1
|
Podlesnaia E, Stanca SE, Çinçin B, Zieger G, Csáki A, Fritzsche W. Customizable ligand exchange on the surface of gold nanotriangles enables their application in LSPR-based sensing. NANOSCALE ADVANCES 2024; 6:d4na00352g. [PMID: 39247867 PMCID: PMC11375502 DOI: 10.1039/d4na00352g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024]
Abstract
Nanomaterials made of noble metals have been actively utilized in sensorics and bioanalytics. Nanoparticles of anisotropic shapes are promising for increasing sensitivity due to the generated hotspots of electron density. Such structures can be effectively manufactured by a relatively accessible colloidal synthesis. However, the shape control requires the attachment of a surfactant on specific crystal facets during their growth. Commonly used cetrimonium halides form a closely packed bilayer, lowering the surface accessibility for subsequent (bio)functionalization steps. While there are numerous studies on functionalizing gold nanospheres, novel materials, such as nanotriangles (AuNTs), often require thorough studies to adapt the existing procedures. This is mainly caused by the incomplete characterization of initial nanoparticle colloids in empirically developed protocols. Herein, we report a rational approach utilizing the surface area of AuNTs as a function of both their dimensions and concentration, determined with an express UV-VIS analysis. We demonstrate its efficiency for the exchange of cetyltrimethylammonium chloride (CTAC) with polystyrene sulfonate (PSS) and with biocompatible citrate using direct and indirect methods, respectively. Fourier-transform infrared spectroscopy unequivocally proves the ligand exchange. Such functionalization allows evaluating the bulk refractive index sensitivity of AuNTs as a measure of their potential in LSPR-based sensing.
Collapse
Affiliation(s)
- Ekaterina Podlesnaia
- Department of Nanobiophotonics Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies Albert-Einstein-Straße 9 07745 Jena Germany
| | - Sarmiza Elena Stanca
- Quantum Detection Department Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies Albert-Einstein-Straße 9 07745 Jena Germany
| | - Buşra Çinçin
- Department of Nanobiophotonics Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies Albert-Einstein-Straße 9 07745 Jena Germany
| | - Gabriel Zieger
- Quantum Detection Department Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies Albert-Einstein-Straße 9 07745 Jena Germany
| | - Andrea Csáki
- Department of Nanobiophotonics Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies Albert-Einstein-Straße 9 07745 Jena Germany
| | - Wolfgang Fritzsche
- Department of Nanobiophotonics Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies Albert-Einstein-Straße 9 07745 Jena Germany
| |
Collapse
|
2
|
Liu Z, Wang Z, Guckel J, Akbarian Z, Seifert TJ, Park D, Schlickum U, Stosch R, Etzkorn M. Controlling Nanoparticle Distance by On-Surface DNA-Origami Folding. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310955. [PMID: 38634220 DOI: 10.1002/smll.202310955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/11/2024] [Indexed: 04/19/2024]
Abstract
DNA origami is a flexible platform for the precise organization of nano-objects, enabling numerous applications from biomedicine to nano-photonics. Its huge potential stems from its high flexibility that allows customized structures to meet specific requirements. The ability to generate diverse final structures from a common base by folding significantly enhances design variety and is regularly occurring in liquid. This study describes a novel approach that combines top-down lithography with bottom-up DNA origami techniques to control folding of the DNA origami with the adsorption on pre-patterned surfaces. Using this approach, tunable plasmonic dimer nano-arrays are fabricated on a silicon surface. This involves employing electron beam lithography to create adsorption sites on the surface and utilizing self-organized adsorption of DNA origami functionalized with two gold nanoparticles (AuNPs). The desired folding of the DNA origami helices can be controlled by the size and shape of the adsorption sites. This approach can for example be used to tune the center-to-center distance of the AuNPs dimers on the origami template. To demonstrate this technique's efficiency, the Raman signal of dye molecules (carboxy tetramethylrhodamine, TAMRA) coated on the AuNPs surface are investigated. These findings highlight the potential of tunable DNA origami-based plasmonic nanostructures for many applications.
