1
|
Lotfi R, Zandi N, Pourjavadi A, Christiansen JDC, Gurevich L, Mehrali M, Dolatshahi-Pirouz A, Pennisi CP, Tamjid E, Simchi A. Engineering Photo-Cross-Linkable MXene-Based Hydrogels: Durable Conductive Biomaterials for Electroactive Tissues and Interfaces. ACS Biomater Sci Eng 2024; 10:800-813. [PMID: 38159039 DOI: 10.1021/acsbiomaterials.3c01394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Light-cured conductive hydrogels have attracted immense interest in the regeneration of electroactive tissues and bioelectronic interfaces. Despite the unique properties of MXene (MX), its light-blocking effect in the range of 300-600 nm hinders the efficient cross-linking of photocurable hydrogels. In this study, we investigated the photo-cross-linking process of MX-gelatin methacrylate (GelMa) composites with different types of photoinitiators and MX concentrations to prepare biocompatible, injectable, conductive, and photocurable composite hydrogels. The examined photoinitiators were Eosin Y, Irgacure 2959 (Type I), and lithium phenyl-2,4,6-trimethylbenzoyl phosphinate (Type II). The light-blocking effect of MX strongly affected the thickness, pore structure, swelling ratio, degradation, and mechanical properties of the light-cured hydrogels. Uniform distribution of MX in the hydrogel matrix was achieved at concentrations up to 0.04 wt % but the film thickness and curing times varied depending on the type of photoinitiator. It was feasible to prepare thin films (0.5 mm) by employing Type I photoinitiators under a relatively long light irradiation (4-5 min) while thick films with centimeter sizes could be rapidly cured by using Type II photoinitiator (<60 s). The mechanical properties, including elastic modulus, toughness, and stress to break for the Type II hydrogels were significantly superior (up to 300%) to those of Type I hydrogels depending on the MX concentration. The swelling ratio was also remarkably higher (648-1274%). A conductivity of about 1 mS/cm was attained at 0.1 mg/mL MX for the composite hydrogel cured by the Type I photoinitiator. In vitro cytocompatibility assays determined that the hydrogels promoted cell viability, metabolic activity, and robust proliferation of C2C12 myoblasts, which indicated their potential to support muscle cell growth during myogenesis. The developed photocurable GelMa-MX hydrogels have the potential to serve as bioactive and conductive scaffolds to modulate cellular functions and for tissue-device interfacing.
Collapse
Affiliation(s)
- Roya Lotfi
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Nooshin Zandi
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-11155, Tehran 14588-89694, Iran
| | - Ali Pourjavadi
- Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran 14588-89694, Iran
| | | | - Leonid Gurevich
- Materials and Production, Aalborg University, Aalborg 9220, Denmark
| | - Mehdi Mehrali
- Department of Civil and Mechanical Engineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | | | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Aalborg 9260, Denmark
| | - Elnaz Tamjid
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran 14588-89694, Iran
| | - Abdolreza Simchi
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran 14588-89694, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-11155, Tehran 14588-89694, Iran
| |
Collapse
|
2
|
Monteiro LPG, Rodrigues JMM, Mano JF. In situ generated hemostatic adhesives: From mechanisms of action to recent advances and applications. BIOMATERIALS ADVANCES 2023; 155:213670. [PMID: 37952461 DOI: 10.1016/j.bioadv.2023.213670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023]
Abstract
Conventional surgical closure techniques, such as sutures, clips, or skin closure strips, may not always provide optimal wound closure and may require invasive procedures, which can result in potential post-surgical complications. As result, there is a growing demand for innovative solutions to achieve superior wound closure and improve patient outcomes. To overcome the abovementioned issues, in situ generated hemostatic adhesives/sealants have emerged as a promising alternative, offering a targeted, controllable, and minimally invasive procedure for a wide variety of medical applications. The aim of this review is to provide a comprehensive overview of the mechanisms of action and recent advances of in situ generated hemostatic adhesives, particularly protein-based, thermoresponsive, bioinspired, and photocrosslinkable formulations, as well as the design challenges that must be addressed. Overall, this review aims to enhance a comprehensive understanding of the latest advancements of in situ generated hemostatic adhesives and their mechanisms of action, with the objective of promoting further research in this field.
