1
|
Hong Y, Rannou A, Manriquez N, Antich J, Liu W, Fournier M, Omidfar A, Rogers RG. Cardiac and skeletal muscle manifestations in the G608G mouse model of Hutchinson-Gilford progeria syndrome. Aging Cell 2024; 23:e14259. [PMID: 38961628 PMCID: PMC11464102 DOI: 10.1111/acel.14259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/16/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disorder resulting from de novo mutations in the lamin A gene. Children with HGPS typically pass away in their teenage years due to cardiovascular diseases such as atherosclerosis, myocardial infarction, heart failure, and stroke. In this study, we characterized the G608G HGPS mouse model and explored cardiac and skeletal muscle function, along with senescence-associated phenotypes in fibroblasts. Homozygous G608G HGPS mice exhibited cardiac dysfunction, including decreased cardiac output and stroke volume, and impaired left ventricle relaxation. Additionally, skeletal muscle exhibited decreased isometric tetanic torque, muscle atrophy, and increased fibrosis. HGPS fibroblasts showed nuclear abnormalities, decreased proliferation, and increased expression of senescence markers. These findings provide insights into the pathophysiology of the G608G HGPS mouse model and inform potential therapeutic strategies for HGPS.
Collapse
Affiliation(s)
- Yeojin Hong
- Smidt Heart InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Alice Rannou
- Smidt Heart InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Nancy Manriquez
- Smidt Heart InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Jack Antich
- Smidt Heart InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Weixin Liu
- Smidt Heart InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Mario Fournier
- Smidt Heart InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Ariel Omidfar
- Smidt Heart InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Russell G. Rogers
- Smidt Heart InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| |
Collapse
|
2
|
Tufail M, Huang YQ, Hu JJ, Liang J, He CY, Wan WD, Jiang CH, Wu H, Li N. Cellular Aging and Senescence in Cancer: A Holistic Review of Cellular Fate Determinants. Aging Dis 2024:AD.2024.0421. [PMID: 38913050 DOI: 10.14336/ad.2024.0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
This comprehensive review navigates the complex relationship between cellular aging, senescence, and cancer, unraveling the determinants of cellular fate. Beginning with an overview of cellular aging's significance in cancer, the review explores processes, changes, and molecular pathways influencing senescence. The review explores senescence as a dual mechanism in cancer, acting as a suppressor and contributor, focusing on its impact on therapy response. This review highlights opportunities for cancer therapies that target cellular senescence. The review further examines the senescence-associated secretory phenotype and strategies to modulate cellular aging to influence tumor behavior. Additionally, the review highlights the mechanisms of senescence escape in aging and cancer cells, emphasizing their impact on cancer prognosis and resistance to therapy. The article addresses current advances, unexplored aspects, and future perspectives in understanding cellular aging and senescence in cancer.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Qi Huang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Ju Hu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Liang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Cai-Yun He
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Olsson PO, Yeonwoo J, Park K, Yoo YM, Hwang WS. Live births from urine derived cells. PLoS One 2023; 18:e0278607. [PMID: 36696395 PMCID: PMC9876353 DOI: 10.1371/journal.pone.0278607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/21/2022] [Indexed: 01/26/2023] Open
Abstract
Here we report urine-derived cell (UDC) culture and subsequent use for cloning which resulted in the successful development of cloned canine pups, which have remained healthy into adulthood. Bovine UDCs were used in vitro to establish comparative differences between cell sources. UDCs were chosen as a readily available and noninvasive source for obtaining cells. We analyzed the viability of cells stored in urine over time and could consistently culture cells which had remained in urine for 48hrs. Cells were shown to be viable and capable of being transfected with plasmids. Although primarily of epithelial origin, cells were found from multiple lineages, indicating that they enter the urine from more than one source. Held in urine, at 4°C, the majority of cells maintained their membrane integrity for several days. When compared to in vitro fertilization (IVF) derived embryos or those from traditional SCNT, UDC derived embryos did not differ in total cell number or in the number of DNA breaks, measured by TUNEL stain. These results indicate that viable cells can be obtained from multiple species' urine, capable of being used to produce live offspring at a comparable rate to other cell sources, evidenced by a 25% pregnancy rate and 2 live births with no losses in the canine UDC cloning trial. This represents a noninvasive means to recover the breeding capacity of genetically important or infertile animals. Obtaining cells in this way may provide source material for human and animal studies where cells are utilized.