Collapse
Affiliation(s)
- Zhe Liu
- Institute of Applied Physics, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Zunhao Wang
- Physikalisch-Technische Bundesanstalt, 38106, Braunschweig, Germany
| | - Jannik Guckel
- Physikalisch-Technische Bundesanstalt, 38106, Braunschweig, Germany
| | - Ziba Akbarian
- Institute of Applied Physics, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Tim J Seifert
- Institute of Applied Physics, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Daesung Park
- Physikalisch-Technische Bundesanstalt, 38106, Braunschweig, Germany
| | - Uta Schlickum
- Institute of Applied Physics, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Rainer Stosch
- Physikalisch-Technische Bundesanstalt, 38106, Braunschweig, Germany
| | - Markus Etzkorn
- Institute of Applied Physics, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| |
Collapse
|
3
|
Podlesnaia E, Hoxha A, Achikkulathu S, Kandathikudiyil Antony A, Antony JP, Spörl K, Csáki A, Leiterer M, Fritzsche W. Variations in CTAC batches from different suppliers highly affect the shape yield in seed-mediated synthesis of gold nanotriangles. Sci Rep 2024; 14:19610. [PMID: 39179614 PMCID: PMC11344135 DOI: 10.1038/s41598-023-50337-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/19/2023] [Indexed: 08/26/2024] Open
Abstract
The rapidly developing miniaturization in numerous fields require low-demanding but robust methods of nanomaterial production. Colloidal synthesis provides great flexibility in product material, size, and shape. Gold nanoparticle synthesis has been thoroughly studied, however, recent reports on mechanistic insights of crystal formation have been hindered by the numerous procedures and parameter optimization works. With every new study, scientists fill another blank space on the map of understanding anisotropic growth and find out the critical parameters. In the current work, we highlight the choice importance for surfactant supplier in achieving the gold nanotriangle formation. We systematically study the variation in the shape yield when utilizing five batches of cetyltrimethylammonium chloride (CTAC) from varied suppliers. Using analytical techniques, we search for deviations causing such variation, e.g. different impurity content. We found only a marginal effect of iodine contamination on the studied system, excluding this factor as decisive in contrast to what was proposed earlier in the literature, and leaving the high dependency of the yield to originate from yet unknown reagent characteristics. A deeper understanding of these factors would provide highly effective protocols lowering the reagent consumption and increasing the accessibility of nanomaterials manufactured in a sustainable manner.
Collapse
Affiliation(s)
- Ekaterina Podlesnaia
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies, 07745, Jena, Germany.
| | - Amarildo Hoxha
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies, 07745, Jena, Germany
| | - Sreevalsan Achikkulathu
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies, 07745, Jena, Germany
| | - Athulesh Kandathikudiyil Antony
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies, 07745, Jena, Germany
| | - Jerestine Philomina Antony
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies, 07745, Jena, Germany
| | - Kathrin Spörl
- Thüringer Landesamt für Landwirtschaft und Ländlichen Raum (TLLLR), 07743, Jena, Germany
| | - Andrea Csáki
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies, 07745, Jena, Germany
| | - Matthias Leiterer
- Thüringer Landesamt für Landwirtschaft und Ländlichen Raum (TLLLR), 07743, Jena, Germany
| | - Wolfgang Fritzsche
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of the Leibniz Research Alliance - Leibniz Health Technologies, 07745, Jena, Germany.
| |
Collapse
|
4
|
Roa S, Kaihara T, Pedano ML, Parsamyan H, Vavassori P. Laser polarization as a critical factor in the SERS-based molecular sensing performance of nano-gapped Au nanowires. NANOSCALE 2024; 16:15280-15297. [PMID: 39078267 DOI: 10.1039/d4nr00817k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Nowadays, Au dimer-based nanostructures are exhaustively studied due to their outstanding potential as plasmonic nanoantennas for future applications in high-sensitivity molecular sensing by Surface-Enhanced Raman Spectroscopy (SERS). In this work, we analyze nano-gapped Au nanowires (NWs) or Au-NW dimers for designing efficient nanoantennas, reporting an exhaustive study about dimer length and laser polarization orientation effects on their SERS-based molecular sensing performance. Arrays of nanoantennas with gaps of about 22 ± 4 nm, nominal square cross-sections of 60 nm × 60 nm, and different segment lengths from 300 nm up to 1200 nm were fabricated by Au evaporation and subsequent e-beam lithography. The SERS performance was studied by confocal Raman microscopy using a linearly-polarized 633 nm laser. A critical impact of the polarization alignment on the spectral resolution of the studied Raman marker imprint was observed. The results show that the Raman signal is maximized by aligning the polarization orientation with the nanowire long axis, it is reduced by increasing the relative angle, and it is abruptly minimized when both are perpendicular. These observations were consistent with numerical simulations carried out by the FDTD method, which predicts a similar dependence between the orientation of linearly-polarized light and electric-near field amplification in the nano-gap zone. Our results provide an interesting paradigm and relevant insights in determining the role of laser polarization in the Raman signal enhancement in nano-gapped Au nanowires, showing the key role of this measurement condition on the SERS-based molecular sensing efficiency of this kind of nanostructure.
Collapse
Affiliation(s)
- Simón Roa
- Instituto de Nanociencia y Nanotecnología (CNEA - CONICET), Nodo Bariloche, Av. Bustillo 9500, C.P. 8400, S.C. de Bariloche, Río Negro, Argentina.
