1
|
Himshweta, Verma N, Trehan N, Singh M. Molecularly imprinted polymers in the analysis of chlorogenic acid: A review. Anal Biochem 2024; 694:115616. [PMID: 38996900 DOI: 10.1016/j.ab.2024.115616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 07/14/2024]
Abstract
Chlorogenic acid, a phenolic compound, is prevalent across various plant species and has been known for its pharmacological advantages. Health care experts have identified chlorogenic acid as a potential biomarker for treatment of a wide range of illnesses. Therefore, achieving efficient extraction and analysis of chlorogenic acid from plants and their products has become essential. Molecularly imprinted polymers (MIPs) are highly effective adsorbent for the extraction of chlorogenic acid from complex matrices. Currently, there is a lack of comprehensive review article that consolidate the methods utilized for the purification of chlorogenic acid through molecular imprinting. In this context, we have surveyed the common approaches employed in preparing MIPs specifically designed for the analysis of chlorogenic acid, including both conventional and newly developed. This review discusses the advantages, limitations of polymerization techniques and proposed strategies to produce more efficient MIPs for chlorogenic acid enrichment in complex samples. Additionaly, we present advanced imprinting methods for designing MIPs, which improve the adsorption capacity, sensitivity and selectivity towards chlorogenic acid.
Collapse
Affiliation(s)
- Himshweta
- Biosensor Development Group, Department of Biotechnology & Food Technology, Punjabi University Patiala, 147002, Punjab, India.
| | - Neelam Verma
- Biosensor Development Group, Department of Biotechnology & Food Technology, Punjabi University Patiala, 147002, Punjab, India.
| | - Nitu Trehan
- Department of Biotechnology, Mata Gujri College Fatehgarh Sahib-140407, Punjab, India.
| | - Minni Singh
- Functional Food and Nanotechnology Group, Department of Biotechnology & Food Technology, Punjabi University Patiala-147002, Punjab, India.
| |
Collapse
|
2
|
Xu J, Li Y, Yan F. Constructed MXene matrix composites as sensing material and applications thereof: A review. Anal Chim Acta 2024; 1288:342027. [PMID: 38220263 DOI: 10.1016/j.aca.2023.342027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 01/16/2024]
Abstract
Most studies on MXene matrix composites for sensor development have primarily focused on synthesis and application. Nevertheless, there is currently a lack of research on how the introduction of different materials affects the sensing properties of these composites. The rapid development of MXene has raised intriguing questions about improving sensor performance by combining MXene with other materials such as polymers, metals and inorganic non-metals. This review will concentrate on the construction of MXene-based composites and explore ways to enhance their sensor applications. Specifically, this review describes why the introduction of materials to the system brings the advantage of low concentration and high sensitivity assays, as well as the MXene-based frameworks that have been recently investigated. Lastly, in order to capture the current trend of MXene-based composites in sensor applications and identify promising research directions, this review will critically evaluate the potential applications of newly developed MXene systems.
Collapse
Affiliation(s)
- Jinyun Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China; School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China
| | - Yating Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China; School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China
| | - Fanyong Yan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China; School of Pharmaceutical Sciences, Tiangong University, Tianjin, 300387, PR China.
| |
Collapse
|
3
|
Thotathil V, Sidiq N, Al Marri JS, Zaidi SA. Molecularly Imprinted Polymer-Based Sensors Integrated with Transition Metal Dichalcogenides (TMDs) and MXenes: A Review. Crit Rev Anal Chem 2023:1-26. [PMID: 38153424 DOI: 10.1080/10408347.2023.2298339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Molecularly imprinted polymer (MIP)-based electrochemical sensors have been extensively researched due to their higher sensitivity, quick response, and operational ease. To develop more advanced sensing devices with enhanced properties, MIPs have been integrated with two-dimensional (2D) layered materials such as transition metal dichalcogenides (TMDs) and MXenes. These 2D materials have unique electronic properties and an extended surface area, making them promising sensing materials that can improve the performance of MIPs. In this review article, we describe the methods used for the synthesis of TMDs and MXenes integrated MIP-based electrochemical sensors. Furthermore, we have provided a critical review of a wide range of analytes determined through the application of these electrochemical sensors. We also go over the influence of TMDs and MXenes on the binding kinetics and adsorption capacity which has enhanced binding recognition and sensing abilities. The combination of TMDs and MXenes with MIPs shows promising synergy in the development of highly efficient recognition materials. In the future, these sensors could be explored for a wider range of applications in environmental remediation, drug delivery, energy storage, and more. Finally, we address the challenges and future perspectives of using TMDs and MXenes integrated MIPs. We conclude with a focus on future development and the scope of integrating these materials in sensing technology.
