1
|
Ma M, Jin C, Dong Q. Intratumoral Heterogeneity and Immune Microenvironment in Hepatoblastoma Revealed by Single-Cell RNA Sequencing. J Cell Mol Med 2025; 29:e70482. [PMID: 40099956 PMCID: PMC11915626 DOI: 10.1111/jcmm.70482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025] Open
Abstract
Hepatoblastoma (HB) is a common paediatric liver malignancy characterised by significant intratumoral heterogeneity and a complex tumour microenvironment (TME). Using single-cell RNA sequencing (scRNA-seq), we analysed 43,592 cells from three tumour regions and adjacent normal tissue of an HB patient. Our study revealed distinct cellular compositions and varying degrees of malignancy across different tumour regions, with the T1 region showing the highest malignancy and overexpression of HMGB2 and TOP2A. Survival analysis demonstrated that high HMGB2 expression is associated with poor prognosis and increased recurrence, suggesting its potential as a prognostic marker. Additionally, we identified a diverse immune microenvironment enriched with regulatory T cells (Tregs) and CD8+ effector memory T cells (Tem), indicating potential immune evasion mechanisms. Notably, CTLA-4 and PD-1 were highly expressed in Tregs and Tem cells, highlighting their potential as immunotherapy targets. Myeloid cells, including Kupffer cells and dendritic cells, also exhibited distinct functional roles in different tumour regions. This study provides the first comprehensive single-cell atlas of HB, revealing critical insights into its intratumoral heterogeneity and immune microenvironment. Our findings not only advance the understanding of HB biology but also offer new directions for precision medicine, including the development of targeted therapies and immunotherapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Mingdi Ma
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chen Jin
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qian Dong
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Huang S, Lin Y, Liu S, Shang J, Wang Z. Impact of treatment on the prognosis of childhood in hepatoblastoma: A SEER based analysis. Heliyon 2024; 10:e34510. [PMID: 39113986 PMCID: PMC11305182 DOI: 10.1016/j.heliyon.2024.e34510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Background The prognosis of patients with hepatoblastoma has been unsatisfactory. This study analyzed the effects of different treatment methods on cancer-specific survival (CSS) in children with hepatoblastoma. Method From 2000 to 2018, patients with hepatoblastoma were included in the Surveillance, Epidemiology, and End Results (SEER) database. CSS was estimated using the Kaplan-Meier method. Cox regression analysis assessed prognostic factors. The predictive models were validated using the concordance index (C-index), calibration curve and receiver operating characteristic (ROC) curve. Result Of the 785 included patients, 730 (93.0 %) underwent chemotherapy, 516 (65.7 %) underwent liver tumour resection and 129 (16.4 %) underwent liver transplantation. Both chemotherapy and surgery could significantly improve the CSS rate (all p < 0.001). However, there was no difference in CSS rate between the two surgical methods (liver tumour resection and liver transplantation) (p = 0.613). Further subgroup analysis revealed that children who underwent liver tumour resection or liver transplantation based on chemotherapy (all p > 0.05) had a similar prognosis. Multivariate analysis revealed that age (p = 0.003), race (p = 0.001), operative method (p < 0.001), chemotherapy (p < 0.001), distant metastasis (p < 0.001) and tumour size (p < 0.001) were independent factors related to CSS. The C-index of the new nomogram was 0.759, and its consistency was good. The ROC curves verified that the nomogram had a better prediction ability for 1-, 3- and 5-year CSS rates. Conclusion In children with hepatoblastoma, there was no statistically significant difference in CSS between chemotherapy combined with liver transplantation and liver tumour resection. The nomogram we constructed demonstrated satisfactory CSS prediction ability.
Collapse
Affiliation(s)
- Sihan Huang
- Department of Hematology–Oncology, Fujian Children's Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Yaobin Lin
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shan Liu
- Department of Hematology–Oncology, Fujian Children's Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Jin Shang
- Department of Hematology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Zhihong Wang
- Department of Hematology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| |
Collapse
|
3
|
Ziogas IA, Schmoke N, Yoeli D, Cullen JM, Boster JM, Wachs ME, Adams MA. The effect of donor graft type on survival after liver transplantation for hepatoblastoma in children. Pediatr Transplant 2024; 28:e14641. [PMID: 37946593 DOI: 10.1111/petr.14641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Liver transplantation (LT) is the only potentially curative option for children with unresectable hepatoblastoma (HBL). Although post-transplant outcomes have improved in the contemporary era, the impact of donor graft type on survival remains unclear. METHODS Using the United Network for Organ Sharing database (02/2002-06/2021), demographics, clinical characteristics, and patient and graft survival were analyzed in children (<18 years) who underwent LT for HBL according to donor graft type. The Kaplan-Meier method, log-rank tests, and Cox regression modeling were used to evaluate the effect of whole, partial, and split deceased donor liver transplantation (DDLT) and living donor liver transplantation (LDLT) on patient and graft survival. RESULTS A total of 590 pediatric HBL LT recipients (344 whole graft DDLT; 62 partial graft DDLT; 139 split graft DDLT; 45 LDLT) were included. During 2012-2021 the proportion of LDLTs for HBL decreased to about 5% compared with about 11% during 2002-2011. No significant differences were identified by donor graft type in either patient survival (log-rank test, p = .45) or graft survival (log-rank test, p = .69). The results remained similar during the 2002-2011 era, while during the 2012-2021 era, split graft DDLT was associated with decreased graft loss risk versus whole graft DDLT (hazard ratio: 0.48, 95% confidence interval: 0.23-0.99, p = .046) without any other significant between-group differences. CONCLUSIONS Utilizing non-whole liver grafts can increase access to LT in children with unresectable HBL while ensuring favorable outcomes. LDLT is underutilized in children with HBL in the United States, and efforts to explore LDLT options should be undertaken.
Collapse
Affiliation(s)
- Ioannis A Ziogas
- Colorado Center for Transplantation Care, Research and Education (CCTCARE), Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Transplant Surgery, Department of Surgery, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Nicholas Schmoke
- Colorado Center for Transplantation Care, Research and Education (CCTCARE), Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Transplant Surgery, Department of Surgery, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Dor Yoeli
- Colorado Center for Transplantation Care, Research and Education (CCTCARE), Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Transplant Surgery, Department of Surgery, Children's Hospital Colorado, Aurora, Colorado, USA
| | - J Michael Cullen
- Colorado Center for Transplantation Care, Research and Education (CCTCARE), Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Transplant Surgery, Department of Surgery, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Julia M Boster
- Department of Pediatrics, Pediatric Liver Center, Digestive Health Institute and Section of Pediatric Gastroenterology, Hepatology & Nutrition, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michael E Wachs
- Colorado Center for Transplantation Care, Research and Education (CCTCARE), Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Transplant Surgery, Department of Surgery, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Megan A Adams
- Colorado Center for Transplantation Care, Research and Education (CCTCARE), Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Transplant Surgery, Department of Surgery, Children's Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
4
|
Cao Y, Wu S, Tang H. An update on diagnosis and treatment of hepatoblastoma. Biosci Trends 2024; 17:445-457. [PMID: 38143081 DOI: 10.5582/bst.2023.01311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Hepatoblastoma (HB) remains the most common paediatric liver tumour and survival in children with hepatoblastoma has improved considerably since the advent of sequential surgical regimens of chemotherapy based on platinum-based chemotherapeutic agents in the 1980s. With the advent of modern diagnostic imaging and pathology techniques, new preoperative chemotherapy regimens and the maturation of surgical techniques, new diagnostic and treatment options for patients with hepatoblastoma have emerged and international collaborations are investigating the latest diagnostic approaches, chemotherapy drug combinations and surgical strategies. Diagnosis of hepatoblastoma relies on imaging studies (such as ultrasound, computed tomography, and magnetic resonance imaging), alpha-fetoprotein (AFP) levels, and histological confirmation through biopsy. The standard treatment approach involves a multimodal strategy with neoadjuvant chemotherapy followed by surgical resection. In cases where complete resection is not feasible or tumors exhibit invasive characteristics, liver transplantation is considered. The management of metastatic and recurrent hepatoblastoma poses significant challenges, and ongoing research focuses on developing targeted therapies and exploring the potential of immunotherapy. Further studies are necessary to gain a better understanding of the etiology of hepatoblastoma, develop prevention strategies, and personalize treatment approaches. We aim to review the current status of diagnosis and treatment of hepatoblastoma.
Collapse
Affiliation(s)
- Yinbiao Cao
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China
- The First Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Shurui Wu
- The First Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Haowen Tang
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China
- The First Medical Center of the Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Murawski M, Garnier H, Stefanowicz J, Sinacka K, Izycka-Swieszewska E, Sawicka-Zukowska M, Wawrykow P, Wrobel G, Mizia-Malarz A, Marciniak-Stepak P, Czauderna P. Parenchyma Sparing Anatomic Liver Resections (Bi- and Uni-Segmentectomies) for Liver Tumours in Children-A Single-Centre Experience. Cancers (Basel) 2023; 16:38. [PMID: 38201466 PMCID: PMC10778279 DOI: 10.3390/cancers16010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Purpose: To present a single-centre experience in bi- and uni-segmentectomies for primary liver tumours in children. METHODS This study included 23 patients that underwent (bi)segmentectomy. There were 15 malignant tumours (hepatoblastoma-13 patients), 7 benign tumours, and 1 calcifying nested stromal epithelial tumour. RESULTS The median tumour diameter was 52 mm (range 15-170 mm). Bisegmentectomy 2-3 was most frequently performed (seven patients), followed by bisegmentectomy 5-6 (four patients). The median operative time was 225 min (range 95-643 min). Intraoperative complications occurred in two patients-small bowel perforation in one and an injury of the small peripheral bile duct resulting in biloma in the other. The median resection margin in patients with hepatoblastoma was 3 mm (range 1-15 mm). Microscopically negative margin status was achieved in 12 out of 13 patients. There were two recurrences. After a median follow-up time of 38 months (range 12-144 months), all 13 patients with HB were alive with no evidence of disease. Two relapsed patients were alive with no evidence of disease. CONCLUSIONS From the available literature and data presented here, we propose that (bi)segmentectomy can become a viable surgical option in carefully selected paediatric patients and is sufficient to achieve a cure. Further studies evaluating the impact of parenchymal preservation surgery on surgical and oncological outcome should be conducted with a larger dataset.