- Laboratorio de Fotónica y Optoelectrónica, Centro Atómico Bariloche, Av. Bustillo 9500, 8400 S. C. de Bariloche, Río Negro, Argentina
| | - Terunori Kaihara
- CIC nanoGUNE BRTA, Tolosa Hiribidea, 76, 20018 Donostia-San Sebastián, Spain
| | - María Laura Pedano
- Instituto de Nanociencia y Nanotecnología (CNEA - CONICET), Nodo Bariloche, Av. Bustillo 9500, C.P. 8400, S.C. de Bariloche, Río Negro, Argentina.
- Laboratorio de Fotónica y Optoelectrónica, Centro Atómico Bariloche, Av. Bustillo 9500, 8400 S. C. de Bariloche, Río Negro, Argentina
- Instituto Balseiro, CNEA-Universidad Nacional de Cuyo (UNCUYO), Av. E. Bustillo 9500, C.P. 8400, S. C. de Bariloche, Río Negro, Argentina
| | - Henrik Parsamyan
- Institute of Physics, Yerevan State University, 1 Alex Manoogian, Yerevan 0025, Armenia
| | - Paolo Vavassori
- CIC nanoGUNE BRTA, Tolosa Hiribidea, 76, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
5
|
Darwish MA, Abd-Elaziem W, Elsheikh A, Zayed AA. Advancements in nanomaterials for nanosensors: a comprehensive review. NANOSCALE ADVANCES 2024; 6:4015-4046. [PMID: 39114135 PMCID: PMC11304082 DOI: 10.1039/d4na00214h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/23/2024] [Indexed: 08/10/2024]
Abstract
Nanomaterials (NMs) exhibit unique properties that render them highly suitable for developing sensitive and selective nanosensors across various domains. This review aims to provide a comprehensive overview of nanomaterial-based nanosensors, highlighting their applications and the classification of frequently employed NMs to enhance sensitivity and selectivity. The review introduces various classifications of NMs commonly used in nanosensors, such as carbon-based NMs, metal-based NMs, and others, elucidating their exceptional properties, including high thermal and electrical conductivity, large surface area-to-volume ratio and good biocompatibility. A thorough examination of literature sources was conducted to gather information on NMs-based nanosensors' characteristics, properties, and fabrication methods and their application in diverse sectors such as healthcare, environmental monitoring, industrial processes, and security. Additionally, advanced applications incorporating machine learning techniques were analyzed to enhance the sensor's performance. This review advances the understanding and development of nanosensor technologies by providing insights into fabrication techniques, characterization methods, applications, and future outlook. Key challenges such as robustness, biocompatibility, and scalable manufacturing are also discussed, offering avenues for future research and development in this field.
Collapse
Affiliation(s)
- Moustafa A Darwish
- Physics Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - Walaa Abd-Elaziem
- Department of Mechanical Design and Production Engineering, Faculty of Engineering, Zagazig University P.O. Box 44519 Egypt
- Department of Materials Science and Engineering, Northwestern University Evanston IL 60208 USA
| | - Ammar Elsheikh
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Tanta University Tanta 31521 Egypt
- Department of Industrial and Mechanical Engineering, Lebanese American University P.O. Box 36 / S-12 Byblos Lebanon
| | - Abdelhameed A Zayed
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Tanta University Tanta 31521 Egypt
| |
Collapse
|
6
|
Nocerino V, Miranda B, Dardano P, Sanità G, Esposito E, De Stefano L. Protocol for synthesis of spherical silver nanoparticles with stable optical properties and characterization by transmission electron microscopy. STAR Protoc 2024; 5:102920. [PMID: 38401124 PMCID: PMC10906526 DOI: 10.1016/j.xpro.2024.102920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/11/2024] [Accepted: 02/09/2024] [Indexed: 02/26/2024] Open
Abstract
The synthesis of metallic plasmonic nanoparticles (NPs) faces challenges in stability and reproducibility, especially with silver. Here, we present a protocol for tunable synthesis of spherical silver NPs (AgNPs) with stable optical properties. We describe steps for preparing solutions, morphological characterization of AgNPs by transmission electron microscopy, and testing stability. AgNPs exhibit enduring stability and compatibility with various pH values. Moreover, they can be functionalized for optical biosensing applications, offering versatility in nanomaterial applications.