Collapse
Affiliation(s)
- Luís P G Monteiro
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João M M Rodrigues
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Wang X, Zhang X, Yang X, Guo X, Liu Y, Li Y, Ding Z, Teng Y, Hou S, Shi J, Lv Q. An Antibacterial and Antiadhesion In Situ Forming Hydrogel with Sol-Spray System for Noncompressible Hemostasis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:662-676. [PMID: 36562696 DOI: 10.1021/acsami.2c19662] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Noncompressible hemorrhage is a major cause of posttrauma death and occupies the leading position among potentially preventable trauma-associated deaths. Recently, multiple studies have shown that strongly adhesive materials can serve as hemostatic materials for noncompressible hemorrhage. However, the risk of severe tissue adhesion limits the use of adhesive hydrogels as hemostatic materials. Here, we report a promising material system comprising an injectable sol and liquid spray as a potential solution. Injectable sol is mainly composed of gelatin (GEL) and sodium alginate (SA), which possess hemostasis and adhesive properties. The liquid spray component, a mixture of tannic acid (TA) and calcium chloride (CaCl2), rapidly forms an antibacterial, antiadhesive and smooth film structure upon contact with the sol. In vitro and in vivo experiments demonstrated the bioabsorbable, biocompatible, antibacterial, and antiadhesion properties of the in situ forming hydrogel with a sol-spray system. Importantly, the addition of tranexamic acid (TXA) enhanced hemostatic performance in noncompressible areas and in deep wound hemorrhage. Our study offers a new multifunctional hydrogel system to achieve noncompressible hemostasis.
Collapse
Affiliation(s)
- Xiudan Wang
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou325026, China
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Xin Zhang
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Xinran Yang
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou325026, China
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Xiaoqin Guo
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Yanqing Liu
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Yongmao Li
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou325026, China
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Ziling Ding
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Yanjiao Teng
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou325026, China
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Shike Hou
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou325026, China
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Jie Shi
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou325026, China
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| | - Qi Lv
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou325026, China
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin300072, China
| |
Collapse
|
4
|
Vahdati M, Hourdet D, Creton C. Soft Underwater Adhesives based on Weak Molecular Interactions. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
5
|
Shokrani H, Shokrani A, Seidi F, Munir MT, Rabiee N, Fatahi Y, Kucinska-Lipka J, Saeb MR. Biomedical engineering of polysaccharide-based tissue adhesives: Recent advances and future direction. Carbohydr Polym 2022; 295:119787. [DOI: 10.1016/j.carbpol.2022.119787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/23/2022] [Indexed: 12/28/2022]
|
6
|
Trucco D, Riacci L, Vannozzi L, Manferdini C, Arrico L, Gabusi E, Lisignoli G, Ricotti L. Primers for the Adhesion of Gellan Gum-Based Hydrogels to the Cartilage: A Comparative Study. Macromol Biosci 2022; 22:e2200096. [PMID: 35817025 DOI: 10.1002/mabi.202200096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/06/2022] [Indexed: 11/09/2022]
Abstract
A stable adhesion to the cartilage is a crucial requisite for hydrogels used for cartilage regeneration. Indeed, a weak interface between the tissue and the implanted material may produce a premature detachment and thus the failure of the regeneration processes. Fibrin glue, cellulose nanofibers and catecholamines have been proposed in the state-of-the-art as primers to improve the adhesion. However, no studies focused on a systematic comparison of their performance. This work aims to evaluate the adhesion strength between ex vivo cartilage specimens and polysaccharide hydrogels (gellan gum and methacrylated gellan gum), by applying the mentioned primers as intermediate layer. Results show that the fibrin glue and the cellulose nanofibers improve the adhesion strength, while catecholamines do not guarantee reaching a clinically acceptable value. Stem cells embedded in gellan gum hydrogels reduce the adhesion strength when fibrin glue is used as a primer, being anyhow still sufficient for in vivo applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Diego Trucco
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy.,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy.,IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Via di Barbiano, 1/10, Bologna, 40136, Italy
| | - Laura Riacci
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy.,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Lorenzo Vannozzi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy.,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Cristina Manferdini
- IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Via di Barbiano, 1/10, Bologna, 40136, Italy
| | - Lorenzo Arrico
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy.,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Elena Gabusi
- IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Via di Barbiano, 1/10, Bologna, 40136, Italy
| | - Gina Lisignoli
- IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Via di Barbiano, 1/10, Bologna, 40136, Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy.,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| |
Collapse
|
7
|
Shokri M, Dalili F, Kharaziha M, Baghaban Eslaminejad M, Ahmadi Tafti H. Strong and bioactive bioinspired biomaterials, next generation of bone adhesives. Adv Colloid Interface Sci 2022; 305:102706. [PMID: 35623113 DOI: 10.1016/j.cis.2022.102706] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/20/2022] [Accepted: 05/15/2022] [Indexed: 12/29/2022]
Abstract
The bone adhesive is a clinical requirement for complicated bone fractures always articulated by surgeons. Applying glue is a quick and easy way to fix broken bones. Adhesives, unlike conventional fixation methods such as wires and sutures, improve healing conditions and reduce postoperative pain by creating a complete connection at the fractured joint. Despite many efforts in the field of bone adhesives, the creation of a successful adhesive with robust adhesion and appropriate bioactivity for the treatment of bone fractures is still in its infancy. Because of the resemblance of the body's humid environment to the underwater environment, in the latest decades, researchers have pursued inspiration from nature to develop strong bioactive adhesives for bone tissue. The aim of this review article is to discuss the recent state of the art in bone adhesives with a specific focus on biomimetic adhesives, their action mechanisms, and upcoming perspective. Firstly, the adhesive biomaterials with specific affinity to bone tissue are introduced and their rational design is studied. Consequently, various types of synthetic and natural bioadhesives for bone tissue are comprehensively overviewed. Then, bioinspired-adhesives are described, highlighting relevant structures and examples of biomimetic adhesives mainly made of DOPA and the complex coacervates inspired by proteins secreted in mussel and sandcastle worms, respectively. Finally, this article overviews the challenges of the current bioadhesives and the future research for the improvement of the properties of biomimetic adhesives for use as bone adhesives.
Collapse
Affiliation(s)
- Mahshid Shokri
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Faezeh Dalili
- School of Metallurgy & Materials Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Hossein Ahmadi Tafti
- Tehran Heart Hospital Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Long S, Xie C, Lu X. Natural polymer‐based adhesive hydrogel for biomedical applications. BIOSURFACE AND BIOTRIBOLOGY 2022. [DOI: 10.1049/bsb2.12036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Siyu Long
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu China
- Yibin Research Institute Southwest Jiaotong University Yibin China
| | - Chaoming Xie
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu China
- Yibin Research Institute Southwest Jiaotong University Yibin China
| | - Xiong Lu
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu China
- Yibin Research Institute Southwest Jiaotong University Yibin China
| |
Collapse
|
9
|
Zhao X, Li S, Du X, Li W, Wang Q, He D, Yuan J. Natural polymer-derived photocurable bioadhesive hydrogels for sutureless keratoplasty. Bioact Mater 2022; 8:196-209. [PMID: 34541396 PMCID: PMC8424423 DOI: 10.1016/j.bioactmat.2021.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/08/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
Keratoplasty is the gold standard treatment for visual impairment caused by corneal damage. The use of suturing as the bonding method is the source of many complications following keratoplasty. Currently available corneal adhesives do not have both adequate adhesive strength and acceptable biocompatibility. Herein, we developed a photocurable bioadhesive hydrogel which was composed of gelatin methacryloyl and oxidized dextran for sutureless keratoplasty. The bioadhesive hydrogel exhibited high light transmittance, resistance to enzymatic degradation and excellent biocompatibility. It also had higher adhesive strength than commercial adhesives (fibrin glue). In a rabbit model of lamellar keratoplasty, donor corneal grafts could be closely bonded to the recipient corneal bed and remained attached for 56 days by using of this in situ photopolymerized bioadhesive hydrogel. The operated cornea maintained transparent and noninflamed. Sutureless keratoplasty using bioadhesive hydrogel allowed rapid graft re-epithelialization, typically within 7 days. In vivo confocal microscopic and histological evaluation of the operated cornea did not show any apparent abnormalities in terms of corneal cells and ultrastructure. Thus, this bioadhesive hydrogel is exhibited to be an appealing alternative to sutures for keratoplasty and other corneal surgeries.
