial role in a variety of RNA processing pathways. While its most characterized function is in the biogenesis of ribonucleoproteins, several studies have highlighted the SMN complex as an important contributor to mRNA trafficking and translation, axonal transport, endocytosis, and mitochondria metabolism. All these multiple functions need to be selectively and finely modulated to maintain cellular homeostasis. SMN has distinct functional domains that play a crucial role in complex stability, function, and subcellular distribution. Many different processes were reported as modulators of the SMN complex activities, although their contribution to SMN biology still needs to be elucidated. Recent evidence has identified post-translational modifications (PTMs) as a way to regulate the pleiotropic functions of the SMN complex. These modifications include phosphorylation, methylation, ubiquitination, acetylation, sumoylation, and many other types. PTMs can broaden the range of protein functions by binding chemical moieties to specific amino acids, thus modulating several cellular processes. Here, we provide an overview of the main PTMs involved in the regulation of the SMN complex with a major focus on the functions that have been linked to SMA pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Francesco Lotti
- Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology, and Neurology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
5
|
Vezain M, Thauvin-Robinet C, Vial Y, Coutant S, Drunat S, Urtizberea JA, Rolland A, Jacquin-Piques A, Fehrenbach S, Nicolas G, Lecoquierre F, Saugier-Veber P. Retrotransposon insertion as a novel mutational cause of spinal muscular atrophy. Hum Genet 2023; 142:125-138. [PMID: 36138164 DOI: 10.1007/s00439-022-02473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/15/2022] [Indexed: 01/18/2023]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder resulting from biallelic alterations of the SMN1 gene: deletion, gene conversion or, in rare cases, intragenic variants. The disease severity is mainly influenced by the copy number of SMN2, a nearly identical gene, which produces only low amounts of full-length (FL) mRNA. Here we describe the first example of retrotransposon insertion as a pathogenic SMN1 mutational event. The 50-year-old patient is clinically affected by SMA type III with a diagnostic odyssey spanning nearly 30 years. Despite a mild disease course, he carries a single SMN2 copy. Using Exome Sequencing and Sanger sequencing, we characterized a SINE-VNTR-Alu (SVA) type F retrotransposon inserted in SMN1 intron 7. Using RT-PCR and RNASeq experiments on lymphoblastoid cell lines, we documented the dramatic decrease of FL transcript production in the patient compared to subjects with the same SMN1 and SMN2 copy number, thus validating the pathogenicity of this SVA insertion. We described the mutant FL-SMN1-SVA transcript characterized by exon extension and showed that it is subject to degradation by nonsense-mediated mRNA decay. The stability of the SMN-SVA protein may explain the mild course of the disease. This observation exemplifies the role of retrotransposons in human genetic disorders.
Collapse
Affiliation(s)
- Myriam Vezain
- INSERM UMR1245, UNIROUEN, Normandie Univ, F-76000, Rouen, France.,Department of Genetics, FHU G4 Génomique, Rouen University Hospital, F-76000, Rouen, France
| | - Christel Thauvin-Robinet
- INSERM UMR1231 GAD-Génétique des Anomalies du Développement, Bourgogne Franche-Comté University, F-21000 , Dijon, France.,Genetics Center, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Dijon-Burgundy University Hospital, F-21000, Dijon, France
| | - Yoann Vial
- INSERM UMR1245, UNIROUEN, Normandie Univ, F-76000, Rouen, France.,Department of Genetics, FHU G4 Génomique, Rouen University Hospital, F-76000, Rouen, France.,Genetics Department, AP-HP, Robert-Debré University Hospital, 48 boulevard Sérurier, 75019 , Paris, France
| | - Sophie Coutant
- INSERM UMR1245, UNIROUEN, Normandie Univ, F-76000, Rouen, France.,Department of Genetics, FHU G4 Génomique, Rouen University Hospital, F-76000, Rouen, France
| | - Séverine Drunat
- INSERM UMR 1141, PROTECT, Paris University, F-75019, Paris, France.,Genetics Department, AP-HP, Robert-Debré University Hospital, F-75019, Paris, France
| | - Jon Andoni Urtizberea
- Myology Institute, AP-HP Pitié-Salpêtrière University Hospital, F-75013, Paris, France
| | - Anne Rolland
- INSERM UMR1245, UNIROUEN, Normandie Univ, F-76000, Rouen, France.,Pediatrics Department, Valence Hospital, 179 boulevard du Maréchal Juin, 26000, Valence, France
| | - Agnès Jacquin-Piques
- Department of Neurology, Clinical Neurophysiology, Competence Center of Neuromuscular Diseases, Dijon-Burgundy University Hospital, F-21000, Dijon, France
| | - Séverine Fehrenbach
- Department of Genetics, FHU G4 Génomique, Rouen University Hospital, F-76000, Rouen, France
| | - Gaël Nicolas
- INSERM UMR1245, UNIROUEN, Normandie Univ, F-76000, Rouen, France.,Department of Genetics, FHU G4 Génomique, Rouen University Hospital, F-76000, Rouen, France
| | - François Lecoquierre
- INSERM UMR1245, UNIROUEN, Normandie Univ, F-76000, Rouen, France.,Department of Genetics, FHU G4 Génomique, Rouen University Hospital, F-76000, Rouen, France
| | - Pascale Saugier-Veber
- INSERM UMR1245, UNIROUEN, Normandie Univ, F-76000, Rouen, France. .,Department of Genetics, FHU G4 Génomique, Rouen University Hospital, F-76000, Rouen, France. .,Laboratoire de Génétique Moléculaire, UFR-Santé, 22 boulevard Gambetta, 76183, Rouen, France.