Collapse
Affiliation(s)
| | | | - Kyumi Park
- Department of Companion Animal & Animal Resources Science, Joongbu University, Geumsan-gun, Republic of Korea
| | - Yeong-Min Yoo
- Lab of Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - W. S. Hwang
- UAE Biotech Research Center, Abu Dhabi, UAE
- * E-mail:
| |
Collapse
|
4
|
Chen Y, Zhang C, Du Y, Yang X, Liu M, Yang W, Lei G, Wang G. Exosomal transfer of microRNA-590-3p between renal tubular epithelial cells after renal ischemia-reperfusion injury regulates autophagy by targeting TRAF6. Chin Med J (Engl) 2022; 135:2467-2477. [PMID: 36449688 PMCID: PMC9945297 DOI: 10.1097/cm9.0000000000002377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a common complication in patients, especially elderly patients, who undergo cardiac surgery with cardiopulmonary bypass. Studies have indicated a protective role of autophagy in AKI. However, the mechanisms underlying the regulatory effect of autophagy in AKI among patients undergoing cardiac surgeries are poorly understood. In this study, we aimed to test the hypothesis that exosomal microRNAs (miRNAs) regulate autophagy in tubular epithelial cells after AKI. METHODS Plasma exosomal RNA was extracted from young and elderly AKI patients undergoing cardiac surgery, and the miRNAs expression during the perioperative period were analyzed using next-generation sequencing. The screened miRNAs and their target genes were subjected to gene oncology function and Kyoto Encyclopedia of Genes and Genome enrichment analyses. Renal tubular epithelial cell line (HK-2 cells) was cultured and hypoxia/reoxygenation (H/R) model was established, which is an in vitro renal ischemia/reperfusion (I/R) model. We used Western blot analysis, cell viability assay, transfection, luciferase assay to investigate the mechanisms underlying the observed increases in the levels of renal I/R injury-mediated exosomal miRNAs and their roles in regulating HK-2 cells autophagy. RESULTS miR-590-3p was highly enriched in the plasma exosomes of young AKI patients after cardiac surgery. Increased levels of miR-590-3p led to the increases in the expression of autophagy marker proteins, including Beclin-1 and microtubule associated protein 1 light chain 3 beta (LC3II), and prolonged the autophagic response in HK-2 cells after H/R treatment. These effects were achieved mainly via increases in the exosomal miR-590-3p levels, and the tumor necrosis factor receptor-associated factor 6 protein was shown to play a key role in I/R injury-mediated autophagy induction. CONCLUSION Exosomes released from HK-2 cells after renal I/R injury regulate autophagy by transferring miR-590-3p in a paracrine manner, which suggests that increasing the miR-590-3p levels in HK-2 cell-derived exosomes may increase autophagy and protect against kidney injury after renal I/R injury.
Collapse
Affiliation(s)
- Yimeng Chen
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Congya Zhang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yingjie Du
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xiying Yang
- Weifang Medical University, School of Anesthesiology, Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Weifang, Shandong 261053, China
| | - Min Liu
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Wenjing Yang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Guiyu Lei
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Guyan Wang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
5
|
Buoso E, Attanzio A, Biundo F. Cellular Senescence in Age-Related Diseases: Molecular Bases and Therapeutic Interventions. Cells 2022; 11:cells11132029. [PMID: 35805113 PMCID: PMC9266226 DOI: 10.3390/cells11132029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Affiliation(s)
- Erica Buoso
- Department of Drug Sciences, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy;
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Alessandro Attanzio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy
- Correspondence: ; Tel.: +39-0912-3862-434
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA;
| |
Collapse
|
6
|
Decoy receptor 2 mediates the apoptosis-resistant phenotype of senescent renal tubular cells and accelerates renal fibrosis in diabetic nephropathy. Cell Death Dis 2022; 13:522. [PMID: 35661704 PMCID: PMC9166763 DOI: 10.1038/s41419-022-04972-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 01/21/2023]
Abstract
Apoptotic resistance leads to persistent accumulation of senescent cells and sustained expression of a senescence-associated secretory phenotype, playing an essential role in the progression of tissue fibrosis. However, whether senescent renal tubular epithelial cells (RTECs) exhibit an apoptosis-resistant phenotype, and the role of this phenotype in diabetic nephropathy (DN) remain unclear. Our previous study was the first to demonstrate that decoy receptor 2 (DcR2) is associated with apoptotic resistance in senescent RTECs and renal fibrosis. In this study, we aimed to further explore the mechanism of DcR2 in apoptosis-resistant RTECs and renal fibrosis in DN. DcR2 was co-localized with fibrotic markers (α-SMA, collagen IV, fibronectin), senescent marker p16, and antiapoptotic proteins FLIP and Bcl2 but rarely co-localized with caspase 3 or TUNEL. DcR2 overexpression promoted renal fibrosis in mice with streptozotocin (STZ)-induced DN, as evidenced by augmented Masson staining and upregulated expression of fibrotic markers. DcR2 overexpression also enhanced FLIP expression while reducing the expression of pro-apoptotic proteins (caspases 8 and 3) in senescent RTECs, resulting in apoptotic resistance. In contrast, DcR2 knockdown produced the opposite effects in vitro and in vivo. Moreover, quantitative proteomics and co-immunoprecipitation experiments demonstrated that DcR2 interacted with glucose-related protein 78 kDa (GRP78), which has been shown to promote apoptotic resistance in cancer. GRP78 exhibited co-localization with senescent and antiapoptotic markers but was rarely co-expressed with caspase 3 or TUNEL. Additionally, GRP78 knockdown decreased the apoptosis resistance of HG-induced senescent RTECs with upregulated cleaved caspase 3 and increased the percentage of apoptotic RTECs. Mechanistically, DcR2 mediated apoptotic resistance in senescent RTECs by enhancing GRP78-caspase 7 interactions and promoting Akt phosphorylation. Thus, DcR2 mediated the apoptotic resistance of senescent RTECs and renal fibrosis by interacting with GRP78, indicating that targeting the DcR2-GRP78 axis represents a promising therapeutic strategy for DN.