Collapse
Affiliation(s)
| | | | - Xinyue Du
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Weihua Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Qian Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Dalian He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| |
Collapse
|
10
|
Narayanan A, Dhinojwala A, Joy A. Design principles for creating synthetic underwater adhesives. Chem Soc Rev 2021; 50:13321-13345. [PMID: 34751690 DOI: 10.1039/d1cs00316j] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Water and adhesives have a conflicting relationship as demonstrated by the failure of most man-made adhesives in underwater environments. However, living creatures routinely adhere to substrates underwater. For example, sandcastle worms create protective reefs underwater by secreting a cocktail of protein glue that binds mineral particles together, and mussels attach themselves to rocks near tide-swept sea shores using byssal threads formed from their extracellular secretions. Over the past few decades, the physicochemical examination of biological underwater adhesives has begun to decipher the mysteries behind underwater adhesion. These naturally occurring adhesives have inspired the creation of several synthetic materials that can stick underwater - a task that was once thought to be "impossible". This review provides a comprehensive overview of the progress in the science of underwater adhesion over the past few decades. In this review, we introduce the basic thermodynamics processes and kinetic parameters involved in adhesion. Second, we describe the challenges brought by water when adhering underwater. Third, we explore the adhesive mechanisms showcased by mussels and sandcastle worms to overcome the challenges brought by water. We then present a detailed review of synthetic underwater adhesives that have been reported to date. Finally, we discuss some potential applications of underwater adhesives and the current challenges in the field by using a tandem analysis of the reported chemical structures and their adhesive strength. This review is aimed to inspire and facilitate the design of novel synthetic underwater adhesives, that will, in turn expand our understanding of the physical and chemical parameters that influence underwater adhesion.
Collapse
Affiliation(s)
- Amal Narayanan
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| | - Abraham Joy
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| |
Collapse
|
11
|
Tseng YM, Narayanan A, Mishra K, Liu X, Joy A. Light-Activated Adhesion and Debonding of Underwater Pressure-Sensitive Adhesives. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29048-29057. [PMID: 34110761 DOI: 10.1021/acsami.1c04348] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pressure-sensitive adhesives (PSAs) such as sticky notes and labels are a ubiquitous part of modern society. PSAs with a wide range of peel adhesion strength are designed by tailoring the bulk and surface properties of the adhesive. However, designing an adhesive with strong initial adhesion but showing an on-demand decrease in adhesion has been an enduring challenge in the design of PSAs. To address this challenge, we designed alkoxyphenacyl-based polyurethane (APPU) PSAs that show a photoactivated increase and decrease in peel strength. With increasing time of light exposure, the failure mode of our PSAs shifted from cohesive to adhesive failure, providing residue-free removal with up to 83% decrease in peel strength. The APPU-PSAs also adhere to substrates submerged underwater and show a similar photoinduced decrease in adhesion strength.
Collapse
Affiliation(s)
- Yen-Ming Tseng
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Amal Narayanan
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Kaushik Mishra
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Xinhao Liu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Abraham Joy
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
12
|
Narayanan A, Kaur S, Kumar N, Tsige M, Joy A, Dhinojwala A. Cooperative Multivalent Weak and Strong Interfacial Interactions Enhance the Adhesion of Mussel-Inspired Adhesives. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00742] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Amal Narayanan
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Sukhmanjot Kaur
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Nityanshu Kumar
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Mesfin Tsige
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Abraham Joy
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|