| |
Collapse
|
6
|
Detering NT, Schüning T, Hensel N, Claus P. The phospho-landscape of the survival of motoneuron protein (SMN) protein: relevance for spinal muscular atrophy (SMA). Cell Mol Life Sci 2022; 79:497. [PMID: 36006469 PMCID: PMC11071818 DOI: 10.1007/s00018-022-04522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 11/03/2022]
Abstract
Spinal muscular atrophy (SMA) is caused by low levels of the survival of motoneuron (SMN) Protein leading to preferential degeneration of lower motoneurons in the ventral horn of the spinal cord and brain stem. However, the SMN protein is ubiquitously expressed and there is growing evidence of a multisystem phenotype in SMA. Since a loss of SMN function is critical, it is important to decipher the regulatory mechanisms of SMN function starting on the level of the SMN protein itself. Posttranslational modifications (PTMs) of proteins regulate multiple functions and processes, including activity, cellular trafficking, and stability. Several PTM sites have been identified within the SMN sequence. Here, we map the identified SMN PTMs highlighting phosphorylation as a key regulator affecting localization, stability and functions of SMN. Furthermore, we propose SMN phosphorylation as a crucial factor for intracellular interaction and cellular distribution of SMN. We outline the relevance of phosphorylation of the spinal muscular atrophy (SMA) gene product SMN with regard to basic housekeeping functions of SMN impaired in this neurodegenerative disease. Finally, we compare SMA patient mutations with putative and verified phosphorylation sites. Thus, we emphasize the importance of phosphorylation as a cellular modulator in a clinical perspective as a potential additional target for combinatorial SMA treatment strategies.
Collapse
Affiliation(s)
- Nora Tula Detering
- SMATHERIA gGmbH - Non-Profit Biomedical Research Institute, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Tobias Schüning
- SMATHERIA gGmbH - Non-Profit Biomedical Research Institute, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Niko Hensel
- Ottawa Hospital Research Institute (OHRI), Ottawa, Canada
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Peter Claus
- SMATHERIA gGmbH - Non-Profit Biomedical Research Institute, Hannover, Germany.
- Center for Systems Neuroscience (ZSN), Hannover, Germany.
| |
Collapse
|
7
|
Zhang Y, Chen X, Wang Q, Du C, Lu W, Yuan H, Zhang Z, Li D, Ling X, Ren X, Zhao Y, Su Q, Xing Z, Qin Y, Yang X, Shen Y, Wu H, Qi Y. Hyper-SUMOylation of SMN induced by SENP2 deficiency decreases its stability and leads to spinal muscular atrophy-like pathology. J Mol Med (Berl) 2021; 99:1797-1813. [PMID: 34628513 DOI: 10.1007/s00109-021-02130-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
Spinal muscular atrophy (SMA), a degenerative motor neuron disease and a leading cause of infant mortality, is caused by loss of functional survival motor neuron (SMN) protein due to SMN1 gene mutation. Here, using mouse and cell models for behavioral and histological studies, we found that SENP2 (SUMO/sentrin-specific protease 2)-deficient mice developed a notable SMA-like pathology phenotype with significantly decreased muscle fibers and motor neurons. At the molecular level, SENP2 deficiency in mice did not affect transcription but decreased SMN protein levels by promoting the SUMOylation of SMN. SMN was modified by SUMO2 with the E3 PIAS2α and deconjugated by SENP2. SUMOylation of SMN accelerated its degradation by the ubiquitin-proteasome degradation pathway with the ubiquitin E1 UBA1 (ubiquitin-like modifier activating enzyme 1) and E3 ITCH. SUMOylation of SMN increased its acetylation to inhibit the formation of Cajal bodies (CBs). These results showed that SENP2 deficiency induced hyper-SUMOylation of the SMN protein, which further affected the stability and functions of the SMN protein, eventually leading to the SMA-like phenotype. Thus, we uncovered the important roles for hyper-SUMOylation of SMN induced by SENP2 deficiency in motor neurons and provided a novel targeted therapeutic strategy for SMA. KEY MESSAGES: SENP2 deficiency enhanced the hyper-SUMOylation of SMN and promoted the degradation of SMN by the ubiquitin-proteasome pathway. SUMOylation increased the acetylation of SMN to inhibit CB formation. SENP2 deficiency caused hyper-SUMOylation of SMN protein, which further affected the stability and functions of SMN protein and eventually led to the occurrence of SMA-like pathology.
Collapse
Affiliation(s)
- Yuhong Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Qiqi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Congcong Du
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Wenbin Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Hong Yuan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Zhenzhen Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Danqing Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Xing Ling
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Xiang Ren
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Yang Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Qi Su
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Zhengcao Xing
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Yuanyuan Qin
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Xinyi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Yajie Shen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| |
Collapse
|