Collapse
Affiliation(s)
- Valeria Nocerino
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; Department of Engineering (DI), University of Naples Parthenope, Centro Direzionale Isola (C4), 80134 Naples, Italy
| | - Bruno Miranda
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| | - Principia Dardano
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| | - Gennaro Sanità
- Institute of Applied Sciences and Intelligent Systems (ISASI), Naples Cryo Electron Microscopy Laboratory - EYE LAB, National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| | - Emanuela Esposito
- Institute of Applied Sciences and Intelligent Systems (ISASI), Naples Cryo Electron Microscopy Laboratory - EYE LAB, National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| | - Luca De Stefano
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy.
| |
Collapse
|
7
|
Miranda B, Dello Iacono S, Rea I, Borbone F, De Stefano L. Effect of the molecular weight on the sensing mechanism in polyethylene glycol diacrylate/gold nanocomposite optical transducers. Heliyon 2024; 10:e25593. [PMID: 38356564 PMCID: PMC10864976 DOI: 10.1016/j.heliyon.2024.e25593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
The combination of plasmonic nanoparticles and hydrogels results in nanocomposite materials with unprecedented properties that give rise to powerful platforms for optical biosensing. Herein, we propose a physicochemical characterization of plasmonic hydrogel nanocomposites made of polyethylene glycol diacrylate (PEGDA) hydrogels with increasing molecular weights (700-10000 Da) and gold nanoparticles (AuNPs, ∼60 nm). The swelling capability, mechanical properties, and thermal responses of the nanocomposites are analyzed and the combination with the resulting optical properties is elucidated. The different optomechanical properties of the proposed nanocomposites result in different transduction mechanisms, which can be exploited for several biosensing applications. A correlation between the polymer molecular weight, the effective refractive index of the material, and the optical response is found by combining experimental data and numerical simulations. In particular, the localized surface plasmon resonance (LSPR) position of the AuNPs was found to follow a parabolic profile as a function of the monomer molecular weight (MW), while its absorbance intensity was found as inversely proportional to the monomer MW. Low MW PEGDA nanocomposites were found to be responsive to refractive index variations for small molecule sensing. Differently, high MW PEGDA nanocomposites exhibited absorbance intensity increase/decrease as a function of the hydrophobicity/hydrophilicity of the targeted small molecule. The proposed optomechanical model paves the way to the design of innovative platforms for real-life applications, such as wearable sensing, point-of-care testing, and food monitoring via smart packaging devices.
Collapse
Affiliation(s)
- Bruno Miranda
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council, Via P. Castellino 111, Naples, 80131, Italy
| | - Stefania Dello Iacono
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, P.le Enrico Fermi 1, 80055, Portici, Italy
| | - Ilaria Rea
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council, Via P. Castellino 111, Naples, 80131, Italy
| | - Fabio Borbone
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, Naples, 80126, Italy
| | - Luca De Stefano
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council, Via P. Castellino 111, Naples, 80131, Italy
| |
Collapse
|
8
|
Yilmaz D, Miranda B, Lonardo E, Rea I, De Stefano L, De Luca AC. SERS-based pH-Dependent detection of sulfites in wine by hydrogel nanocomposites. Biosens Bioelectron 2024; 245:115836. [PMID: 37988876 DOI: 10.1016/j.bios.2023.115836] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Sulfur dioxide (SO2) and sulfites are well-known additives in winemaking due to their preservative properties. Although they can prevent oxidation and inhibit microbial growth, they pose health risks and require limitations on their use. Consequently, the total level of SO2 is regulated and several quantification strategies have been proposed. The approved detection methods require the extraction of SO2 by heating and/or acid treatment. Then, iodine or acid/base titrations are conducted for the detection of liberated SO2. Although these methods can provide sensitive detection of SO2, they are complex, time-consuming, and require sample preparation steps and skilled operators. Thus, to overcome these disadvantages, an easy-to-use method, involving simple sample preparation steps, and offering high sensitivity and selectivity, is desirable. Herein, we introduce a SERS-based strategy for SO2 detection in liquids using hydrogel nanocomposites. The hydrogels are prepared by poly(ethylene glycol) diacrylate (PEGDA) in the presence of gold nanoparticles (AuNPs), acting as the SERS substrate. The use of hydrogels ensures a homogenous signal distribution and an efficient collection of SO2, and drying the hydrogels enhances and stabilizes the obtained SO2 signal. The detection strategy is based on the pH-dependent dissociation of SO2. By adjusting the pH value of wine to 10 through simple dilutions, SO2 can be directly detected in wine, down to 0.4 ppm, well below the regulatory limits. The proposed method allows for sensitive, direct, cost-effective detection of SO2 by eliminating the loss of the gaseous form of the sample and avoids titration-based detection methods.