Collapse
Affiliation(s)
- Maciej Murawski
- Department of Surgery and Urology for Children and Adolescents, Medical University of Gdansk, 80-210 Gdansk, Poland; (H.G.); (P.C.)
| | - Hanna Garnier
- Department of Surgery and Urology for Children and Adolescents, Medical University of Gdansk, 80-210 Gdansk, Poland; (H.G.); (P.C.)
| | - Joanna Stefanowicz
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Katarzyna Sinacka
- Department of Radiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Ewa Izycka-Swieszewska
- Department of Pathology and Neuropathology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | | | - Pawel Wawrykow
- Department of Pediatric Oncology, Pomeranian Medical University, 71-210 Szczecin, Poland;
| | - Grazyna Wrobel
- Department and Clinic of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Medical University of Wroclaw, 50-425 Wroclaw, Poland;
| | - Agnieszka Mizia-Malarz
- Department of Pediatric Oncology, Hematology and Chemotherapy, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Patrycja Marciniak-Stepak
- Department of Pediatric Oncology Hematology and Transplantology, Poznan University of Medical Sciences, 60-572 Poznan, Poland;
| | - Piotr Czauderna
- Department of Surgery and Urology for Children and Adolescents, Medical University of Gdansk, 80-210 Gdansk, Poland; (H.G.); (P.C.)
| |
Collapse
|
6
|
Dong Y, Cekuolis A, Schreiber-Dietrich D, Augustiniene R, Schwarz S, Möller K, Nourkami-Tutdibi N, Chen S, Cao JY, Huang YL, Wang Y, Taut H, Grevelding L, Dietrich CF. Review on Pediatric Malignant Focal Liver Lesions with Imaging Evaluation: Part I. Diagnostics (Basel) 2023; 13:3568. [PMID: 38066809 PMCID: PMC10706220 DOI: 10.3390/diagnostics13233568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Malignant focal liver lesions (FLLs) are commonly reported in adults but rarely seen in the pediatric population. Due to the rarity, the understanding of these diseases is still very limited. In children, most malignant FLLs are congenital. It is very important to choose appropriate imaging examination concerning various factors. This paper will outline common pediatric malignant FLLs, including hepatoblastoma, hepatocellular carcinoma, and cholangiocarcinoma and discuss them against the background of the latest knowledge on comparable/similar tumors in adults. Medical imaging features are of vital importance for the non-invasive diagnosis and follow-up of treatment of FLLs in pediatric patients. The use of CEUS in pediatric patients for characterizing those FLLs that remain indeterminate on conventional B mode ultrasounds may be an effective option in the future and has great potential to be integrated into imaging algorithms without the risk of exposure to ionizing radiation.
Collapse
Affiliation(s)
- Yi Dong
- Department of Ultrasound, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; (Y.D.); (S.C.); (J.-Y.C.); (Y.-L.H.); (Y.W.)
| | - Andrius Cekuolis
- Ultrasound Section, Department of Pediatric Radiology, Radiology and Nuclear Medicine Centre, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania; (A.C.); (R.A.)
| | | | - Rasa Augustiniene
- Ultrasound Section, Department of Pediatric Radiology, Radiology and Nuclear Medicine Centre, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania; (A.C.); (R.A.)
| | - Simone Schwarz
- Department of Neonatology and Pediatric Intensive Care Medicine, Sana Kliniken Duisburg GmbH, 47055 Duisburg, Germany;
| | - Kathleen Möller
- Medical Department I/Gastroenterology, SANA Hospital Lichtenberg, 10365 Berlin, Germany;
| | - Nasenien Nourkami-Tutdibi
- Saarland University Medical Center, Hospital of General Pediatrics and Neonatology, 66421 Homburg, Germany;
| | - Sheng Chen
- Department of Ultrasound, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; (Y.D.); (S.C.); (J.-Y.C.); (Y.-L.H.); (Y.W.)
| | - Jia-Ying Cao
- Department of Ultrasound, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; (Y.D.); (S.C.); (J.-Y.C.); (Y.-L.H.); (Y.W.)
| | - Yun-Lin Huang
- Department of Ultrasound, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; (Y.D.); (S.C.); (J.-Y.C.); (Y.-L.H.); (Y.W.)
| | - Ying Wang
- Department of Ultrasound, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; (Y.D.); (S.C.); (J.-Y.C.); (Y.-L.H.); (Y.W.)
| | - Heike Taut
- Children’s Hospital, Universitätsklinikum Dresden, Technische Universität Dresden, 01069 Dresden, Germany;
| | - Lara Grevelding
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital Frankfurt, Goethe University, 60323 Frankfurt, Germany
| | - Christoph F. Dietrich
- Department Allgemeine Innere Medizin (DAIM), Kliniken Hirslanden Beau Site, Salem und Permanence, 3013 Bern, Switzerland
| |
Collapse
|
7
|
Ruan W, Galvan NTN, Dike P, Koci M, Faraone M, Fuller K, Koomaraie S, Cerminara D, Fishman DS, Deray KV, Munoz F, Schackman J, Leung D, Akcan-Arikan A, Virk M, Lam FW, Chau A, Desai MS, Hernandez JA, Goss JA. The Multidisciplinary Pediatric Liver Transplant. Curr Probl Surg 2023; 60:101377. [PMID: 37993242 DOI: 10.1016/j.cpsurg.2023.101377] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/29/2023] [Indexed: 11/24/2023]
Affiliation(s)
- Wenly Ruan
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Nhu Thao N Galvan
- Division of Abdominal Transplantation, Michael E. DeBakey Department of Surgery, Department of Pediatric Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX.
| | - Peace Dike
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Melissa Koci
- Division of Abdominal Transplantation, Michael E. DeBakey Department of Surgery, Department of Pediatric Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Marielle Faraone
- Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Kelby Fuller
- Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | | | - Dana Cerminara
- Department of Pharmacy, Texas Children's Hospital, Houston, TX
| | - Douglas S Fishman
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Kristen Valencia Deray
- Department of Pediatrics, Department of Pharmacy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Flor Munoz
- Department of Pediatrics, Department of Pharmacy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Julie Schackman
- Division of Anesthesiology, Perioperative, & Pain Medicine, Department of Anesthesiology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Daniel Leung
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Ayse Akcan-Arikan
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Manpreet Virk
- Division of Critical Care, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Fong W Lam
- Division of Critical Care, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Alex Chau
- Division of Interventional Radiology, Department of Radiology, Edward B. Singleton Department of Radiology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Moreshwar S Desai
- Division of Critical Care, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Jose A Hernandez
- Division of Interventional Radiology, Department of Radiology, Edward B. Singleton Department of Radiology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - John A Goss
- Division of Abdominal Transplantation, Michael E. DeBakey Department of Surgery, Department of Pediatric Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| |
Collapse
|
8
|
Zheng C, Ye S, Liu W, Diao M, Li L. Prognostic value of systemic inflammation response index in hepatoblastoma patients receiving preoperative neoadjuvant chemotherapy. Front Oncol 2023; 13:1276175. [PMID: 37901310 PMCID: PMC10613067 DOI: 10.3389/fonc.2023.1276175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Inflammation is closely associated with tumor development and patient prognosis. The objective of this study is to assess the prognostic value of the preoperative inflammatory indexes in pediatric hepatoblastoma patients who receive neoadjuvant chemotherapy. Methods A retrospective analysis was performed on clinical and pathological data of 199 hepatoblastoma patients who underwent hepatectomy with preoperative neoadjuvant chemotherapy from January 2015 to June 2020. The receiver operating characteristic curve was used to evaluate the prognostic value of neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), systemic immune-inflammation index (SII), and systemic inflammation response index (SIRI) in predicting OS and EFS. Patients were grouped based on optimal cutoff values of preoperative inflammatory indexes. Survival rates were calculated using the Kaplan-Meier method, and survival outcomes were compared between groups using the log-rank test. Univariate and multivariate Cox proportional hazards regression models were used to identify independent prognostic factors, and a nomogram was constructed using R software to predict the probability of OS. Results The receiver operating characteristic curve showed prognostic value for OS, not EFS, in preoperative inflammatory indexes. Patients were categorized into low/high groups: SII ≤ 266.70/higher, NLR ≤ 1.24/higher, PLR ≤ 85.25/higher, and SIRI ≤ 0.72/higher. High NLR, PLR, SII, and SIRI groups had significantly lower 5-year OS than their low counterparts (all p-value < 0.05). The Cox analysis identified four independent prognostic factors: SIRI (HR=2.997, 95% CI: 1.119-8.031), microvascular invasion (HR=2.556, 95% CI: 1.14-5.73), the post-treatment extent of disease (POSTTEXT) staging (IV vs. I: HR=244.204, 95% CI:11.306-5274.556), and alpha-fetoprotein (>100 ng/ml: HR=0.11, 95% CI: 0.032-0.381) for hepatoblastoma patients with neoadjuvant chemotherapy. High SIRI group had more patients with adverse NLR, SII, and POSTTEXT III (all p-value < 0.05). Independent prognostic factors led to an OS nomogram with a concordance index of 0.85 (95% CI: 0.78-0.91, p-value = 1.43e-27) and the calibration curve showed a good fit between the prediction curve and the true curve. Conclusions SIRI is an independent prognostic factor of hepatoblastoma patients receiving neoadjuvant chemotherapy. The OS nomogram based on SIRI, POSTTEXT staging, MiVI, and AFP can be used to assess the prognosis of those patients.
