1
|
Tovar-Lopez FJ. Recent Progress in Micro- and Nanotechnology-Enabled Sensors for Biomedical and Environmental Challenges. SENSORS (BASEL, SWITZERLAND) 2023; 23:5406. [PMID: 37420577 DOI: 10.3390/s23125406] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023]
Abstract
Micro- and nanotechnology-enabled sensors have made remarkable advancements in the fields of biomedicine and the environment, enabling the sensitive and selective detection and quantification of diverse analytes. In biomedicine, these sensors have facilitated disease diagnosis, drug discovery, and point-of-care devices. In environmental monitoring, they have played a crucial role in assessing air, water, and soil quality, as well as ensured food safety. Despite notable progress, numerous challenges persist. This review article addresses recent developments in micro- and nanotechnology-enabled sensors for biomedical and environmental challenges, focusing on enhancing basic sensing techniques through micro/nanotechnology. Additionally, it explores the applications of these sensors in addressing current challenges in both biomedical and environmental domains. The article concludes by emphasizing the need for further research to expand the detection capabilities of sensors/devices, enhance sensitivity and selectivity, integrate wireless communication and energy-harvesting technologies, and optimize sample preparation, material selection, and automated components for sensor design, fabrication, and characterization.
Collapse
|
2
|
Kim DY, Park SW, Shin HS. Fish Freshness Indicator for Sensing Fish Quality during Storage. Foods 2023; 12:foods12091801. [PMID: 37174339 PMCID: PMC10177749 DOI: 10.3390/foods12091801] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
This study aims to develop a freshness indicator for fish products that changes color to indicate ammonia among volatile base compounds (TVB-N) generated during storage. Through an optimization experiment, we observed the indicator's color change relative to the ammonia concentration standard, finally selecting cresol red and bromocresol purple for the indicator mixture. In addition, eco-DEHCH and Breathron film were applied to the freshness indicator, considering environmental and economic values. For the storage experiment, Chub mackerel (Scomber japonicus), Spanish mackerel (Scomberomorus niphonius), and Largehead hairtail (Trichiurus lepturus) samples were stored at three different temperatures (4, 10, and 20 °C) for seven days, and we measured pH, TVB-N, total bacterial count, and ammonia content every 24 h. The pH-sensitive sensors' color changes monitor amine release, especially ammonia, from decomposing fish. The chromatic parameter ∆E value increased significantly with fish product storage periods. We confirmed that when the freshness limit and bacterial spoilage level were reached, the color of the indicator changed from yellow to black and sequentially changed to purple as the storage period increased. Therefore, a developed freshness indicator can be used for determining the quality of fish products quickly and non-destructively by reflecting the freshness and spoilage degree of fish products during storage.
Collapse
Affiliation(s)
- Do-Yeong Kim
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | - Sung-Woo Park
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Wu K, Debliquy M, Zhang C. Metal-oxide-semiconductor resistive gas sensors for fish freshness detection. Compr Rev Food Sci Food Saf 2023; 22:913-945. [PMID: 36537904 DOI: 10.1111/1541-4337.13095] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/09/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Fish are prone to spoilage and deterioration during processing, storage, or transportation. Therefore, there is a need for rapid and efficient techniques to detect and evaluate fish freshness during different periods or conditions. Gas sensors are increasingly important in the qualitative and quantitative evaluation of high-protein foods, including fish. Among them, metal-oxide-semiconductor resistive (MOSR) sensors with advantages such as low cost, small size, easy integration, and high sensitivity have been extensively studied in the past few years, which gradually show promising practical application prospects. Herein, we take the detection, classification, and assessment of fish freshness as the actual demand, and summarize the physical and chemical changes of fish during the spoilage process, the volatile marker gases released, and their production mechanisms. Then, we introduce the advantages, performance parameters, and working principles of gas sensors, and summarize the MOSR gas sensors aimed at detecting different kinds of volatile marker gases of fish spoiling in the last 5 years. After that, this paper reviews the research and application progress of MOSR gas sensor arrays and electronic nose technology for various odor indicators and fish freshness detection. Finally, this review points out the multifaceted challenges (sampling system, sensing module, and pattern recognition technology) faced by the rapid detection technology of fish freshness based on metal oxide gas sensors, and the potential solutions and development directions are proposed from the view of multidisciplinary intersection.
Collapse
Affiliation(s)
- Kaidi Wu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, China
- Service de Science des Matériaux, Faculté Polytechnique, Université de Mons, Mons, Belgium
| | - Marc Debliquy
- Service de Science des Matériaux, Faculté Polytechnique, Université de Mons, Mons, Belgium
| | - Chao Zhang
- College of Mechanical Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Xiong X, Tan Y, Mubango E, Shi C, Regenstein JM, Yang Q, Hong H, Luo Y. Rapid freshness and survival monitoring biosensors of fish: Progress, challenge, and future perspective. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Tonezzer M, Armellini C, Toniutti L. Sensing Performance of Thermal Electronic Noses: A Comparison between ZnO and SnO 2 Nanowires. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2773. [PMID: 34835538 PMCID: PMC8624967 DOI: 10.3390/nano11112773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 11/21/2022]
Abstract
In recent times, an increasing number of applications in different fields need gas sensors that are miniaturized but also capable of distinguishing different gases and volatiles. Thermal electronic noses are new devices that meet this need, but their performance is still under study. In this work, we compare the performance of two thermal electronic noses based on SnO2 and ZnO nanowires. Using five different target gases (acetone, ammonia, ethanol, hydrogen and nitrogen dioxide), we investigated the ability of the systems to distinguish individual gases and estimate their concentration. SnO2 nanowires proved to be more suitable for this purpose with a detection limit of 32 parts per billion, an always correct classification (100%) and a mean absolute error of 7 parts per million.