Collapse
Affiliation(s)
- Deniz Yilmaz
- Institute for Experimental Endocrinology and Oncology, "G. Salvatore" (IEOS), National Research Council of Italy (CNR), Naples, Italy
| | - Bruno Miranda
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), Naples, Italy
| | - Enza Lonardo
- Institute of Genetics and Biophysics (IGB), National Research Council of Italy (CNR), Naples, Italy
| | - Ilaria Rea
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), Naples, Italy
| | - Luca De Stefano
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), Naples, Italy.
| | - Anna Chiara De Luca
- Institute for Experimental Endocrinology and Oncology, "G. Salvatore" (IEOS), National Research Council of Italy (CNR), Naples, Italy.
| |
Collapse
|
9
|
Xu X, Li G, Xue L, Dong S, Luo J, Cao Z. Microfluidic devices integrated with plasmonic nanostructures for sensitive fluorescent immunoassays. BIOMICROFLUIDICS 2024; 18:011303. [PMID: 38362304 PMCID: PMC10869169 DOI: 10.1063/5.0174653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/20/2024] [Indexed: 02/17/2024]
Abstract
The robust identification and quantification of various biomarkers is of utmost significance in clinical diagnostics and precision medicine. Fluorescent immunoassays are widely used and considered as a gold standard for biomarker detection due to their high specificity and accuracy. However, current commercial immunoassay tests suffer from limited detection sensitivity and complicated, labor-intensive operation procedures, making them impractical for point-of-care diagnosis, particularly in resource-limited regions. Recently, microfluidic immunoassay devices integrated with plasmonic nanostructures have emerged as a powerful tool for sensitive detection of biomarkers, addressing specific issues, such as integration schemes, easy operation, multiplexed detection, and sensitivity enhancement. In this paper, we provide a discussion on the recent advances in the plasmonic nanostructures integrated with microfluidic devices for fluorescent immunoassays. We shed light on the nanofabrication strategies and various fluidic designs for rapid, sensitive, and highly efficient sensing of antigens. Finally, we share our perspectives on the potential directions of these integrated devices for practical applications.
Collapse
Affiliation(s)
| | - Guangyang Li
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Lingyue Xue
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | | | | | - Zhen Cao
- Author to whom correspondence should be addressed:
| |
Collapse
|
10
|
Gupta B, Malviya R, Srivastava S, Ahmad I, Rab SO, Singh DP. 3D Printed Nanosensors for Cancer Diagnosis: Advances and Future Perspective. Curr Pharm Des 2024; 30:2993-3008. [PMID: 39161144 DOI: 10.2174/0113816128322300240725052530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 08/21/2024]
Abstract
Cancer is the leading cause of mortality worldwide, requiring continuous advancements in diagnosis and treatment. Traditional methods often lack sensitivity and specificity, leading to the need for new methods. 3D printing has emerged as a transformative tool in cancer diagnosis, offering the potential for precise and customizable nanosensors. These advancements are critical in cancer research, aiming to improve early detection and monitoring of tumors. In current times, the usage of the 3D printing technique has been more prevalent as a flexible medium for the production of accurate and adaptable nanosensors characterized by exceptional sensitivity and specificity. The study aims to enhance early cancer diagnosis and prognosis by developing advanced 3D-printed nanosensors using 3D printing technology. The research explores various 3D printing techniques, design strategies, and functionalization strategies for cancer-specific biomarkers. The integration of these nanosensors with detection modalities like fluorescence, electrochemical, and surface-enhanced Raman spectroscopy is also evaluated. The study explores the use of inkjet printing, stereolithography, and fused deposition modeling to create nanostructures with enhanced performance. It also discusses the design and functionalization methods for targeting cancer indicators. The integration of 3D-printed nanosensors with multiple detection modalities, including fluorescence, electrochemical, and surface-enhanced Raman spectroscopy, enables rapid and reliable cancer diagnosis. The results show improved sensitivity and specificity for cancer biomarkers, enabling early detection of tumor indicators and circulating cells. The study highlights the potential of 3D-printed nanosensors to transform cancer diagnosis by enabling highly sensitive and specific detection of tumor biomarkers. It signifies a pivotal step forward in cancer diagnostics, showcasing the capacity of 3D printing technology to produce advanced nanosensors that can significantly improve early cancer detection and patient outcomes.
Collapse
Affiliation(s)
- Babita Gupta
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Saurabh Srivastava
- School of Pharmacy, KPJ Healthcare University College (KPJUC), Nilai, Malaysia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Deependra Pratap Singh
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
- Graphic Era (Deemed to be University), Clement Town, Dehradun, India
| |
Collapse
|
11
|
Bui DT, Kubíčková L, Kuličková J, Bouř P, Kessler J, Řezanka P, Kaman O. Gold nanoshells with magnetic cores and a urea-based receptor for SERS sensing of fluoride anions: experimental and computational study. Analyst 2023; 148:5070-5083. [PMID: 37668375 DOI: 10.1039/d3an00625e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The study demonstrates that a combination of plasmonic nanostructures and artificial receptors can be applied for sensing small molecular species. Gold nanoshells containing magnetic cores are used as the SERS-active substrates, which opens the way for the development of multimodal contrast agents with applicability extended to sensing or for the separation of analytes by magnetic solid-phase extraction. Disubstituted ureas forming hydrogen-bonded complexes with certain anions can be employed as molecular sensors. In this case study, gold nanoshells with silica-coated Mn-Zn ferrite cores were prepared by a multistep procedure. The nanoshells were co-functionalized with an N-(4-mercaptophenyl)-N'-(4-nitrophenyl)urea sensor synthesized directly on the gold surface, and with 4-nitrothiophenol, which is adopted as an internal standard. SERS measurements were carried out with acetonitrile solutions of tetrabutylammonium fluoride (Bu4NF) over a concentration range of 10-10-10-1 mol L-1. The spectral response of the sensor is dependent on the fluoride concentration in the range of 10-5-10-1 mol L-1. To investigate further the SERS mechanism, a model sensor, N-(4-bromophenyl)-N'-(4-nitrophenyl)urea, was synthesized and used in Raman spectroscopy with solutions of Bu4NF, up to a molar ratio of 1 : 20. The spectra and the interactions between the sensors and fluoride anions were also studied by extensive DFT computations.
