1
|
Gharous M, Bounab L, Pereira FJ, Choukairi M, López R, Aller AJ. Electrochemical Kinetics and Detection of Paracetamol by Stevensite-Modified Carbon Paste Electrode in Biological Fluids and Pharmaceutical Formulations. Int J Mol Sci 2023; 24:11269. [PMID: 37511028 PMCID: PMC10378910 DOI: 10.3390/ijms241411269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Paracetamol (PCT), or acetaminophen, is an important drug used worldwide for various clinical purposes. However, the excessive or indiscriminate use of PCT can provoke liver and kidney dysfunction; hence, it is essential to determine the amount of this target in biological samples. In this work, we develop a quick, simple, and sensitive voltammetric method using chemically modified electrodes to determine PCT in complex matrices, including human serum and commercial solid formulations. We modify the carbon paste electrode with stevensite monoclinic clay mineral (Stv-CPE), using cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy to characterise and detect PCT. The kinetics study provides a better electrochemical characterisation of the electrode behaviour, finding the detection and quantitation limits of 0.2 μM and 0.5 μM under favourable conditions. Further, the best linear working concentration range is 0.6-100 μM for PCT, applying the proposed method to the quantitative determination of PCT content in reference tablet formulations and biological samples for validation.
Collapse
Affiliation(s)
- Moaad Gharous
- Laboratory of Materials and Interfacial Systems, Faculty of Science, Abdelmalek Essaadi University, BP 2121, Tetouan 93002, Morocco
- Research Group of Advanced Materials, Structures and Civil Engineering, National School of Applied Sciences of Tetouan, Abdelmalek Essaadi University, BP 2121, Tetouan 93002, Morocco
| | - Loubna Bounab
- Research Group of Advanced Materials, Structures and Civil Engineering, National School of Applied Sciences of Tetouan, Abdelmalek Essaadi University, BP 2121, Tetouan 93002, Morocco
| | - Fernando J Pereira
- Department of Applied Chemistry and Physics, Faculty of Biological and Environmental Sciences, Campus de Vegazana, s/n, University of León, E-24071 León, Spain
| | - Mohamed Choukairi
- Laboratory of Materials and Interfacial Systems, Faculty of Science, Abdelmalek Essaadi University, BP 2121, Tetouan 93002, Morocco
| | - Roberto López
- Department of Applied Chemistry and Physics, Faculty of Biological and Environmental Sciences, Campus de Vegazana, s/n, University of León, E-24071 León, Spain
| | - A Javier Aller
- Department of Applied Chemistry and Physics, Faculty of Biological and Environmental Sciences, Campus de Vegazana, s/n, University of León, E-24071 León, Spain
| |
Collapse
|
2
|
Balakumar S, Mahesh N, Kamaraj M, Shyamalagowri S, Manjunathan J, Murugesan S, Aravind J, Babu PS. Outlook on bismuth-based photocatalysts for environmental applications: A specific emphasis on Z-scheme mechanisms. CHEMOSPHERE 2022; 303:135052. [PMID: 35618054 DOI: 10.1016/j.chemosphere.2022.135052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/30/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Semiconductor photocatalysis is thought to be a viable solution for addressing the growing problem of environmental pollution. Bismuth (Bi) metal oxides can function as a direct plasmonic photocatalyst or cocatalyst to accelerate the photogenerated charge separation and thus improve their photocatalytic activity. Hence, Bi-based photocatalysts have received a lot of attention due to their extensive environmental applications, including pollutant remediation and energy concepts. Massive efforts have been undertaken in the recent decade to find superior Bi-metal oxides (Bi2XO6, X = MO, W, or Cr) and to uncover the corresponding photocatalytic reaction mechanism for the degradation of organic contaminants in water. Herein, the unique crystalline and electronic properties and main synthesis methods, as well as the major Bi-Based direct Z-scheme photocatalysts, are timely discussed and summarized in their usage in water treatment. Besides, the impact of Bi2XO6 in energy storage devices and solar energy conversion is reviewed as an energy application. Finally, the future development and challenges of Z-scheme-based Bi2XO6 photocatalysts are briefly explored, summarized, and forecasted.
Collapse
Affiliation(s)
- Srinivasan Balakumar
- Department of Chemistry and Biosciences, Srinivasa Ramanujan Centre, SASTRA Deemed to Be University, Kumbakonam, 612001, Tamil Nadu, India
| | - Narayanan Mahesh
- Department of Chemistry and Biosciences, Srinivasa Ramanujan Centre, SASTRA Deemed to Be University, Kumbakonam, 612001, Tamil Nadu, India.
| | - M Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology - Ramapuram Campus, Chennai, 600089, Tamil Nadu, India
| | - S Shyamalagowri
- PG and Research Department of Botany, Pachaiyappa's College, Chennai, 600030, Tamil Nadu, India
| | - J Manjunathan
- Department of Biotechnology, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, 600117, Tamil Nadu, India
| | - S Murugesan
- PG and Research Department of Botany, Pachaiyappa's College, Chennai, 600030, Tamil Nadu, India
| | - J Aravind
- Department of Bio-Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - P Suresh Babu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India; Faculty of Pharmaceutical Sciences, UCSI University, 56000, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Yu T, Glennon L, Fenelon O, Breslin CB. Electrodeposition of bismuth at a graphene modified carbon electrode and its application as an easily regenerated sensor for the electrochemical determination of the antimicrobial drug metronidazole. Talanta 2022; 251:123758. [DOI: 10.1016/j.talanta.2022.123758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/27/2022] [Accepted: 07/18/2022] [Indexed: 10/17/2022]
|