1
|
Recent Developments in Phenotypic and Molecular Diagnostic Methods for Antimicrobial Resistance Detection in Staphylococcus aureus: A Narrative Review. Diagnostics (Basel) 2022; 12:diagnostics12010208. [PMID: 35054375 PMCID: PMC8774325 DOI: 10.3390/diagnostics12010208] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen responsible for a wide range of infections in humans, such as skin and soft tissue infections, pneumonia, food poisoning or sepsis. Historically, S. aureus was able to rapidly adapt to anti-staphylococcal antibiotics and become resistant to several classes of antibiotics. Today, methicillin-resistant S. aureus (MRSA) is a multidrug-resistant pathogen and is one of the most common bacteria responsible for hospital-acquired infections and outbreaks, in community settings as well. The rapid and accurate diagnosis of antimicrobial resistance in S. aureus is crucial to the early initiation of directed antibiotic therapy and to improve clinical outcomes for patients. In this narrative review, I provide an overview of recent phenotypic and molecular diagnostic methods for antimicrobial resistance detection in S. aureus, with a particular focus on MRSA detection. I consider methods for resistance detection in both clinical samples and isolated S. aureus cultures, along with a brief discussion of the advantages and the challenges of implementing such methods in routine diagnostics.
Collapse
|
2
|
Mirzajani H, Cheng C, Vafaie RH, Wu J, Chen J, Eda S, Aghdam EN, Ghavifekr HB. Optimization of ACEK-enhanced, PCB-based biosensor for highly sensitive and rapid detection of bisphenol a in low resource settings. Biosens Bioelectron 2021; 196:113745. [PMID: 34753078 DOI: 10.1016/j.bios.2021.113745] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/18/2021] [Accepted: 10/28/2021] [Indexed: 11/02/2022]
Abstract
In this study, we developed a low-cost and easy-to-use capacitive biosensor employing printed-circuit-board (PCB)-based technique for electrode fabrication and a specific alternative current (AC) signal for AC Electrokinetics (ACEK) effect excitation. Fast, accurate, and highly sensitive detection and quantification of bisphenol A (BPA) was achieved. An easy characterization of the biofunctionalization process is introduced by measuring interfacial capacitance which is simple and superior to most of methods currently in use. The frequency and amplitude of the AC signal used for capacitive interrogation were optimized to achieve maximum interfacial capacitance and maximum sensitivity. To evaluate the performance of the developed biosensor, its operation was compared with in-house microfabricated and commercially available electrodes. The limit-of-detection (LOD) obtained using the PCB-based electrodes was found to be at least one order of magnitude lower than that obtained with the commercial and in-house microfabricated electrodes. The linear range for BPA detection was wide from 1 fM to 10 pM with an LOD of 109.5 aM and sample to result in 20s. The biosensor operation was validated by spike-and-recovery tests of BPA using commercial food samples. Thus, the platform has a potential as an on-site detection of bisphenol A in low-resource settings.
Collapse
Affiliation(s)
- Hadi Mirzajani
- The University of Tennessee, Knoxville, Department of Electrical Engineering and Computer Science, 1520 Middle Drive, Knoxville, TN, 37966, USA; Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, 34450 Istanbul, Turkey; Sahand University of Technology, Department of Electrical Engineering, Microelectronics Research Lab., Tabriz, Iran
| | - Cheng Cheng
- The University of Tennessee, Knoxville, Department of Electrical Engineering and Computer Science, 1520 Middle Drive, Knoxville, TN, 37966, USA; School of Engineering and Computer Science, Morehead State University, 150 University Blvd., Morehead, KY, 40351, USA
| | | | - Jayne Wu
- The University of Tennessee, Knoxville, Department of Electrical Engineering and Computer Science, 1520 Middle Drive, Knoxville, TN, 37966, USA.
| | - Jiangang Chen
- The University of Tennessee, Department of Public Health, 1914 Andy Holt Avenue, Knoxville, TN, 37996, USA
| | - Shigotoshi Eda
- University of Tennessee Institute of Agriculture, Department of Forestry, Wildlife and Fisheries, 2505 E. J. Chapman Drive, Knoxville, TN, 37996, USA
| | - Esmaeil Najafi Aghdam
- Sahand University of Technology, Department of Electrical Engineering, Microelectronics Research Lab., Tabriz, Iran
| | - Habib Badri Ghavifekr
- Sahand University of Technology, Department of Electrical Engineering, Microelectronics Research Lab., Tabriz, Iran
| |
Collapse
|
3
|
Qi H, Huang X, Wu J, Zhang J, Wang F, Qu H, Zheng L. A disposable aptasensor based on a gold-plated coplanar electrode array for on-site and real-time determination of Cu 2. Anal Chim Acta 2021; 1183:338991. [PMID: 34627507 DOI: 10.1016/j.aca.2021.338991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 11/25/2022]
Abstract
Copper ion (Cu2+) is an important cofactor for many enzymes in human body. Either excessive or deficient Cu2+ in the body may cause serious dysfunctions and diseases. So sensitive determination of Cu2+ in environmental samples is of more significance for evaluation and control of Cu2+ intake. Based on a low-cost gold-plated coplanar electrode array, a disposable aptasensor is developed with an ultra-sensitive indicator of interfacial capacitance. Modified with a specially isolated DNA aptamer for Cu2+, this sensor achieves a high selectivity of 1207: 1 against non-target ions. To realize real-time response, alternating-current electrothermal effect is integrated into the capacitance measuring process to efficiently enrich the trace Cu2+. This sensor reaches a limit of detection of 2.97 fM, with a linear range from 5.0 fM to 50 pM. The response time is only 15 s, which can meet the real-time detection requirement. On-site test of practical samples is also realized using the disposable sensor combined with a handheld inductance/capacitance/resistance meter. This sensor with its portable test system provides a cost-efficient solution for on-site, real-time and sensitive detection of Cu2+, showing great application value in environment monitoring.
Collapse
Affiliation(s)
- Haochen Qi
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, China; School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, 230009, China
| | - Xiaofan Huang
- School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, 230009, China
| | - Jayne Wu
- Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN, 37996, USA.
| | - Jian Zhang
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, China; School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, 230009, China.
| | - Fei Wang
- Beijing Smartchip Microelectronics Technology Company Limited, Beijing, 102200, China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
4
|
Rapid and Sensitive Detection of miRNA Based on AC Electrokinetic Capacitive Sensing for Point-of-Care Applications. SENSORS 2021; 21:s21123985. [PMID: 34207808 PMCID: PMC8226656 DOI: 10.3390/s21123985] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022]
Abstract
A sensitive and efficient method for microRNAs (miRNAs) detection is strongly desired by clinicians and, in recent years, the search for such a method has drawn much attention. There has been significant interest in using miRNA as biomarkers for multiple diseases and conditions in clinical diagnostics. Presently, most miRNA detection methods suffer from drawbacks, e.g., low sensitivity, long assay time, expensive equipment, trained personnel, or unsuitability for point-of-care. New methodologies are needed to overcome these limitations to allow rapid, sensitive, low-cost, easy-to-use, and portable methods for miRNA detection at the point of care. In this work, to overcome these shortcomings, we integrated capacitive sensing and alternating current electrokinetic effects to detect specific miRNA-16b molecules, as a model, with the limit of detection reaching 1.0 femto molar (fM) levels. The specificity of the sensor was verified by testing miRNA-25, which has the same length as miRNA-16b. The sensor we developed demonstrated significant improvements in sensitivity, response time and cost over other miRNA detection methods, and has application potential at point-of-care.
Collapse
|