Collapse
Affiliation(s)
- Duong Thuy Bui
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Praha 6, Czech Republic.
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Praha 6, Czech Republic
| | - Lenka Kubíčková
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Praha 6, Czech Republic.
- Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00 Praha 8, Czech Republic
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Jarmila Kuličková
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Praha 6, Czech Republic.
| | - Petr Bouř
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Praha 6, Czech Republic
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00 Praha 6, Czech Republic.
| | - Jiří Kessler
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00 Praha 6, Czech Republic.
| | - Pavel Řezanka
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Praha 6, Czech Republic
| | - Ondřej Kaman
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Praha 6, Czech Republic.
- Fachbereich Chemie, TU Kaiserslautern, Erwin-Schrödinger-Str. 54, 67663 Kaiserslautern, Germany
| |
Collapse
|
12
|
Kim DY, Sharma SK, Rasool K, Koduru JR, Syed A, Ghodake G. Development of Novel Peptide-Modified Silver Nanoparticle-Based Rapid Biosensors for Detecting Aminoglycoside Antibiotics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12883-12898. [PMID: 37603424 DOI: 10.1021/acs.jafc.3c03565] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The detection and monitoring of aminoglycoside antibiotics (AGAs) have become of utmost importance due to their widespread use in human and animal therapy, as well as the associated risks of exposure, toxicity, and the emergence of antimicrobial resistance. In this study, we successfully synthesized casein hydrolysate peptides-functionalized silver nanoparticles (CHPs@AgNPs) and employed them as a novel colorimetric analytical platform to demonstrate remarkable specificity and sensitivity toward AGAs. The colorimetric and spectral response of the CHPs@AgNPs was observed at 405 and 520 nm, showing a linear correlation with the concentration of streptomycin, a representative AGA. The color changes from yellow to orange provided a visual indication of the analyte concentration, enabling quantitative determination for real-world samples. The AgNP assay exhibited excellent sensitivity with dynamic ranges of approximately 200-650 and 100-700 nM for streptomycin-spiked tap water and dairy whey with limits of detection found to be ∼98 and 56 nM, respectively. The mechanism behind the selective aggregation of CHPs@AgNPs in the presence of AGAs involves the amine groups of the target analytes acting as molecular bridges for electrostatic coupling with hydroxyl or carboxyl functionalities of adjacent NPs, driving the formation of stable NP aggregates. The developed assay offers several advantages, making it suitable for various practical applications. It is characterized by its simplicity, rapidity, specificity, sensitivity, and cost-effectiveness. These unique features make the method a promising tool for monitoring water quality, ensuring food safety, and dealing with emergent issues of antibiotic resistance.
Collapse
Affiliation(s)
- Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University - Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | - Sanjeev K Sharma
- Biomaterials and Sensors Laboratory, Department of Physics, CCS University, Meerut Campus, Meerut 250004, Uttar Pradesh, India
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Gajanan Ghodake
- Department of Biological and Environmental Science, Dongguk University - Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| |
Collapse
|
13
|
Tovar-Lopez FJ. Recent Progress in Micro- and Nanotechnology-Enabled Sensors for Biomedical and Environmental Challenges. SENSORS (BASEL, SWITZERLAND) 2023; 23:5406. [PMID: 37420577 DOI: 10.3390/s23125406] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023]
Abstract
Micro- and nanotechnology-enabled sensors have made remarkable advancements in the fields of biomedicine and the environment, enabling the sensitive and selective detection and quantification of diverse analytes. In biomedicine, these sensors have facilitated disease diagnosis, drug discovery, and point-of-care devices. In environmental monitoring, they have played a crucial role in assessing air, water, and soil quality, as well as ensured food safety. Despite notable progress, numerous challenges persist. This review article addresses recent developments in micro- and nanotechnology-enabled sensors for biomedical and environmental challenges, focusing on enhancing basic sensing techniques through micro/nanotechnology. Additionally, it explores the applications of these sensors in addressing current challenges in both biomedical and environmental domains. The article concludes by emphasizing the need for further research to expand the detection capabilities of sensors/devices, enhance sensitivity and selectivity, integrate wireless communication and energy-harvesting technologies, and optimize sample preparation, material selection, and automated components for sensor design, fabrication, and characterization.
