1
|
Gamelas SRD, Tomé JPC, Tomé AC, Lourenço LMO. Advances in photocatalytic degradation of organic pollutants in wastewaters: harnessing the power of phthalocyanines and phthalocyanine-containing materials. RSC Adv 2023; 13:33957-33993. [PMID: 38019980 PMCID: PMC10658578 DOI: 10.1039/d3ra06598g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
Access to clean water is increasingly challenging worldwide due to human activities and climate change. Wastewater treatment and utilization offer a promising solution by reducing the reliance on pure underground water. However, it is crucial to develop efficient and sustainable methods for wastewater purification. Among the emerging wastewater treatment strategies, photocatalysis has gained significant attention for decomposing organic pollutants in water, especially when combined with sunlight and a recoverable photocatalyst. Heterogeneous photocatalysts have distinct advantages, as they can be recovered and reused without significant loss of activity over multiple cycles. Phthalocyanine dyes, with their exceptional photophysical properties, are particularly valuable for homogeneous and heterogeneous photocatalysis. By immobilizing these photosensitizers in various supports, hybrid materials extend their light absorption into the visible spectrum, complementing most supports' limited UV light absorption. The novelty and research importance of this review stems from its discussion of the multifaceted approach to treating contaminated wastewater with phthalocyanines and materials containing phthalocyanines. It highlights key aspects of each study, including photocatalytic efficiency, recyclability characteristics, investigation of the generation of oxygen species responsible for degradation, identification of the major degradation byproducts for each pollutant, and others. Moreover, the review includes tables that illustrate and compare the various phthalocyanines and supporting materials employed in each study for pollutant degradation. Additionally, almost all photocatalysts mentioned in this review could degrade at least 5% of the pollutant, and more than 50 photocatalysts showed photocatalytic rates above 50%. When immobilized in some support, the synergistic effect of the phthalocyanine was visible in the photocatalytic rate of the studied pollutant. However, when performing these types of works, it is necessary to understand the degradation products of each pollutant and their relative toxicities. Along with this, recyclability and stability studies are also necessary. Despite the good results presented in this review, some of the works lack those studies. Moreover, none of the works mentions any study in wastewater.
Collapse
Affiliation(s)
- Sara R D Gamelas
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro 3810-193 Aveiro Portugal
| | - João P C Tomé
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa 1049-001 Lisboa Portugal
| | - Augusto C Tomé
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro 3810-193 Aveiro Portugal
| | - Leandro M O Lourenço
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro 3810-193 Aveiro Portugal
| |
Collapse
|
2
|
Vrithias NR, Katsara K, Papoutsakis L, Papadakis VM, Viskadourakis Z, Remediakis IN, Kenanakis G. Three-Dimensional-Printed Photocatalytic Sponges Decorated with Mn-Doped ZnO Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5672. [PMID: 37629963 PMCID: PMC10456673 DOI: 10.3390/ma16165672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
The present work reports on the fabrication of high-density polyethylene sponges, decorated with Mn-doped ZnO nanostructures. The sponges were developed utilizing three-dimensional printing technology, while Mn-doped ZnO nanostructures, with varying doping levels, were grown at mild temperatures. The nanostructures were fully characterized by means of scanning electron microscopy, X-ray diffraction, and Raman spectroscopy, revealing the existence of Mn doping. Moreover, their photocatalytic properties were investigated using the degradation/decolorization of a commercially available liquid laundry detergent, based on synthetic, less foaming ingredients, under UV irradiation. The Mn-doped ZnO nanostructures show better photocatalytic activity at higher doping levels. This study demonstrates that it is possible to achieve the adequate degradation of a typical detergent solution in water by means of low-cost and environmentally friendly approaches, while Mn-doped ZnO/HDPE nanostructures are good candidates for real environmental applications.
Collapse
Affiliation(s)
- Nikolaos Rafael Vrithias
- Institute of Electronic Structure and Laser, Foundation for Research & Technology-Hellas, N. Plastira 100, 700 13 Heraklion, Crete, Greece; (N.R.V.)
- Department of Materials Science and Technology, University of Crete, 710 03 Heraklion, Crete, Greece
| | - Klytaimnistra Katsara
- Institute of Electronic Structure and Laser, Foundation for Research & Technology-Hellas, N. Plastira 100, 700 13 Heraklion, Crete, Greece; (N.R.V.)
- Department of Agriculture, Hellenic Mediterranean University, Estavromenos, 714 10 Heraklion, Crete, Greece
| | - Lampros Papoutsakis
- Institute of Electronic Structure and Laser, Foundation for Research & Technology-Hellas, N. Plastira 100, 700 13 Heraklion, Crete, Greece; (N.R.V.)