Collapse
Affiliation(s)
- Vandana Thotathil
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Naheed Sidiq
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Jawaher S Al Marri
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Shabi Abbas Zaidi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Liu C, Wang Y, Li Y, Meng S, Li W, Liu D, You T. Electric field-enabled aptasensing interfacial engineering to simultaneously enhance specific preconcentration and electrochemical detection of mercury and lead ions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:166407. [PMID: 37597549 DOI: 10.1016/j.scitotenv.2023.166407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/04/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Aptamers with strong affinity to heavy metal ions (HMIs) allow fabrication of electrochemical sensors with high selectivity and sensitivity, while controllable regulation of aptamer-HMI recognition at the sensing interface, which is vital for better analytical performance, remains challenging. Here, an electric field-based strategy for engineering an aptasensing interface was proposed to realize the specific preconcentration and accurate detection of mercury (Hg2+) and lead (Pb2+) ions with a ratiometric electrochemical sensor. The working principle is to apply an electric field to drive HMIs to approach the aptamer and retain the orientation of the DNA structure. Anthraquinone-2-carboxylic acid (AQ)-labeled complementary DNA was designed to simultaneously bind a ferrocene (Fc)-labeled aptamer for Hg2+ and a methylene blue (MB)-labeled aptamer for Pb2+, and the sensing interface was fabricated with this presynthesized DNA structure. For preconcentration, an electric field of 3.0 V pushed HMIs to approach the aptamer and retained the orientation of DNA to favor the following recognition; for detection, the oriented DNA in 2.5 V electric field offered a stable current of AQ as a reference. In this way, currents of AQ, Fc and MB were used to produce ratiometric signals of IAQ/IFc and IAQ/IMB for Hg2+ and Pb2+, respectively. Such a strategy allowed the simultaneous detection of Hg2+ and Pb2+ within 30 min with detection limits of 0.69 pM and 0.093 pM, respectively. The aptasensor was applied for soil, water, and crayfish analysis in paddy fields. The electric field-enabled strategy offers a new way to fabricate high-performance electrochemical aptasensor for HMIs detection.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuan Wang
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shuyun Meng
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wenjia Li
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; School of Emergency Management, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
5
|
Solangi NH, Mubarak NM, Karri RR, Mazari SA, Jatoi AS. Advanced growth of 2D MXene for electrochemical sensors. ENVIRONMENTAL RESEARCH 2023; 222:115279. [PMID: 36706895 DOI: 10.1016/j.envres.2023.115279] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Over the last few years, electroanalysis has made significant advancements, particularly in developing electrochemical sensors. Electrochemical sensors generally include emerging Photoelectrochemical and Electrochemiluminescence sensors, which combine optical techniques and traditional electrochemical bio/non-biosensors. Numerous EC-detecting methods have also been designed for commercial applications to detect biological and non-biological markers for various diseases. Analytical applications have recently focused significantly on one of the novel nanomaterials, the MXene. This material is being extensively investigated for applications in electrochemical sensors due to its unique mechanical, electronic, optical, active functional groups and thermal characteristics. This study extensively discusses the salient features of MXene-based electrochemical sensors, photoelectrochemical sensors, enzyme-based biosensors, immunosensors, aptasensors, electrochemiluminescence sensors, and electrochemical non-biosensors. In addition, their performance in detecting various substances and contaminants is thoroughly discussed. Furthermore, the challenges and prospects the MXene-based electrochemical sensors are elaborated.
Collapse
Affiliation(s)
- Nadeem Hussain Solangi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Shaukat Ali Mazari
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan.
| | - Abdul Sattar Jatoi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| |
Collapse
|
6
|
Chouhan RS, Shah M, Prakashan D, P R R, Kolhe P, Gandhi S. Emerging Trends and Recent Progress of MXene as a Promising 2D Material for Point of Care (POC) Diagnostics. Diagnostics (Basel) 2023; 13:697. [PMID: 36832187 PMCID: PMC9955873 DOI: 10.3390/diagnostics13040697] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Two-dimensional (2D) nanomaterials with chemical and structural diversity have piqued the interest of the scientific community due to their superior photonic, mechanical, electrical, magnetic, and catalytic capabilities that distinguish them from their bulk counterparts. Among these 2D materials, two-dimensional (2D) transition metal carbides, carbonitrides, and nitrides with a general chemical formula of Mn+1XnTx (where n = 1-3), together known as MXenes, have gained tremendous popularity and demonstrated competitive performance in biosensing applications. In this review, we focus on the cutting-edge advances in MXene-related biomaterials, with a systematic summary on their design, synthesis, surface engineering approaches, unique properties, and biological properties. We particularly emphasize the property-activity-effect relationship of MXenes at the nano-bio interface. We also discuss the recent trends in the application of MXenes in accelerating the performance of conventional point of care (POC) devices towards more practical approaches as the next generation of POC tools. Finally, we explore in depth the existing problems, challenges, and potential for future improvement of MXene-based materials for POC testing, with the goal of facilitating their early realization of biological applications.