Collapse
|
14
|
Martino S, Tammaro C, Misso G, Falco M, Scrima M, Bocchetti M, Rea I, De Stefano L, Caraglia M. microRNA Detection via Nanostructured Biochips for Early Cancer Diagnostics. Int J Mol Sci 2023; 24:7762. [PMID: 37175469 PMCID: PMC10178165 DOI: 10.3390/ijms24097762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
MicroRNA (miRNA) are constituted of approximately 22 nucleotides and play an important role in the regulation of many physiological functions and diseases. In the last 10 years, an increasing interest has been recorded in studying the expression profile of miRNAs in cancer. Real time-quantitative polymerase chain reaction (RT-qPCR), microarrays, and small RNA sequencing represent the gold standard techniques used in the last 30 years as detection methods. The advent of nanotechnology has allowed the fabrication of nanostructured biosensors which are widely exploited in the diagnostic field. Nanostructured biosensors offer many advantages: (i) their small size allows the construction of portable, wearable, and low-cost products; (ii) the large surface-volume ratio enables the loading of a great number of biorecognition elements (e.g., probes, receptors); and (iii) direct contact of the recognition element with the analyte increases the sensitivity and specificity inducing low limits of detection (LOD). In this review, the role of nanostructured biosensors in miRNA detection is explored, focusing on electrochemical and optical sensing. In particular, four types of nanomaterials (metallic nanoparticles, graphene oxide, quantum dots, and nanostructured polymers) are reported for both detection strategies with the aim to show their distinct properties and applications.
Collapse
Affiliation(s)
- Sara Martino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.M.); (C.T.); (M.F.); (M.B.); (M.C.)
- Unit of Naples, National Research Council, Institute of Applied Sciences and Intelligent Systems, 80138 Naples, Italy;
| | - Chiara Tammaro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.M.); (C.T.); (M.F.); (M.B.); (M.C.)
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.M.); (C.T.); (M.F.); (M.B.); (M.C.)
| | - Michela Falco
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.M.); (C.T.); (M.F.); (M.B.); (M.C.)
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy;
| | - Marianna Scrima
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy;
| | - Marco Bocchetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.M.); (C.T.); (M.F.); (M.B.); (M.C.)
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy;
| | - Ilaria Rea
- Unit of Naples, National Research Council, Institute of Applied Sciences and Intelligent Systems, 80138 Naples, Italy;
| | - Luca De Stefano
- Unit of Naples, National Research Council, Institute of Applied Sciences and Intelligent Systems, 80138 Naples, Italy;
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.M.); (C.T.); (M.F.); (M.B.); (M.C.)
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy;
| |
Collapse
|
15
|
Chianese G, Fasolino I, Tramontano C, De Stefano L, Imparato C, Aronne A, Ambrosio L, Raucci MG, Rea I. ROS-Generating Hyaluronic Acid-Modified Zirconium Dioxide-Acetylacetonate Nanoparticles as a Theranostic Platform for the Treatment of Osteosarcoma. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:54. [PMID: 36615964 PMCID: PMC9823868 DOI: 10.3390/nano13010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Materials that are able to produce free radicals have gained increasing attention for environmental and biomedical purposes. Free radicals, such as the superoxide anion (O2•-), act as secondary messengers in many physiological pathways, such as cell survival. Therefore, the production of free radicals over physiological levels has been exploited in the treatment of different types of cancer, including osteosarcoma (OS). In most cases, the production of reactive oxygen species (ROS) by materials is light-induced and requires the use of chemical photosensitisers, making it difficult and expensive. Here, for the first time, we propose photoluminescent hybrid ZrO2-acetylacetonate nanoparticles (ZrO2-acac NPs) that are capable of generating O2•- without light activation as an adjuvant for the treatment of OS. To increase the uptake and ROS generation in cancer cells, we modify the surface of ZrO2-acac NPs with hyaluronic acid (HA), which recognizes and binds to the surface antigen CD44 overexpressed on OS cells. Since these nanoparticles emit in the visible range, their uptake into cancer cells can be followed by a label-free approach. Overall, we show that the generation of O2•- is toxic to OS cells and can be used as an adjuvant treatment to increase the efficacy of conventional drugs.