Collapse
Affiliation(s)
- Chen Zheng
- Department of Pediatric Surgery, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Research Unit of Minimally Invasive Pediatric Surgery on Diagnosis and Treatment, Chinese Academy of Medical Sciences, Beijing, China
| | - Shiru Ye
- Department of Pediatric Surgery, Capital Institute of Pediatrics, Beijing, China
| | - Wei Liu
- Department of Pediatric Surgery, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Research Unit of Minimally Invasive Pediatric Surgery on Diagnosis and Treatment, Chinese Academy of Medical Sciences, Beijing, China
| | - Mei Diao
- Department of Pediatric Surgery, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Research Unit of Minimally Invasive Pediatric Surgery on Diagnosis and Treatment, Chinese Academy of Medical Sciences, Beijing, China
| | - Long Li
- Department of Pediatric Surgery, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Research Unit of Minimally Invasive Pediatric Surgery on Diagnosis and Treatment, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Xu H, Zhou Y, Guo J, Ling T, Xu Y, Zhao T, Shi C, Su Z, You Q. Elevated extracellular calcium ions accelerate the proliferation and migration of HepG2 cells and decrease cisplatin sensitivity. J Biomed Res 2023; 37:340-354. [PMID: 37750331 PMCID: PMC10541776 DOI: 10.7555/jbr.37.20230067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 09/27/2023] Open
Abstract
Hepatoblastoma is the most frequent liver malignancy in children. HepG2 has been discovered as a hepatoblastoma-derived cell line and tends to form clumps in culture. Intriguingly, we observed that the addition of calcium ions reduced cell clumping and disassociated HepG2 cells. The calcium signal is in connection with a series of processes critical in the tumorigenesis. Here, we demonstrated that extracellular calcium ions induced morphological changes and enhanced the epithelial-mesenchymal transition in HepG2 cells. Mechanistically, calcium ions promoted HepG2 proliferation and migration by up-regulating the phosphorylation levels of focal adhesion kinase (FAK), protein kinase B, and p38 mitogen-activated protein kinase. The inhibitor of FAK or Ca 2+/calmodulin-dependent kinase Ⅱ (CaMKⅡ) reversed the Ca 2+-induced effects on HepG2 cells, including cell proliferation and migration, epithelial-mesenchymal transition protein expression levels, and phosphorylation levels of FAK and protein kinase B. Moreover, calcium ions decreased HepG2 cells' sensitivity to cisplatin. Furthermore, we found that the expression levels of FAK and CaMKⅡ were increased in hepatoblastoma. The group with high expression levels of FAK and CaMKⅡ exhibited significantly lower ImmunoScore as well as CD8 + T and NK cells. The expression of CaMKⅡ was positively correlated with that of PDCD1 and LAG3. Correspondingly, the expression of FAK was negatively correlated with that of TNFSF9, TNFRSF4, and TNFRSF18. Collectively, extracellular calcium accelerates HepG2 cell proliferation and migration via FAK and CaMKⅡ and enhances cisplatin resistance. FAK and CaMKⅡ shape immune cell infiltration and responses in tumor microenvironments, thereby serving as potential targets for hepatoblastoma.
Collapse
Affiliation(s)
- Haozhe Xu
- Department of Geriatrics, Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Yiming Zhou
- Department of Geriatrics, Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Jing Guo
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, Guangdong 510095, China
| | - Tao Ling
- Department of Geriatrics, Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Yujie Xu
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, Guangdong 510095, China
| | - Ting Zhao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Chuanxin Shi
- Division of General Surgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Zhongping Su
- Department of Geriatric Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qiang You
- Department of Geriatrics, Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, Guangdong 510095, China
| |
Collapse
|
10
|
Fang J, Singh S, Cheng C, Natarajan S, Sheppard H, Abu-Zaid A, Durbin AD, Lee HW, Wu Q, Steele J, Connelly JP, Jin H, Chen W, Fan Y, Pruett-Miller SM, Rehg JE, Koo SC, Santiago T, Emmons J, Cairo S, Wang R, Glazer ES, Murphy AJ, Chen T, Davidoff AM, Armengol C, Easton J, Chen X, Yang J. Genome-wide mapping of cancer dependency genes and genetic modifiers of chemotherapy in high-risk hepatoblastoma. Nat Commun 2023; 14:4003. [PMID: 37414763 PMCID: PMC10326052 DOI: 10.1038/s41467-023-39717-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
A lack of relevant genetic models and cell lines hampers our understanding of hepatoblastoma pathogenesis and the development of new therapies for this neoplasm. Here, we report an improved MYC-driven hepatoblastoma-like murine model that recapitulates the pathological features of embryonal type of hepatoblastoma, with transcriptomics resembling the high-risk gene signatures of the human disease. Single-cell RNA-sequencing and spatial transcriptomics identify distinct subpopulations of hepatoblastoma cells. After deriving cell lines from the mouse model, we map cancer dependency genes using CRISPR-Cas9 screening and identify druggable targets shared with human hepatoblastoma (e.g., CDK7, CDK9, PRMT1, PRMT5). Our screen also reveals oncogenes and tumor suppressor genes in hepatoblastoma that engage multiple, druggable cancer signaling pathways. Chemotherapy is critical for human hepatoblastoma treatment. A genetic mapping of doxorubicin response by CRISPR-Cas9 screening identifies modifiers whose loss-of-function synergizes with (e.g., PRKDC) or antagonizes (e.g., apoptosis genes) the effect of chemotherapy. The combination of PRKDC inhibition and doxorubicin-based chemotherapy greatly enhances therapeutic efficacy. These studies provide a set of resources including disease models suitable for identifying and validating potential therapeutic targets in human high-risk hepatoblastoma.
Collapse
Affiliation(s)
- Jie Fang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shivendra Singh
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Changde Cheng
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sivaraman Natarajan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Heather Sheppard
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ahmed Abu-Zaid
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Adam D Durbin
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ha Won Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qiong Wu
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jacob Steele
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jon P Connelly
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenan Chen
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jerold E Rehg
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Selene C Koo
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Teresa Santiago
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Joseph Emmons
- VPC Diagnostic Laboratory, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stefano Cairo
- Champions Oncology, 1330 Piccard dr, Rockville, MD, USA
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, Hematology/Oncology & BMT, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Evan S Glazer
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Carolina Armengol
- Childhood Liver Oncology Group, Germans Trias i Pujol Research Institute (IGTP), Translational Program in Cancer Research (CARE), Badalona, Spain
- CIBER, Hepatic and Digestive Diseases, Barcelona, Spain
- CIBERehd, Madrid, Spain
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
11
|
Lin Y, Fang H, Ma C, Zhou J, Ding M, Sun H, Xu Y, Shan Y, Gao H, Yang L, Gu S, Li H. ACLY-β-catenin axis modulates hepatoblastoma cell proliferation. Biochem Biophys Res Commun 2023; 663:104-112. [PMID: 37121120 DOI: 10.1016/j.bbrc.2023.04.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/22/2023] [Indexed: 05/02/2023]
Abstract
HB (hepatoblastoma) is most common in children with liver cancer and few options for treating HB. Thus, it is of great significance to investigate the regulatory mechanism of HB and/or identify new therapeutic targets for clinical treatment of HB. Here, we showed that ACLY (ATP citrate lyase), an important lipometabolic enzyme for de novo biosynthesis of fatty acids and steroids, has a higher expression in HB tissues than noncancerous tissues, and is required for HB cell proliferation. Moreover, knocking down ACLY in HB cells caused severe S-phase arrest and apoptosis. Mechanistically, ACLY knockdown significantly silenced the Wnt signaling pathway and reduced β-catenin expression in HB cells. Conversely, the apoptotic alleviation of HB cells by overexpressing ACLY was blocked by silencing β-catenin, suggesting the modulation of HB cells by ACLY-β-catenin axis. Our results uncovered the role of ACLY in HB cells and presented a theoretical approach for HB targeted therapy in the future.
Collapse
Affiliation(s)
- Yanyan Lin
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Houshun Fang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Chunshuang Ma
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jiquan Zhou
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Ming Ding
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Huiying Sun
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yan Xu
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yuhua Shan
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Hongxiang Gao
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Liyuan Yang
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Song Gu
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Hui Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Fujian, China.
| |
Collapse
|
12
|
Schepers EJ, Lake C, Glaser K, Bondoc AJ. Inhibition of Glypican-3 Cleavage Results in Reduced Cell Proliferation in a Liver Cancer Cell Line. J Surg Res 2023; 282:118-128. [PMID: 36272230 PMCID: PMC10893758 DOI: 10.1016/j.jss.2022.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/09/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Glypican-3 (GPC3) is a surface-bound proteoglycan overexpressed in pediatric liver cancer and utilized clinically as an immunohistochemical tumor marker. Furin is a proprotein convertase that is ubiquitously expressed and shown to modify GPC3 post-translationally. In experimental models of epithelial-based cancers, furin inhibition decreased tumor cell migration and proliferation representing a potential therapeutic target. METHODS Using a synthetic furin inhibitor, we evaluated proliferation, migration, protein, and RNA expression in two liver cancer cell lines, HepG2 (GPC3-positive) and SKHep1 cells (GPC3-negative). Total furin protein and GPC3 protein expression were assessed to evaluate functional levels of furin. RESULTS There was a reduction in HepG2 proliferation with addition of furin inhibitor at the 48-h timepoint, however there was an increase in HepG2 migration. CONCLUSIONS GPC3 cleavage in hepatoblastoma (HB) has a role in cell proliferation with therapeutic potential, however furin inhibition is not an appropriate target for GPC3-expressing HB due to increased migration which may enhance metastatic potential.