Collapse
Affiliation(s)
- Raghuraj Singh Chouhan
- Department of Environmental Sciences, Institute “Jožef Stefan”, Jamova 39, 1000 Ljubljana, Slovenia
| | - Maitri Shah
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, India
| | - Drishya Prakashan
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, India
- RCB-Regional Centre for Biotechnology, Faridabad 121001, India
| | - Ramya P R
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, India
- RCB-Regional Centre for Biotechnology, Faridabad 121001, India
| | - Pratik Kolhe
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, India
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, India
- RCB-Regional Centre for Biotechnology, Faridabad 121001, India
| |
Collapse
|
7
|
Chaudhary V, Khanna V, Ahmed Awan HT, Singh K, Khalid M, Mishra YK, Bhansali S, Li CZ, Kaushik A. Towards hospital-on-chip supported by 2D MXenes-based 5 th generation intelligent biosensors. Biosens Bioelectron 2023; 220:114847. [PMID: 36335709 PMCID: PMC9605918 DOI: 10.1016/j.bios.2022.114847] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/19/2022] [Accepted: 10/20/2022] [Indexed: 12/12/2022]
Abstract
Existing public health emergencies due to fatal/infectious diseases such as coronavirus disease (COVID-19) and monkeypox have raised the paradigm of 5th generation portable intelligent and multifunctional biosensors embedded on a single chip. The state-of-the-art 5th generation biosensors are concerned with integrating advanced functional materials with controllable physicochemical attributes and optimal machine processability. In this direction, 2D metal carbides and nitrides (MXenes), owing to their enhanced effective surface area, tunable physicochemical properties, and rich surface functionalities, have shown promising performances in biosensing flatlands. Moreover, their hybridization with diversified nanomaterials caters to their associated challenges for the commercialization of stability due to restacking and oxidation. MXenes and its hybrid biosensors have demonstrated intelligent and lab-on-chip prospects for determining diverse biomarkers/pathogens related to fatal and infectious diseases. Recently, on-site detection has been clubbed with solution-on-chip MXenes by interfacing biosensors with modern-age technologies, including 5G communication, internet-of-medical-things (IoMT), artificial intelligence (AI), and data clouding to progress toward hospital-on-chip (HOC) modules. This review comprehensively summarizes the state-of-the-art MXene fabrication, advancements in physicochemical properties to architect biosensors, and the progress of MXene-based lab-on-chip biosensors toward HOC solutions. Besides, it discusses sustainable aspects, practical challenges and alternative solutions associated with these modules to develop personalized and remote healthcare solutions for every individual in the world.
Collapse
Affiliation(s)
- Vishal Chaudhary
- Research Cell & Department of Physics, Bhagini Nivedita College, University of Delhi, Delhi, 110043, India; SUMAN Laboratory (SUstainable Materials & Advanced Nanotechnology Lab), New Delhi 110072, India.
| | - Virat Khanna
- Department of Mechanical Engineering, MAIT, Maharaja Agrasen University, HP, 174103, India
| | - Hafiz Taimoor Ahmed Awan
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Kamaljit Singh
- Department of Mechanical Engineering, MAIT, Maharaja Agrasen University, HP, 174103, India
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia; Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, Sønderborg, 6400, Denmark
| | - Shekhar Bhansali
- Department of Electrical and Computing Engineering, Florida International University, Miami, FL, 33174, USA
| | - Chen-Zhong Li
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA; Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA.
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, 33805, USA; School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India.
| |
Collapse
|
8
|
Wang W, Yuan W, Wang D, Mai X, Wang D, Zhu Y, Liu F, Sun Z. Dual-mode sensor based on the synergy of magnetic separation and functionalized probes for the ultrasensitive detection of Clostridium perfringens. RSC Adv 2022; 12:25744-25752. [PMID: 36199343 PMCID: PMC9460978 DOI: 10.1039/d2ra04344k] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/24/2022] [Indexed: 12/01/2022] Open
Abstract
Clostridium perfringens is an important foodborne pathogen, which has caused serious public health problems worldwide. So, there is an urgent need for rapid and ultrasensitive detection of C. perfringens. In this paper, a dual-mode sensing platform using the synergy between fluorescent and electrochemical signals for Clostridium perfringens detection was proposed. An electrochemical aptasensor was constructed by a dual-amplification technology based on a DNA walker and hybridization chain reaction (HCR). When the C. perfringens genomic DNA was present, it specifically bonded with FAM-labeled aptamer which triggered the DNA walker on hairpin DNA (hDNA) tracks to start the synthesis of double-stranded DNA. HCR occurred subsequently and produced long-chain DNA to absorb more methylene blue (MB). In this cycle, the fluorescent signals of released FAM-labeled aptamer could also be detected. The synergistic effects of MB and FAM significantly improved the sensitivity and accuracy of the dual-mode sensor. As a result, the biosensor displayed an excellent analytical performance for C. perfringens at a concentration of 1 to 108 CFU g−1. A minimum concentration of 1 CFU g−1 and good accuracy were detected in real samples. The proposed ultrasensitive detection method for detecting C. perfringens in food showed great potential in controlling foodborne diseases. Clostridium perfringens is an important foodborne pathogen, which has caused serious public health problems worldwide.![]()
Collapse
Affiliation(s)
- Wenzhuo Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Wei Yuan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Debao Wang
- Institute of Agricultural and Livestock Products Processing, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
| | - Xutao Mai
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Daoying Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, PR China
| | - Yongzhi Zhu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, PR China
| | - Fang Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, PR China
| | - Zhilan Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, PR China
| |
Collapse
|