- Department of Chemistry, University of Crete, 710 03 Heraklion, Crete, Greece
| | - Vassilis M. Papadakis
- Institute of Electronic Structure and Laser, Foundation for Research & Technology-Hellas, N. Plastira 100, 700 13 Heraklion, Crete, Greece; (N.R.V.)
- Department of Industrial Design and Production Engineering, University of West Attica, 122 43 Athens, Greece
| | - Zacharias Viskadourakis
- Institute of Electronic Structure and Laser, Foundation for Research & Technology-Hellas, N. Plastira 100, 700 13 Heraklion, Crete, Greece; (N.R.V.)
| | - Ioannis N. Remediakis
- Institute of Electronic Structure and Laser, Foundation for Research & Technology-Hellas, N. Plastira 100, 700 13 Heraklion, Crete, Greece; (N.R.V.)
- Department of Materials Science and Technology, University of Crete, 710 03 Heraklion, Crete, Greece
| | - George Kenanakis
- Institute of Electronic Structure and Laser, Foundation for Research & Technology-Hellas, N. Plastira 100, 700 13 Heraklion, Crete, Greece; (N.R.V.)
| |
Collapse
|
3
|
Ikram M, Jamal F, Haider A, Dilpazir S, Shujah T, Naz M, Imran M, Ul-Hamid A, Shahzadi I, Ullah H, Nabgan W, Ali S. Efficient Photocatalytic Dye Degradation and Bacterial Inactivation by Graphitic Carbon Nitride and Starch-Doped Magnesium Hydroxide Nanostructures. ACS OMEGA 2022; 7:39998-40008. [PMID: 36385836 PMCID: PMC9648148 DOI: 10.1021/acsomega.2c04650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The removal of hazardous pollutants from water is becoming an increasingly interesting topic of research considering their impact on the environment and the ecosystem. This work was carried out to synthesize graphitic carbon nitride (g-C3N4) and starch-doped magnesium hydroxide (g-C3N4/St-Mg(OH)2) nanostructures via a facile co-precipitation process. The focus of this study is to treat polluted water and bactericidal behavior with a ternary system (doping-dependent Mg(OH)2). Different concentrations (2 and 4 wt %) of g-C3N4 were doped in a fixed amount of starch and Mg(OH)2 to degrade methylene blue dye from an aqueous solution with bactericidal potential against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) pathogens. The textural structures, morphological evolutions, and optical characteristics of the as-prepared samples were analyzed using advanced characterization techniques. X-ray diffraction confirmed the hexagonal phase of Mg(OH)2 with improved crystallinity upon doping. Fourier transform infrared spectroscopy revealed Mg(OH)2 stretching vibrations and other functional groups. UV-visible spectroscopy exhibited a red shift (bathochromic effect) in absorption spectra representing the decrease in energy band gap (E g). Photoluminescence patterns were recorded to study recombination of charge carriers (e- and h+). A significant enhancement in photodegradation efficiency (97.62%) and efficient bactericidal actions against E. coli (14.10 mm inhibition zone) and S. aureus (7.45 mm inhibition zone) were observed for higher doped specimen 4% g-C3N4/St-Mg(OH)2.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore54000, Pakistan
| | - Farzana Jamal
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore54000, Pakistan
| | - Ali Haider
- Department
of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan66000, Pakistan
| | - Sobia Dilpazir
- Department
of Chemistry, Comsats University, Islamabad45550, Pakistan
| | - Tahira Shujah
- Department
of Physics, University of Central Punjab, Lahore54000, Pakistan
| | - Misbah Naz
- Department
of Chemistry, Division of Science & Technology, University of Education, Lahore54000, Pakistan
| | - Muhammad Imran
- Department
of Chemistry, Government College University
Faisalabad, Pakpattan
Road, Sahiwal, Punjab57000, Pakistan
| | - Anwar Ul-Hamid
- Core
Research Facilities, King Fahd University
of Petroleum & Minerals, Dhahran31261, Saudi Arabia
| | - Iram Shahzadi
- Punjab
University College of Pharmacy, University
of the Punjab, Allama Iqbal Campus, Lahore54000, Pakistan
| | - Hassam Ullah
- Department
of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore54000, Pakistan
| | - Walid Nabgan
- Departament
d’Enginyeria Química, Universitat
Rovira i Virgili, Av
Països Catalans 26, Tarragona43007, Spain
| | - Salamat Ali
- Department
of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore54000, Pakistan
| |
Collapse
|
4
|