Collapse
Affiliation(s)
- Emily J Schepers
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| | - Charissa Lake
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kathryn Glaser
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Alexander J Bondoc
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
13
|
Abstract
Hepatoblastoma is the most common primary malignant paediatric liver tumour and surgery remains the cornerstone of its management. The aim of this article is to present the principles of surgical treatment of hepatoblastoma. All aspects of surgery in hepatoblastoma are discussed, from biopsy, through conventional and laparoscopic liver resections, to extreme resection with adjacent structures, staged hepatectomy and transplantation.
Collapse
Affiliation(s)
- Maciej Murawski
- Department of Pediatric Surgery and Urology, Medical University of Gdansk, Gdansk, Poland.
- Department of Surgery and Urology for Children and Adolescents, Medical University of Gdansk, 1-6 Nowe Ogrody St., 80-803, Gdansk, Poland.
| | - Viola B Weeda
- Department of Surgery, University Academic Medical Centre Groningen, University of Amsterdam, Amsterdam, The Netherlands
| | - Piotr Czauderna
- Department of Pediatric Surgery and Urology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
14
|
Li P, Kong Y, Guo J, Ji X, Han X, Zhang B. Incidence and trends of hepatic cancer among children and adolescents in the United States from 2000 to 2017: Evidence from the Surveillance, Epidemiology, and End Results registry data. Cancer Causes Control 2023; 34:69-79. [PMID: 36244051 DOI: 10.1007/s10552-022-01640-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 10/03/2022] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Primary liver tumors are rare pediatric malignancies. Knowledge of the epidemiology of pediatric liver tumors is limited. This study aims to present the national incidence trends of pediatric liver tumors over 18 years, according to sociodemographic and histological subtype variation. METHODS The Surveillance, Epidemiology, and End Results registry was queried from 2000 to 2017 for 1,099 patients between ages 0 and 19 with liver tumors. Age-standardized incidence rates by age, sex, and race/ethnicity were examined among histological subtypes. Annual percentage change (APC) was calculated via joinpoint regression for various sociodemographic and histotype subgroups. RESULTS An increase of age-adjusted incidence rate of pediatric hepatic cancers was observed between 2000 and 2017 (APC, 1.7% [95% confidence interval or CI: 0.6%-2.8%], p-value = 0.006), which may likely attribute to the increasing incidence of hepatoblastoma and mesenchymal tumors (APC, 2.5% [95% CI: 1.1%-3.8%], p-value = 0.001). The incidence trend of hepatocellular carcinoma remained stable in the study period. The non-Hispanic Asian/Pacific Islander children and adolescents had a higher risk of hepatic tumors (incidence rate ratio or IRR, 1.42 [95% CI: 1.16-1.72], p-value = 0.0007) when compared with the non-Hispanic white subgroup, while a non-Hispanic black child was associated with a lower incidence rate (IRR, 0.64 [95% CI: 0.50-0.80], p-value < 0.0001). Significantly lower hepatic tumor incidence occurred in females than males, with an incidence rate ratio of 0.69 (95% CI: 0.61-0.78; p-value < 0.0001). Hepatic tumor incidence was also significantly lower in those aged 1-4 years (IRR, 0.47 [95% CI: 0.40-0.54]; p-value < 0.001) and 5-19 years (IRR, 0.09 [95% CI: 0.08-0.10]; p-value < 0.001) when compared with the youngest age group aged less than 1 year. These significant differences were also detected for the subgroup of hepatoblastoma and mesenchymal liver tumors but less among hepatocellular carcinomas (all p-values less than 0.0001). CONCLUSION Continued increasing incidence of pediatric hepatoblastoma and mesenchymal liver tumors was discovered and warranted further investigation. Additional findings include a lower incidence of hepatic cancer among non-Hispanic black individuals and higher incidence of hepatic cancer in non-Hispanic Asian/Pacific Islander, male, and aged 1-4-year children and adolescents.
Collapse
Affiliation(s)
- Peiyi Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yujia Kong
- Department of Public Health, Weifang Medical University, Weifang, Shandong, China
| | - Jing Guo
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, China
| | - Xu Ji
- Department of Pediatrics, Emory University School of Medicine/Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Xuesong Han
- Surveillance and Health Equity Science, American Cancer Society, Atlanta, GA, USA
| | - Bo Zhang
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA. .,Biostatistics and Research Design Center, Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Sumazin P, Peters TL, Sarabia SF, Kim HR, Urbicain M, Hollingsworth EF, Alvarez KR, Perez CR, Pozza A, Najaf Panah MJ, Epps JL, Scorsone K, Zorman B, Katzenstein H, O'Neill AF, Meyers R, Tiao G, Geller J, Ranganathan S, Rangaswami AA, Woodfield SE, Goss JA, Vasudevan SA, Heczey A, Roy A, Fisher KE, Alaggio R, Patel KR, Finegold MJ, López-Terrada DH. Hepatoblastomas with carcinoma features represent a biological spectrum of aggressive neoplasms in children and young adults. J Hepatol 2022; 77:1026-1037. [PMID: 35577029 PMCID: PMC9524481 DOI: 10.1016/j.jhep.2022.04.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 02/15/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Hepatoblastoma (HB) and hepatocellular carcinoma (HCC) are the predominant liver cancers in children, though their respective treatment options and associated outcomes differ dramatically. Risk stratification using a combination of clinical, histological, and molecular parameters can improve treatment selection, but it is particularly challenging for tumors with mixed histological features, including those in the recently created hepatocellular neoplasm not otherwise specified (HCN NOS) provisional category. We aimed to perform the first molecular characterization of clinically annotated cases of HCN NOS. METHODS We tested whether these histological features are associated with genetic alterations, cancer gene dysregulation, and outcomes. Namely, we compared the molecular features of HCN NOS, including copy number alterations, mutations, and gene expression profiles, with those in other pediatric hepatocellular neoplasms, including HBs and HCCs, as well as HBs demonstrating focal atypia or pleomorphism (HB FPAs), and HBs diagnosed in older children (>8). RESULTS Molecular profiles of HCN NOS and HB FPAs revealed common underlying biological features that were previously observed in HCCs. Consequently, we designated these tumor types collectively as HBs with HCC features (HBCs). These tumors were associated with high mutation rates (∼3 somatic mutations/Mb) and were enriched with mutations and alterations in key cancer genes and pathways. In addition, recurrent large-scale chromosomal gains, including gains of chromosomal arms 2q (80%), 6p (70%), and 20p (70%), were observed. Overall, HBCs were associated with poor clinical outcomes. CONCLUSIONS Our study indicates that histological features seen in HBCs are associated with combined molecular features of HB and HCC, that HBCs are associated with poor outcomes irrespective of patient age, and that transplanted patients are more likely to have good outcomes than those treated with chemotherapy and surgery alone. These findings highlight the importance of molecular testing and early therapeutic intervention for aggressive childhood hepatocellular neoplasms. LAY SUMMARY We molecularly characterized a class of histologically aggressive childhood liver cancers and showed that these tumors are clinically aggressive and that their observed histological features are associated with underlying recurrent molecular features. We proposed a diagnostic algorithm to identify these cancers using a combination of histological and molecular features, and our analysis suggested that these cancers may benefit from specialized treatment strategies that may differ from treatment guidelines for other childhood liver cancers.
Collapse
Affiliation(s)
- Pavel Sumazin
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA.
| | - Tricia L Peters
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Stephen F Sarabia
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Hyunjae R Kim
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Martin Urbicain
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Emporia Faith Hollingsworth
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Karla R Alvarez
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Cintia R Perez
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Alice Pozza
- Department of Pathology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mohammad Javad Najaf Panah
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Jessica L Epps
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Kathy Scorsone
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Barry Zorman
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Howard Katzenstein
- Nemours Children's Specialty Care and Wolfson Children's Hospital, Jacksonville, FL, USA
| | - Allison F O'Neill
- Dana-Farber Cancer Institute and Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Department of Pediatric Oncology, Boston, MA, USA
| | | | - Greg Tiao
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jim Geller
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Arun A Rangaswami
- Department of Pediatrics/Division of Hematology-Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Sarah E Woodfield
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA; Department of Surgery, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - John A Goss
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA; Department of Abdominal Transplantation, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Sanjeev A Vasudevan
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA; Department of Surgery, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Andras Heczey
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Angshumoy Roy
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Kevin E Fisher
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Rita Alaggio
- Department of Pathology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Kalyani R Patel
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Milton J Finegold
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA.
| | - Dolores H López-Terrada
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA.