Collapse
Affiliation(s)
- Matteo Tonezzer
- IMEM-CNR, Sede di Trento-FBK, Via alla Cascata 56/C, 38123 Trento, Italy
- Center Agriculture Food Environment, University of Trento/Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Italy
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy
| | - Cristina Armellini
- Institute for Photonics and Nanotechnologies (IFN)-National Research Council (CNR) CSMFO Lab, Via alla Cascata 56/C, 38123 Trento, Italy;
- Fondazione Bruno Kessler (FBK)-Centro Materiali e Microsistemi (CMM), Via alla Cascata 56/C, 38123 Trento, Italy
| | - Laura Toniutti
- Agenzia Provinciale Protezione Ambiente, Settore Qualità Ambientale, U.O. Tutela dell’Aria e Agenti Fisici, Via Lidorno 1, 38123 Trento, Italy;
| |
Collapse
|
6
|
Single Nanowire Gas Sensor Able to Distinguish Fish and Meat and Evaluate Their Degree of Freshness. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9090249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A non-invasive, small, and fast device is needed for food freshness monitoring, as current techniques do not meet these criteria. In this study, a resistive sensor composed of a single semiconductor nanowire was used at different temperatures, combining the responses and processing them with multivariate statistical analysis techniques. The sensor, very sensitive to ammonia and total volatile basic nitrogen, proved to be able to distinguish samples of fish (marble trout, Salmo trutta marmoratus) and meat (pork, Sus scrofa domesticus), both stored at room temperature and 4 °C in the refrigerator. Once separated, the fish and meat samples were classified by the degree of freshness/degradation with two different classifiers. The sensor classified the samples (trout and pork) correctly in 95.2% of cases. The degree of freshness was correctly assessed in 90.5% of cases. Considering only the errors with repercussions (when a fresh sample was evaluated as degraded, or a degraded sample was evaluated as edible) the accuracy increased to 95.2%. Considering the size (less than a square millimeter) and the speed (less than a minute), this type of sensor could be used to monitor food production and distribution chains.
Collapse
|
7
|
Tonezzer M, Thai NX, Gasperi F, Van Duy N, Biasioli F. Quantitative Assessment of Trout Fish Spoilage with a Single Nanowire Gas Sensor in a Thermal Gradient. NANOMATERIALS 2021; 11:nano11061604. [PMID: 34207259 PMCID: PMC8235061 DOI: 10.3390/nano11061604] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022]
Abstract
The response of a single tin oxide nanowire was collected at different temperatures to create a virtual array of sensors working as a nano-electronic nose. The single nanowire, acting as a chemiresistor, was first tested with pure ammonia and then used to determine the freshness status of trout fish (Oncorhynchus mykiss) in a rapid and non-invasive way. The gas sensor reacts to total volatile basic nitrogen, detecting the freshness status of the fish samples in less than 30 s. The sensor response at different temperatures correlates well with the total viable count (TVC), demonstrating that it is a good (albeit indirect) way of measuring the bacterial population in the sample. The nano-electronic nose is not only able to classify the samples according to their degree of freshness but also to quantitatively estimate the concentration of microorganisms present. The system was tested with samples stored at different temperatures and classified them perfectly (100%), estimating their log(TVC) with an error lower than 5%.
Collapse
Affiliation(s)
- Matteo Tonezzer
- Research and Innovation Centre, Department of Food Quality and Nutrition, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (F.G.); (F.B.)
- Center Agriculture Food Environment, University of Trento/Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Italy
- IMEM-CNR, Sede di Trento—FBK, Via alla Cascata 56/C, Povo, 38123 Trento, Italy
- Correspondence: (M.T.); (N.V.D.)
| | - Nguyen Xuan Thai
- International Training Institute for Materials Science, Hanoi University of Science and Technology, Hanoi 100000, Vietnam;
| | - Flavia Gasperi
- Research and Innovation Centre, Department of Food Quality and Nutrition, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (F.G.); (F.B.)
- Center Agriculture Food Environment, University of Trento/Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Nguyen Van Duy
- International Training Institute for Materials Science, Hanoi University of Science and Technology, Hanoi 100000, Vietnam;
- Correspondence: (M.T.); (N.V.D.)
| | - Franco Biasioli
- Research and Innovation Centre, Department of Food Quality and Nutrition, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (F.G.); (F.B.)
| |
Collapse
|