Collapse
Affiliation(s)
- Giovanna Chianese
- Unit of Naples, National Research Council, Institute of Applied Sciences and Intelligent Systems, 80131 Naples, Italy
| | - Ines Fasolino
- National Research Council, Institute of Polymers, Composites and Biomaterials, 80131 Naples, Italy
| | - Chiara Tramontano
- Unit of Naples, National Research Council, Institute of Applied Sciences and Intelligent Systems, 80131 Naples, Italy
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Luca De Stefano
- Unit of Naples, National Research Council, Institute of Applied Sciences and Intelligent Systems, 80131 Naples, Italy
| | - Claudio Imparato
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy
| | - Antonio Aronne
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy
| | - Luigi Ambrosio
- National Research Council, Institute of Polymers, Composites and Biomaterials, 80131 Naples, Italy
| | - Maria Grazia Raucci
- National Research Council, Institute of Polymers, Composites and Biomaterials, 80131 Naples, Italy
| | - Ilaria Rea
- Unit of Naples, National Research Council, Institute of Applied Sciences and Intelligent Systems, 80131 Naples, Italy
| |
Collapse
|
16
|
Lim YY, Miskon A, Zaidi AMA. CuZn Complex Used in Electrical Biosensors for Drug Delivery Systems. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15217672. [PMID: 36363264 PMCID: PMC9656173 DOI: 10.3390/ma15217672] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 10/05/2022] [Indexed: 05/04/2023]
Abstract
This paper is to discuss the potential of using CuZn in an electrical biosensor drug carrier for drug delivery systems. CuZn is the main semiconductor ingredient that has great promise as an electrochemical detector to trigger releases of active pharmaceutical ingredients (API). This CuZn biosensor is produced with a green metal of frameworks, which is an anion node in conductive polymers linked by bioactive ligands using metal-polymerisation technology. The studies of Cu, Zn, and their oxides are highlighted by their electrochemical performance as electrical biosensors to electrically trigger API. The three main problems, which are glucose oxidisation, binding affinity, and toxicity, are highlighted, and their solutions are given. Moreover, their biocompatibilities, therapeutic efficacies, and drug delivery efficiencies are discussed with details given. Our three previous investigations of CuZn found results similar to those of other authors' in terms of multiphases, polymerisation, and structure. This affirms that our research is on the right track, especially that related to green synthesis using plant extract, CuZn as a nanochip electric biosensor, and bioactive ligands to bind API, which are limited to the innermost circle of the non-enzymatic glucose sensor category.
Collapse
Affiliation(s)
- Yan Yik Lim
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Sungai Besi Prime Camp, Kuala Lumpur 57000, Malaysia
| | - Azizi Miskon
- Faculty of Engineering, National Defence University of Malaysia, Sungai Besi Prime Camp, Kuala Lumpur 57000, Malaysia
- Correspondence: ; Tel.: +60-3-9051-3400 (ext. 3087)
| | - Ahmad Mujahid Ahmad Zaidi
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Sungai Besi Prime Camp, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
17
|
Damasceno GHB, Carvalho WOF, Mejía-Salazar JR. Design of Plasmonic Yagi-Uda Nanoantennas for Chip-Scale Optical Wireless Communications. SENSORS (BASEL, SWITZERLAND) 2022; 22:7336. [PMID: 36236435 PMCID: PMC9570515 DOI: 10.3390/s22197336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Optical wireless transmission has recently become a major cutting-edge alternative for on-chip/inter-chip communications with higher transmission speeds and improved power efficiency. Plasmonic nanoantennas, the building blocks of this new nanoscale communication paradigm, require precise design to have directional radiation and improved communication ranges. Particular interest has been paid to plasmonic Yagi-Uda, i.e., the optical analog of the conventional Radio Frequency (RF) Yagi-Uda design, which may allow directional radiation of plasmonic fields. However, in contrast to the RF model, an overall design strategy for the directional and optimized front-to-back ratio of the radiated far-field patterns is lacking. In this work, a guide for the optimized design of Yagi-Uda plasmonic nanoantennas is shown. In particular, five different design conditions are used to study the effects of sizes and spacing between the constituent parts (made of Au). Importantly, it is numerically demonstrated (using the scattered fields) that closely spaced nanoantenna elements are not appropriated for directional light-to-plasmon conversion/radiation. In contrast, if the elements of the nanoantenna are widely spaced, the structure behaves like a one-dimensional array of nanodipoles, producing a funnel-like radiation pattern (not suitable for on-chip wireless optical transmission). Therefore, based on the results here, it can be concluded that the constituent metallic rib lengths must be optimized to exhibit the resonance at the working wavelength, whilst their separations should follow the relation λeff/π, where λeff indicates the effective wavelength scaling for plasmonic nanostructures.
Collapse
Affiliation(s)
- Gabriel H B Damasceno
- National Institute of Telecommunications (Inatel), Santa Rita do Sapucaí 37540-000, MG, Brazil
| | - William O F Carvalho
- National Institute of Telecommunications (Inatel), Santa Rita do Sapucaí 37540-000, MG, Brazil
| | | |
Collapse
|