| |
Collapse
|
16
|
Lu S, Jiang M, Chen Q, Luo X, Cao Z, Huang H, Zheng M, Du J. Upregulated YAP promotes oncogenic CTNNB1 expression contributing to molecular pathology of hepatoblastoma. Pediatr Blood Cancer 2022; 69:e29705. [PMID: 35404538 DOI: 10.1002/pbc.29705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Hepatoblastoma (HB) is one of the most common cancers in children. Recent studies have shown that the occurrence of nuclear accumulation of β-catenin reaches 90%-100% because of the anomalous activation of the Wnt pathway in HB patients. Furthermore, emerging studies have shown that concomitant activated forms of YAP and β-catenin trigger the formation and progression of HB. YAP might play a vital role in β-catenin-mediated HB development. However, the molecular mechanisms by which YAP/TEAD4 transcription factor regulates CTNNB1 underlying HB pathogenesis are still unclear. PROCEDURE YAP and CTNNB1 expression and correlation were analyzed by a combination of network enrichment analysis and gene set enrichment analysis of the public microarray datasets (GSE131329 and GSE81928). The protein levels of YAP and β-catenin were further validated by Western blotting in paired patients' samples. The direct interplay between YAP/TEAD4 and the promoter region of CTNNB1 was proven by the combination of dual-luciferase report assay and chromatin immunoprecipitation assay. RESULTS YAP-conserved signature and WNT signaling pathway were significantly enriched in HB patients, with upregulated expression of YAP and β-catenin compared to non-HB patients. Further functional assays demonstrated that YAP/TEAD4 transcription factor complex could bind to the CTNNB1 promoter region directly to promote β-catenin expression and cell proliferation. Targeting the YAP/TEAD4 complex with a specific small-molecule compound markedly suppressed HepaG2 cell proliferation. CONCLUSIONS As the upstream transcription factor of CTNNB1, YAP/TEAD4 is a promising target for the treatment of HB patients with high levels of YAP and β-catenin.
Collapse
Affiliation(s)
- Songxian Lu
- Department of Pediatric Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Min Jiang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qi Chen
- Department of Pediatric Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xufeng Luo
- Institute for Lymphoma Research, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Zhenjie Cao
- Department of Pediatric Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hua Huang
- Department of Pediatric Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingjun Zheng
- Department of Pediatric Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junpeng Du
- Department of Pediatric Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
17
|
Liu Y, Chen Y, Zhang Y, Zhong Q, Zhu X, Wu Q. A functionalized magnetic nanoparticle regulated CRISPR-Cas12a sensor for the ultrasensitive detection of alpha-fetoprotein. Analyst 2022; 147:3186-3192. [PMID: 35697344 DOI: 10.1039/d2an00697a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alpha-fetoprotein (AFP) is an important clinical tumor marker of hepatoblastoma, and the concentration of AFP in serum is closely related to the staging of hepatoblastoma. We report a magnetic bead separation platform based on a switching aptamer triggered hybridization chain reaction (SAT-HCR) and the CRISPR-Cas12a sensor for the in vitro detection of AFP. AFP aptamer, as an easily regulated nucleic acid strand, is responsible for binding to AFP into nucleic acid detection, while HCR-CRISPR-Cas12a, regulated by functionalized magnetic nanoparticles, is responsible for highly specific nucleic acid signal amplification. Under the optimal conditions, the fluorescence intensity was proportional to the concentration of AFP in the range of 0.5-104 ng mL-1 and the limit of detection was 0.170 ng mL-1. In addition, we have successfully applied this biosensor to detect AFP in clinical samples from patients with hepatoblastoma, with greater sensitivity relative to ELISA. Our proposed method showed great potential application in clinical diagnosis and pharmaceutical-related fields with the properties of high sensitivity, low cost and high selectivity.
Collapse
Affiliation(s)
- Ya Liu
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Yan Chen
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Yue Zhang
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Qi Zhong
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Xiaoli Zhu
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Qi Wu
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital Chong Ming Branch, 202150, China.,Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
18
|
Factors influencing recurrence after complete remission in children with hepatoblastoma: A 14-year retrospective study in China. PLoS One 2021; 16:e0259503. [PMID: 34843510 PMCID: PMC8629180 DOI: 10.1371/journal.pone.0259503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 10/20/2021] [Indexed: 01/01/2023] Open
Abstract
Objective After a complete remission to treatment for hepatoblastoma, some children still have recurrence. We identified and explored the factors that influence recurrence after complete remission in a retrospective study. Methods Of 197 children with hepatoblastoma, 140 (71.1%) achieved initial complete remission and were enrolled in factor analysis. Variables consisted of age, sex, PRE-Treatment EXTent of tumor (PRETEXT) stage, pathologic type, metastatic disease, serum alpha-fetoprotein level, vascular involvement, and surgical margin status. We employed univariate and multivariate analyses to assess the relationship between each factor and tumor recurrence. Results Of 140 children who achieved initial complete remission, 42 (30%) had recurrent hepatoblastoma. The 5-year overall survival rates for the non-recurrence and recurrence group were 99.0% and 78.6%, respectively. The overall 1-year, 3-year, and 5-year recurrence-free survival (RFS) rates were 77.8%, 69.8%, and 69.8%, respectively. All recurrences occurred within 2 years from complete remission. The RFS rate was significantly higher in children younger than 3 years and in those with mixed pathological type, PRETEXT II and III, without metastatic disease, without vascular involvement, and microscopic negative margin than in that of children older than 3 years, with epithelial pathological type, PRETEXT IV, metastatic disease, vascular involvement, and macroscopic positive margin (P < 0.001, = 0.020, < 0.001, = 0.004, = 0.002, and < 0.001, respectively). The independent risk factors for recurrence after complete remission were age ≥3 years, PRETEXT IV, and metastatic disease (P < 0.05). Conclusion Age, PRETEXT stage, metastatic disease, vascular involvement, pathologic type, and surgical margin status might be associated with recurrent hepatoblastoma after complete remission; meanwhile, age ≥3 years, PRETEXT IV, and metastatic disease are independent risk factors of recurrence. Further research is needed on the causes of tumor recurrence, which may improve the long-term outcomes of children with hepatoblastoma.
Collapse
|
19
|
Co-Expression of CD34, CD90, OV-6 and Cell-Surface Vimentin Defines Cancer Stem Cells of Hepatoblastoma, Which Are Affected by Hsp90 Inhibitor 17-AAG. Cells 2021; 10:cells10102598. [PMID: 34685577 PMCID: PMC8533921 DOI: 10.3390/cells10102598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 01/01/2023] Open
Abstract
Cancer stem cells (CSCs) are nowadays one of the major focuses in tumor research since this subpopulation was revealed to be a great obstacle for successful treatment. The identification of CSCs in pediatric solid tumors harbors major challenges because of the immature character of these tumors. Here, we present CD34, CD90, OV-6 and cell-surface vimentin (csVimentin) as reliable markers to identify CSCs in hepatoblastoma cell lines. We were able to identify CSC characteristics for the subset of CD34+CD90+OV-6+csVimentin+-co-expressing cells, such as pluripotency, self-renewal, increased expression of EMT markers and migration. Treatment with Cisplatin as the standard chemotherapeutic drug in hepatoblastoma therapy further revealed the chemo-resistance of this subset, which is a main characteristic of CSCs. When we treated the cells with the Hsp90 inhibitor 17-AAG, we observed a significant reduction in the CSC subset. With our study, we identified CSCs of hepatoblastoma using CD34, CD90, OV-6 and csVimentin. This set of markers could be helpful to estimate the success of novel therapeutic approaches, as resistant CSCs are responsible for tumor relapses.
Collapse
|
20
|
Bondoc A, Glaser K, Jin K, Lake C, Cairo S, Geller J, Tiao G, Aronow B. Identification of distinct tumor cell populations and key genetic mechanisms through single cell sequencing in hepatoblastoma. Commun Biol 2021; 4:1049. [PMID: 34497364 PMCID: PMC8426487 DOI: 10.1038/s42003-021-02562-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 08/16/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatoblastoma (HB) is the most common primary liver malignancy of childhood, and molecular investigations are limited and effective treatment options for chemoresistant disease are lacking. There is a knowledge gap in the investigation of key driver cells of HB in tumor. Here we show single cell ribonucleic acid sequencing (scRNAseq) analysis of human tumor, background liver, and patient derived xenograft (PDX) to demonstrate gene expression patterns within tumor and to identify intratumor cell subtype heterogeneity to define differing roles in pathogenesis based on intracellular signaling in pediatric HB. We have identified a driver tumor cell cluster in HB by genetic expression which can be examined to define disease mechanism and treatments. Identification of both critical mechanistic pathways combined with unique cell populations provide the basis for discovery and investigation of novel treatment strategies in vitro and in vivo.
Collapse
Affiliation(s)
- Alexander Bondoc
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital, Medical Center, Cincinnati, OH, USA.
| | - Kathryn Glaser
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital, Medical Center, Cincinnati, OH, USA
| | - Kang Jin
- Division of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati, Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH, USA
| | - Charissa Lake
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital, Medical Center, Cincinnati, OH, USA
| | - Stefano Cairo
- Research and Development Unit, XenTech, Genopole-Campus 3, Fontaine, France
- Istituto di Ricerca Pediatrica (IRP), Corso Stati Uniti, Padua, Italy
| | - James Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gregory Tiao
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital, Medical Center, Cincinnati, OH, USA
| | - Bruce Aronow
- Division of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati, Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
21
|
Outcomes of Central Hepatectomy for Pediatric Liver Tumors. J Surg Res 2021; 268:570-575. [PMID: 34464895 DOI: 10.1016/j.jss.2021.06.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/08/2021] [Accepted: 06/28/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Central hepatectomy (CH) is an uncommon surgical technique that is an option for resection of centrally located tumors, with the advantage of sparing normal hepatic parenchyma. Few studies have described outcomes in children undergoing CH. MATERIALS AND METHODS An IRB-approved, retrospective chart review of patients who underwent CH at Children's Hospital Los Angeles between 2005 and 2016 was performed. Data included patient demographics, peri-operative factors, and post-operative outcomes. The IRB approved waiver of consent. RESULTS Eight patients (4F:4M) with median age of 1.9 Y underwent CH: 7 patients for HB and 1 patient for focal nodular hyperplasia. Two of the seven HB patients had metastatic disease at diagnosis. Six of the seven HB patients received a median of 4 rounds (3-7 rounds) of pre-operative chemotherapy. The median operative time was 197.5 Min (143-394 Min) with median blood loss of 175 mL (100-1200 mL). Complications included a bile fluid collection requiring aspiration. Seven patients had negative margins on pathology. One patient with a positive margin successfully completed therapy, without recurrent disease. All patients survived to follow-up, with a median follow-up duration of 1.1 Y (0.1-12.1 Y). Two patients developed recurrent disease requiring formal hepatic lobectomy and orthotopic liver transplantation. These patients had negative pathologic margins, with tumor within 1 mm of resection margins. CONCLUSION CH is an effective alternative to extended hepatectomy for patients with centrally located liver tumors and is associated with good clinical and pathologic outcomes.
