Diaz-Baca JA, Fatehi P. Production and characterization of starch-lignin based materials: A review.
Biotechnol Adv 2024;
70:108281. [PMID:
37956796 DOI:
10.1016/j.biotechadv.2023.108281]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
In their pristine state, starch and lignin are abundant and inexpensive natural polymers frequently considered green alternatives to oil-based and synthetic polymers. Despite their availability and owing to their physicochemical properties; starch and lignin are not often utilized in their pristine forms for high-performance applications. Generally, chemical and physical modifications transform them into starch- and lignin-based materials with broadened properties and functionality. In the last decade, the combination of starch and lignin for producing reinforced materials has gained significant attention. The reinforcing of starch matrices with lignin has received primary focus because of the enhanced water sensitivity, UV protection, and mechanical and thermal resistance that lignin introduces to starch-based materials. This review paper aims to assess starch-lignin materials' production and characterization technologies, highlighting their physicochemical properties, outcomes, challenges, and opportunities. First, this paper describes the current status, sources, and chemical modifications of lignin and starch. Next, the discussion is oriented toward starch-lignin materials and their production approaches, such as blends, composites, plasticized/crosslinked films, and coupled polymers. Special attention is given to the characterization methods of starch-lignin materials, focusing on their advantages, disadvantages, and expected outcomes. Finally, the challenges, opportunities, and future perspectives in developing starch-lignin materials, such as adhesives, coatings, films, and controlled delivery systems, are discussed.
Collapse