Degradation of 4-Tert-Butylphenol in Water Using Mono-Doped (M1: Mo, W) and Co-Doped (M2-M1: Cu, Co, Zn) Titania Catalysts. NANOMATERIALS 2022; 12:nano12142326. [PMID: 35889551 PMCID: PMC9318463 DOI: 10.3390/nano12142326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 02/05/2023]
Abstract
Mono-doped (Mo-TiO2 and W-TiO2) and co-doped TiO2 (Co-Mo-TiO2, Co-W-TiO2, Cu-Mo-TiO2, Cu-W-TiO2, Zn-Mo-TiO2, and Zn-W-TiO2) catalysts were synthesized by simple impregnation methods and tested for the photocatalytic degradation of 4-tert-butylphenol in water under UV (365 nm) light irradiation. The catalysts were characterized with various analytical methods. X-ray diffraction (XRD), Raman, Diffuse reflectance (DR) spectroscopies, Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and Energy dispersive spectroscopy (EDS) were applied to investigate the structure, optical properties, morphology, and elemental composition of the prepared catalysts. The XRD patterns revealed the presence of peaks corresponding to the WO3 in W-TiO2, Co-W-TiO2, Cu-W-TiO2, and Zn-W-TiO2. The co-doping of Cu and Mo to the TiO2 lattice was evidenced by the shift of XRD planes towards higher 2θ values, confirming the lattice distortion. Elemental mapping images confirmed the successful impregnation and uniform distribution of metal particles on the TiO2 surface. Compared to undoped TiO2, Mo-TiO2 and W-TiO2 exhibited a lower energy gap. Further incorporation of Mo-TiO2 with Co or Cu introduced slight changes in energy gap and light absorption characteristics, particularly visible light absorption. In addition, photoluminescence (PL) showed that Cu-Mo-TiO2 has a weaker PL intensity than undoped TiO2. Thus, Cu-Mo-TiO2 showed better catalytic activity than pure TiO2, achieving complete degradation of 4-tert-butylphenol under UV light irradiation after 60 min. The application of Cu-Mo-TiO2 under solar light conditions was also tested, and 70% of 4-tert-butylphenol degradation was achieved within 150 min.
Collapse
|
5
|
Ikram M, Abid N, Haider A, Ul-Hamid A, Haider J, Shahzadi A, Nabgan W, Goumri-Said S, Butt AR, Benali Kanoun M. Toward efficient dye degradation and the bactericidal behavior of Mo-doped La 2O 3 nanostructures. NANOSCALE ADVANCES 2022; 4:926-942. [PMID: 36131827 PMCID: PMC9418635 DOI: 10.1039/d1na00802a] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/28/2021] [Indexed: 05/15/2023]
Abstract
In this study, different concentrations (0, 0.02, 0.04, and 0.06 wt%) of Mo doped onto La2O3 nanostructures were synthesized using a one-pot co-precipitation process. The aim was to study the ability of Mo-doped La2O3 samples to degrade toxic methylene blue dye in different pH media. The bactericidal potential of synthesized samples was also investigated. The structural properties of prepared samples were examined by XRD. The observed XRD spectrum of La2O3 showed a cubic and hexagonal structure, while no change was recorded in Mo-doped La2O3 samples. Doping with Mo improved the crystallinity of the samples. UV-Vis spectrophotometry and density functional theory calculations were used to assess the optical characteristics of Mo-La2O3. The band gap energy was reduced while the absorption spectra showed prominent peaks due to Mo doping. The HR-TEM results revealed the rod-like morphology of La2O3. The rod-like network appeared to become dense upon doping. A significant degradation of MB was confirmed with Mo; furthermore, the bactericidal activities against S. aureus and E. coli were measured as 5.05 mm and 5.45 mm inhibition zones, respectively, after doping with a high concentration (6%) of Mo.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar Cell Application Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
| | - Namra Abid
- Physics Department, Lahore Garrison University Lahore 54000 Punjab Pakistan
| | - Ali Haider
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture 66000 Multan Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Junaid Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin 300308 China
| | - Anum Shahzadi
- Faculty of Pharmacy, University of the Lahore Lahore Pakistan
| | - Walid Nabgan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| | - Souraya Goumri-Said
- College of Science, Physics Department, Alfaisal University P.O. Box 50927 Riyadh 11533 Saudi Arabia
| | - Alvina Rafiq Butt
- Physics Department, Lahore Garrison University Lahore 54000 Punjab Pakistan
| | - Mohammed Benali Kanoun
- Department of Physics, College of Science, King Faisal University P.O. Box 400 Al-Ahsa 31982 Saudi Arabia
| |
Collapse
|