Collapse
|
22
|
Moosburner S, Schmelzle M, Schöning W, Kästner A, Seika P, Globke B, Dziodzio T, Pratschke J, Öllinger R, Gül-Klein S. Liver Transplantation Is Highly Effective in Children with Irresectable Hepatoblastoma. MEDICINA-LITHUANIA 2021; 57:medicina57080819. [PMID: 34441025 PMCID: PMC8399470 DOI: 10.3390/medicina57080819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 01/19/2023]
Abstract
Background and Objectives: In children, hepatoblastoma preferentially is managed by liver resection (LR). However, in irresectable cases, liver transplantation (LT) is required. The aim of our study was to compare short- and long-term results after LR and LT for the curative treatment of hepatoblastoma. Materials and Methods: Retrospective analysis of all patients treated surgically for hepatoblastoma from January 2000 until December 2019 was performed. Demographic and clinical data were collected before and after surgery. The primary endpoints were disease free survival and patient survival. Results: In total, 38 patients were included into our analysis (n = 28 for LR, n = 10 for LT) with a median follow-up of 5 years. 36 patients received chemotherapy prior to surgery. Total hospital stay and intensive care unit (ICU) stay were significantly longer within the LT vs. the LR group (ICU 23 vs. 4 days, hospital stay 34 vs. 16 days, respectively; p < 0.001). Surgical complications (≤Clavien–Dindo 3a) were equally distributed in both groups (60% vs. 57%; p = 1.00). Severe complications (≥Clavien–Dindo 3a) were more frequent after LT (50% vs. 21.4%; p = 0.11). Recurrence rates were 10.7% for LR and 0% for LT at 5 years after resection or transplantation (p = 0.94). Overall, 5-year survival was 90% for LT and 96% for LR (p = 0.44). Conclusions: In irresectable cases, liver transplantation reveals excellent outcomes in children with hepatoblastoma with an acceptable number of perioperative complications.
Collapse
Affiliation(s)
- Simon Moosburner
- Deparment of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.S.); (W.S.); (A.K.); (P.S.); (B.G.); (T.D.); (J.P.); (R.Ö.)
- BIH Charité (Digital) Clinician Scientist Program, Berlin Institute of Health, 10178 Berlin, Germany
- Correspondence: (S.M.); (S.G.-K.); Tel.: +01-76-3452-1755 (S.M.); +49-17-0740-2409 (S.G.-K.)
| | - Moritz Schmelzle
- Deparment of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.S.); (W.S.); (A.K.); (P.S.); (B.G.); (T.D.); (J.P.); (R.Ö.)
| | - Wenzel Schöning
- Deparment of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.S.); (W.S.); (A.K.); (P.S.); (B.G.); (T.D.); (J.P.); (R.Ö.)
| | - Anika Kästner
- Deparment of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.S.); (W.S.); (A.K.); (P.S.); (B.G.); (T.D.); (J.P.); (R.Ö.)
| | - Philippa Seika
- Deparment of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.S.); (W.S.); (A.K.); (P.S.); (B.G.); (T.D.); (J.P.); (R.Ö.)
| | - Brigitta Globke
- Deparment of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.S.); (W.S.); (A.K.); (P.S.); (B.G.); (T.D.); (J.P.); (R.Ö.)
- BIH Charité (Digital) Clinician Scientist Program, Berlin Institute of Health, 10178 Berlin, Germany
| | - Tomasz Dziodzio
- Deparment of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.S.); (W.S.); (A.K.); (P.S.); (B.G.); (T.D.); (J.P.); (R.Ö.)
| | - Johann Pratschke
- Deparment of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.S.); (W.S.); (A.K.); (P.S.); (B.G.); (T.D.); (J.P.); (R.Ö.)
| | - Robert Öllinger
- Deparment of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.S.); (W.S.); (A.K.); (P.S.); (B.G.); (T.D.); (J.P.); (R.Ö.)
| | - Safak Gül-Klein
- Deparment of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.S.); (W.S.); (A.K.); (P.S.); (B.G.); (T.D.); (J.P.); (R.Ö.)
- Correspondence: (S.M.); (S.G.-K.); Tel.: +01-76-3452-1755 (S.M.); +49-17-0740-2409 (S.G.-K.)
| |
Collapse
|
23
|
Ye M, He J, Zhang J, Liu B, Liu X, Xie L, Wei M, Dong R, Li K, Ma D, Dong K. USP7 promotes hepatoblastoma progression through activation of PI3K/AKT signaling pathway. Cancer Biomark 2021; 31:107-117. [PMID: 33780361 DOI: 10.3233/cbm-200052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hepatoblastoma (HB) is an embryonic solid tumor and the most common primary malignant liver tumor in children. HB usually occurs in infants and children. Although treatment diversity is increasing, some patients still have very poor prognosis. Many studies have investigated USP7 inhibitors for tumors. Using database information, we found that USP7 is highly expressed in HB. METHODS Lentivirus-mediated USP7 knockdown and overexpression was performed in HB cell lines HepG2 and Huh6. CCK8 and transwell assays were used to determine cell viability and metastasis. Flow cytometry was used to study cell cycle and apoptosis. Levels of proteins were detected using western blots. RESULTS Downregulation of USP7 resulted in significant decrease in cell proliferation, clonal formation, and cell migration and invasion. With overexpression of USP7, cellular malignant behavior increased. Cell cycle assays showed that USP7 knockdown inhibited G1 to S phase transition in the cell cycle. Upregulation of USP7 promoted the transition. Animal experiments showed USP7 facilitated tumor growth in vivo. Western blots indicated that USP7 may affect HB tumorigenesis through the PI3K/AKT signaling pathway. Furthermore, USP7 inhibitor P5091 inhibited HB development and PI3K/AKT pathway. CONCLUSION USP7 upregulation contributed to HB genesis and development through the PI3K/AKT signaling pathway. USP7 could be a potential target for future HB treatment.
Collapse
Affiliation(s)
- Mujie Ye
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China.,Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jiajun He
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China.,Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jingjing Zhang
- Department of Medical Imaging, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.,Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Baihui Liu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Xiangqi Liu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Lulu Xie
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Meng Wei
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Kai Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Kuiran Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| |
Collapse
|
24
|
|
25
|
Complex abdominal wall reconstruction after oncologic resection in a sequalae of giant omphalocele: A case report. Int J Surg Case Rep 2021; 81:105707. [PMID: 33691272 PMCID: PMC7944047 DOI: 10.1016/j.ijscr.2021.105707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Trauma injuries and oncologic resection are common aetiologies of complex abdominal wall defect. Reconstruction of abdominal wall is an everlasting question for general, paediatric and reconstructive surgeons. The plethora of techniques, bioprosthetic and engineered tissues offer countless possibilities. PRESENTATION OF CASE The patient was a 28 years old woman, with past history of untreated giant liver omphalocele, admitted for a suspicious hepatic tumefaction without specific clinical signs. The thoraco abdominopelvic CT scan revealed lung metastasis and a bilobed left hepatic tumour. Pre-operative cytologic findings of mild differentiated hepatocellular carcinoma differed from the post-operative findings of hepatoblastoma. The full-thickness abdominal wall defect after a radical resection was reconstructed with a combined acellular dermal matrix, NPWT and skin graft solution. A total epithelization was obtained after 8 weeks follow-up. DISCUSSION Hepatoblastoma in adult is rare, with no consensus. A radical resection in context of giant untreated omphalocele is an unusual challenge for the surgical team. The pre-operative evaluation, the defect classification and the general conditions of the patient are paramount steps for an appropriate reconstruction. Primary or delayed reconstruction with myocutaneous flap as gold standard, depends on the oncologic management and anticipated post-operative complications. Acellular dermal matrix used for a bridged fascial repair directly on viscera and covered by NPWT, favourited a healthy granulation tissue. The full-thickness defect was then reconstructed with an ADM, NPWT and skin graft instead of an association with the myocutaneous flap. The patient follow-up was emphasized in the hepatoblastoma, but the complications of this reconstruction strategy are unknown. A total epithelization was obtained, the abdominal bulge or hernia is the first complication under surveillance. CONCLUSION Delayed reconstruction after an oncologic large abdominal wall resection has the advantage to manage post-operative complications and prepare alternative solutions. Acellular dermal matrix was not first designed for skin tissue regeneration, some authors as us experimented the conclusion that this matrix could be used for permanent abdominal wall reconstruction.