Collapse
|
7
|
Zhou FQ. NAD +, Senolytics, or Pyruvate for Healthy Aging? Nutr Metab Insights 2021; 14:11786388211053407. [PMID: 34720589 PMCID: PMC8552375 DOI: 10.1177/11786388211053407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/25/2021] [Indexed: 12/17/2022] Open
Abstract
In last decades, healthy aging has become one of research hotspots in life science. It is well known that the nicotinamide adenine dinucleotide oxidized form (NAD+) level in cells decreases with aging and aging-related diseases. Several years ago, one of NAD+ precursors was first demonstrated with its new role in DNA damage repairing in mice, restoring old mice to their physical state at young ones. The finding encourages extensive studies in animal models and patients. NAD+ and its precursors have been popular products in nutrition markets. Alternatively, it was also evidenced that clearance of cellular senescence by senolytics preserved multiorgan (kidney and heart) function and extended healthy lifespan in mice. Subsequent studies confirmed findings in elderly patients subjected with idiopathic pulmonary fibrosis. The senolytic therapy is now focused on various diseases in animal and clinical studies. However, pyruvate, as both a NAD+ substitute and a new senolytic, may be advantageous, on the equimolar basis, over current products above in preventing and treating diseases and aging. Pyruvate-enriched fluids, particularly pyruvate oral rehydration salt, may be a novel intervention for diseases and aging besides critical care. Albeit the direct evidence that benefits healthy aging is still limited to date, pyruvate, as both NAD+ provider and senolytic agent, warrants intensive research to compare NAD+ or senolytics for healthy aging, specifically on the equimolar basis, in effective blood levels. This review briefly discussed the recognition of healthy aging by comparing NAD+ and Senolytics with sodium pyruvate from the clinical point of view.
Collapse
|
8
|
Tseng CH. The Effect of Metformin on Male Reproductive Function and Prostate: An Updated Review. World J Mens Health 2021; 40:11-29. [PMID: 33831975 PMCID: PMC8761231 DOI: 10.5534/wjmh.210001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/02/2022] Open
Abstract
Metformin is the first-line oral antidiabetic drug that shows multiple pleiotropic effects of anti-inflamation, anti-cancer, anti-aging, anti-microbia, anti-atherosclerosis, and immune modulation. Metformin's effects on men's related health are reviewed here, focusing on reproductive health under subtitles of erectile dysfunction (ED), steroidogenesis and spermatogenesis; and on prostate-related health under subtitles of prostate specific antigen (PSA), prostatitis, benign prostate hyperplasia (BPH), and prostate cancer (PCa). Updated literature suggests a potential role of metformin on arteriogenic ED but controversial and contradictory effects (either protective or harmful) on testicular functions of testosterone synthesis and spermatogenesis. With regards to prostate-related health, metformin use may be associated with lower levels of PSA in humans, but its clinical implications require more research. Although there is a lack of research on metform's effect on prostatitis, it may have potential benefits through its anti-microbial and anti-inflammatory properties. Metformin may reduce the risk of BPH by inhibiting the insulin-like growth factor 1 pathway and some but not all studies suggest a protective role of metformin on the risk of PCa. Many clinical trials are being conducted to investigate the use of metformin as an adjuvant therapy for PCa but results currently available are not conclusive. While some trials suggest a benefit in reducing the metastasis and recurrence of PCa, others do not show any benefit. More research works are warranted to illuminate the potential usefulness of metformin in the promotion of men's health.
Collapse
Affiliation(s)
- Chin Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Division of Environmental Health and Occupational Medicine of the National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|