Collapse
|
26
|
Ren H, Zhuo ZJ, Duan F, Li Y, Yang Z, Zhang J, Cheng J, Li S, Li L, Geng J, Zhang Z, He J, Niu H. ALKBH5 Gene Polymorphisms and Hepatoblastoma Susceptibility in Chinese Children. JOURNAL OF ONCOLOGY 2021; 2021:6658480. [PMID: 33790968 PMCID: PMC7997766 DOI: 10.1155/2021/6658480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/11/2020] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Incidence of hepatoblastoma has been increasing, but the causes of this disease remain unclear. Some studies have suggested that abnormal expressions of ALKBH5 gene are associated with multiple cancers. This study aims to test the hypothesis that hepatoblastoma risk may be modulated by genetic polymorphisms in ALKBH5 gene based on genotyped data from samples of 328 cases and 1476 controls enrolled from eight hospitals in China. We used TaqMan assay to genotype ALKBH5 gene single nucleotide polymorphisms (SNPs) rs1378602G > A and rs8400G > A. We calculated the odds ratios (ORs) and P values using logistic regression models to estimate the association between hepatoblastoma risk and ALKBH5 gene SNPs. We found the rs1378602G > A and rs8400G > A could not impact hepatoblastoma risk in single or combined analysis. Stratified analysis revealed that subjects with the rs8400 AA genotype are prone to getting hepatoblastoma in the clinical stage III + IV subgroup (adjusted OR = 1.93, 95% CI = 1.20-3.10, P=0.007), when compared to those with GG/GA genotype. False-positive report probability validated the reliability of the significant results. Preliminary functional annotations revealed that rs8400 A is correlated with increased expression of ALKBH5 gene in the expression quantitative trait locus (eQTL) analysis. In all, our investigation presents evidence of a weak impact of ALKBH5 gene polymorphisms on hepatoblastoma risk, using the largest hepatoblastoma sample size. These findings shed some light on the genetic basis of hepatoblastoma, implicating the role of ALKBH5 gene polymorphisms in the etiology of hepatoblastoma.
Collapse
Affiliation(s)
- Hui Ren
- 1Department of Pediatric General Surgery, Hebei Children's Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei, China
| | - Zhen-Jian Zhuo
- 2Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Fei Duan
- 1Department of Pediatric General Surgery, Hebei Children's Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei, China
| | - Yong Li
- 3Department of Pediatric Surgery, Hunan Children's Hospital, Changsha 410004, Hunan, China
| | - Zhonghua Yang
- 4Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Jiao Zhang
- 5Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiwen Cheng
- 6Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Suhong Li
- 7Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan 030013, Shaanxi, China
| | - Li Li
- 8Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Jianlei Geng
- 1Department of Pediatric General Surgery, Hebei Children's Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei, China
| | - Zhiguang Zhang
- 1Department of Pediatric General Surgery, Hebei Children's Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei, China
| | - Jing He
- 2Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Huizhong Niu
- 1Department of Pediatric General Surgery, Hebei Children's Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei, China
| |
Collapse
|
27
|
Yang Z, Deng Y, Zhang K, Bai Y, Zhu J, Zhang J, Cheng J, Li L, He J, Wang W. LIN28A polymorphisms and hepatoblastoma susceptibility in Chinese children. J Cancer 2021; 12:1373-1378. [PMID: 33531982 PMCID: PMC7847658 DOI: 10.7150/jca.52621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatoblastoma (HB) is the most prevalent primary hepatic cancer in children aged 6 months to 3 years. LIN28A is recurrently mutated in various diseases, and critically involved in tumorigenesis. However, a limited number of studies have examined the involvement of LIN28A polymorphisms in HB risk. We used the TaqMan assay to genotype four LIN28A polymorphisms (rs3811464 G>A, rs3811463 T>C, rs34787247 G>A, and rs11247957 G>A) in 275 Chinese children with HB and 1018 cancer-free controls from five medical centers in China. Their association with HB risk was evaluated on the basis of odds ratio (OR) and corresponding 95% confidence interval (CI). Overall, no significant associations were found in single locus and combine analysis. Interestingly, in the stratified analysis, we found that subjects with 1-3 risk genotypes were more likely to develop HB in patients ≥17 months of age (adjusted OR=1.76, 95% CI=1.04-2.98, P=0.034). The rs3811464 GA/AA genotypes were associated with decrease HB risk in patients with clinical stage III+IV disease (adjusted OR=0.50, 95% CI=0.26-0.96, P=0.038). Our results suggest that the LIN28A polymorphisms have a weak association with HB susceptibility in the Chinese children. LIN28A rs3811464 G>A may decrease HB risk in stage III+IV patients which need further validations with larger samples and different ethnicities.
Collapse
Affiliation(s)
- Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Yuyao Deng
- Department of Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Keren Zhang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Yuzuo Bai
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- ✉ Corresponding author: Weilin Wang, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang110004, Liaoning, China, ; or Jing He, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China,
| | - Weilin Wang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
- ✉ Corresponding author: Weilin Wang, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang110004, Liaoning, China, ; or Jing He, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China,
| |
Collapse
|
28
|
Sudden and unexpected death in childhood due to an undiagnosed hepatoblastoma: Case report and review of literature. J Forensic Leg Med 2020; 77:102086. [PMID: 33242744 DOI: 10.1016/j.jflm.2020.102086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 11/14/2020] [Indexed: 11/20/2022]
Abstract
The sudden and unexpected death of an infant or child due to cancer is a particularly rare event. Most of the cases concern primary growths located in vital organs such as the heart or the brain. Only in an extremely small number of cases does it occur in infants or children affected by liver cancer. Herein we report the sudden and unexpected death of a 3-and-a-half-year-old infant, who due to an undiagnosed tumor of the liver, namely hepatoblastoma, suffered a major intra-abdominal (hemoperitoneum) bleed, leading to a fatal hemorrhagic trauma. In cases like these, it is of utmost importance to carry out both an autopsy as well as complete histological tests in order to determine if the hepatic tumor is the real cause of death or if it was a mere chance finding. In the case of sudden and unexplained deaths in infancy and childhood, the forensic pathologist should always consider that other complications, for example, those correlated with hepatoblastoma could, in fact, cause sudden death given that this particular tumor is often scarcely symptomatic and can remain undiscovered for a long period of time.
Collapse
|
29
|
Zhuo ZJ, Hua RX, Chen Z, Zhu J, Wang M, Yang Z, Zhang J, Li Y, Li L, Li S, Xin Y, Xia H, He J. WTAP Gene Variants Confer Hepatoblastoma Susceptibility: A Seven-Center Case-Control Study. Mol Ther Oncolytics 2020; 18:118-125. [PMID: 32671187 PMCID: PMC7338985 DOI: 10.1016/j.omto.2020.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatoblastoma is a rare disease, and its etiology remains to be revealed. Wilms tumor suppressor-1-associated protein (WTAP) plays a critical role in tumorigenesis. However, whether single nucleotide polymorphisms (SNPs) of the WTAP gene predispose to hepatoblastoma risk awaits to be investigated. With the use of the TaqMan assay, we evaluated the genotype frequencies of three WTAP SNPs (rs7766006 G > T, rs9457712 G > A, and rs1853259 A > G) in Chinese children with 313 hepatoblastoma patients and 1,446 controls. Among these three SNPs, only the rs7766006 T allele exhibited a significant association with hepatoblastoma risk (GT versus GG: adjusted odds ratio [OR] = 0.70, 95% confidence interval [CI] = 0.53-0.92, p = 0.009; GT/TT versus GG: adjusted OR = 0.73, 95% CI = 0.57-0.95, p = 0.017). Combined analysis indicated that subjects with two risk genotypes showed significantly higher hepatoblastoma risk, compared to individuals without a risk genotype (adjusted OR = 1.38, 95% CI = 1.02-1.88, p = 0.037). The stratified analysis revealed that the rs1853259 GG genotype, the rs7766006 GT/TT genotype, and two risk genotypes modified hepatoblastoma risk in certain subgroups. The significant results were validated by haplotype analyses and false-positive report probability analyses. Furthermore, the expression quantitative trait locus analysis indicated that rs7766006 T was associated with decreased expression of WTAP mRNA. Collectively, our results suggest that WTAP SNPs may be genetic modifiers for the development of hepatoblastoma.
Collapse
Affiliation(s)
- Zhen-Jian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Rui-Xi Hua
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhen Chen
- Department of Pediatric Surgery, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jinhong Zhu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, China
| | - Mi Wang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yong Li
- Department of Pediatric Surgery, Hunan Children’s Hospital, Changsha, Hunan 410004, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children’s Major Disease Research, Yunnan Institute of Pediatrics Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children’s Hospital, Kunming, Yunnan 650228, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan, Shannxi 030013, China
| | - Yijuan Xin
- Clinical Laboratory Medicine Center of PLA, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi 710032, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| |
Collapse
|
30
|
Burenina OY, Lazarevich NL, Kustova IF, Shavochkina DA, Moroz EA, Kudashkin NE, Patyutko YI, Metelin AV, Kim EF, Skvortsov DA, Zatsepin TS, Rubtsova MP, Dontsova OA. Panel of potential lncRNA biomarkers can distinguish various types of liver malignant and benign tumors. J Cancer Res Clin Oncol 2020; 147:49-59. [PMID: 32918630 DOI: 10.1007/s00432-020-03378-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Liver cancers are among the deadliest malignancies due to a limited efficacy of early diagnostics, the lack of appropriate biomarkers and insufficient discrimination of different types of tumors by classic and molecular methods. In this study, we searched for novel long non-coding RNA (lncRNA) as well as validated several known candidates suitable as probable biomarkers for primary liver tumors of various etiology. METHODS We described a novel lncRNA HELIS (aka "HEalthy LIver Specific") and estimated its expression by RT-qPCR in 82 paired tissue samples from patients with hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), combined HCC-CCA, pediatric hepatoblastoma (HBL) and non-malignant hepatocellular adenoma (HCA) and focal nodular hyperplasia (FNH). Additionally, we examined expression of cancer-associated lncRNAs HULC, MALAT1, UCA1, CYTOR, LINC01093 and H19, which were previously studied mainly in HCC. RESULTS We demonstrated that down-regulation of HELIS strongly correlates with carcinogenesis; whereas in tumors with non-hepatocyte origin (HBL, CCA) or in a number of poorly differentiated HCC, this lncRNA is not expressed. We showed that recently discovered LINC01093 is dramatically down-regulated in all malignant liver cancers; while in benign tumors LINC01093 expression is just twice decreased in comparison to adjacent samples. CONCLUSION Our study revealed that among all measured biomarkers only down-regulated HELIS and LINC01093, up-regulated CYTOR and dysregulated HULC are perspective for differential diagnostics of liver cancers; whereas others demonstrated discordant results and cannot be considered as potential universal biomarkers for this purpose.
Collapse
Affiliation(s)
- Olga Y Burenina
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia, 143026.
| | - Natalia L Lazarevich
- Institute of Carcinogenesis, FSBI "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, Russia, 115478
- Biology Department, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Inna F Kustova
- Institute of Carcinogenesis, FSBI "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, Russia, 115478
| | - Daria A Shavochkina
- Institute of Carcinogenesis, FSBI "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, Russia, 115478
| | - Ekaterina A Moroz
- Institute of Clinical Oncology, FSBI "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, Russia, 115478
| | - Nikolay E Kudashkin
- Institute of Clinical Oncology, FSBI "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, Russia, 115478
| | - Yuriy I Patyutko
- Institute of Clinical Oncology, FSBI "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, Russia, 115478
| | - Alexey V Metelin
- Petrovsky National Research Centre of Surgery, Moscow, Russia, 119991
| | - Eduard F Kim
- Petrovsky National Research Centre of Surgery, Moscow, Russia, 119991
| | - Dmitry A Skvortsov
- Lomonosov Moscow State University, Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia, 119992
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia, 101000
| | - Timofei S Zatsepin
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia, 143026
- Lomonosov Moscow State University, Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia, 119992
| | - Maria P Rubtsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia, 143026
- Lomonosov Moscow State University, Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia, 119992
| | - Olga A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia, 143026
- Lomonosov Moscow State University, Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia, 119992
| |
Collapse
|
31
|
Shen G, Shen H, Zhang J, Yan Q, Liu H. DNA methylation in Hepatoblastoma-a literature review. Ital J Pediatr 2020; 46:113. [PMID: 32758256 PMCID: PMC7409486 DOI: 10.1186/s13052-020-00877-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
Hepatoblastoma (HB) is the most common malignant liver tumor in children. Abnormal activation of the Wnt/β-catenin signaling pathway plays an important role in the formation and development of HB. Genes in HB show a global hypomethylation change, accompanied by hypermethylation of specific tumor suppressor genes (TSGs). This article reviews the hypermethylation changes in several TSGs, such as RASSF1A, SOCS1, APC, HHIP, and P16, and analyzes the pathways and mechanisms of TSGs regulating gene expression. The role of the methylation-regulating enzymes DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) family members enzymes in the methylation changes of HB was analyzed, and it was speculated that the occurrence of HB is partly due to the obstruction of liver differentiation in the early stage of differentiation. The origin cells may be incompletely differentiated hepatocytes remaining in the liver of children after birth. Therefore, further studying the role of methylation regulating enzymes in methylation changes in HB is a promising future research direction.
Collapse
Affiliation(s)
- Gang Shen
- Pediatric Surgery Department, Weifang Peoples' Hospital, Weifang, China
| | - Hongyu Shen
- Ultrasound Department, Weifang Haifushan Hospital, Weifang, China
| | - Jing Zhang
- Pediatric Surgery Department, Weifang Peoples' Hospital, Weifang, China
| | - Qingtao Yan
- Pediatric Surgery Department, Weifang Peoples' Hospital, Weifang, China
| | - Huixian Liu
- Dermatology Department, Weifang Peoples' Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261041, China.
| |
Collapse
|
32
|
Shen G, Wu L, Zhao J, Wei B, Zhou X, Zhuo X, Dong Q. Imaging and Pathology Study of the Chemotherapy Regression Area of Hepatoblastoma - A Prospective Single-Center Study. Fetal Pediatr Pathol 2020; 39:307-316. [PMID: 31448676 DOI: 10.1080/15513815.2019.1652375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Objective: The objective of this study is to determine the frequency of no residual cancer tissue in the chemotherapy regression area (CRA) of hepatoblastoma after preoperative chemotherapy and to measure the distance between the tumor capsule and the residual cancer nests. Methods: All the tissues in the CRAs of the resected specimens were excised. HE staining and immunohistochemical staining were performed to determine the frequency of residual cancer tissue in the CRA, and the distances between the residual cancer nests and the tumor capsule were measured. Results: A total of 30 patients were included in the study. The tumor volume decreased after chemotherapy by an average of 619 ml. Of the 30 patients, the CRAs of 18 still had residual cancer nests. The longest distance between the residual cancer nest and tumor capsule was 11.2 mm. Conclusions: After chemotherapy, 60% of patients still had residual cancer nests in CRAs, the furthest distance was 11.2 mm.
Collapse
Affiliation(s)
- Gang Shen
- Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao, China.,Weifang People's Hospital, Pediatric Surgery, Weifang, China
| | - Linlin Wu
- Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jie Zhao
- Pathology Group of Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Wei
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, Qingdao, China
| | - Xianjun Zhou
- Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoying Zhuo
- Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qian Dong
- Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao, China.,Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, Qingdao, China.,Shandong College Collaborative Innovation Center of Digital Medicine in Clinical Treatment and Nutrition Health, Qingdao, China
| |
Collapse
|
33
|
Liu Y, Song J, Liu Y, Zhou Z, Wang X. Transcription activation of circ-STAT3 induced by Gli2 promotes the progression of hepatoblastoma via acting as a sponge for miR-29a/b/c-3p to upregulate STAT3/Gli2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:101. [PMID: 32493490 PMCID: PMC7268652 DOI: 10.1186/s13046-020-01598-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Hepatoblastoma (HB) is a common liver malignancy in children. Our previous study has disclosed the crucial role of STAT3 (signal transducer and activator of transcription 3) in HB. AIM OF THE STUDY Present study was designed to study the circular RNA (circRNA) STAT3 in HB. METHODS Gel electrophoresis revealed the circular characteristics of circ-STAT3. Function assays like EdU, transwell and sphere formation assay disclosed the function of circ-STAT3 in HB cells. Mechanism assays including ChIP, RIP, RNA pull down assay demonstrated the macular mechanism underlying circ-STAT3. RESULTS Circ_0043800, which was originated from STAT3, was up-regulated in HB tissues and cells. More importantly, silencing of circ-STAT3 led to the inhibition on HB cell growth, migration and stem-cell characteristics. Circ_0043800 was predominantly located in the cytoplasm of HB cells. Then, circ_0043800 was found to up-regulate STAT3 via sponging miR-29a/b/c-3p. Besides, we identified that STAT3 overexpression partially rescued silenced circ_0043800, while miR-29a/b/c-3p inhibition completely rescued silenced circ_0043800 on HB cellular biological behaviors. Subsequently, Gli2 (GLI family zinc finger 2) was identified as another target of miR-29a/b/c-3p. Circ_0043800 served as a competing endogenous RNA (ceRNA) to up-regulate both Gli2 and STAT3 via sponging miR-29a/b/c-3p. Moreover, we figured out that Gli2 overexpression completely rescued silenced circ_0043800 on HB cell malignant behaviors. After that, we discovered that Gli2 transcriptionally activated circ_0043800. The in-vivo assays further revealed that circ_0043800 promoted HB tumor growth by up-regulation of Gli2 and STAT3. CONCLUSION Gli2-induced circ_0043800 served as the ceRNA to promote HB by up-regulation of STAT3 and Gli2 at a miR-29a/b/c-3p dependent manner.
Collapse
Affiliation(s)
- Yanfeng Liu
- Department of Hepatobiliary Surgery, Qilu Hospital of Shandong University, No.107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China
| | - Jianping Song
- Department of Hepatobiliary Surgery, Qilu Hospital of Shandong University, No.107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China
| | - Yu Liu
- Department of General Surgery, 96602 Military Hospital, No.462 Chuanjin Road, Kunming, 650224, Yunnan Province, China
| | - Zhipeng Zhou
- Second Department of Hepatobiliary Surgery, PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Xianqiang Wang
- Department of Pediatric Surgery, PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
34
|
Li J, Li H, Wu H, Niu H, Li H, Pan J, Yang J, Tan T, Hu C, Xu T, Zhang X, Zheng M, Li K, Zou Y, Yang T. Outcomes of children with hepatoblastoma who underwent liver resection at a tertiary hospital in China: a retrospective analysis. BMC Pediatr 2020; 20:200. [PMID: 32386507 PMCID: PMC7210686 DOI: 10.1186/s12887-020-02059-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND To report the outcomes of hepatoblastoma resected in our institution. METHODS We diagnosed 135 children with hepatoblastoma at our institution between January 2010 and December 2017. Patients who underwent liver resection were included for analysis. However, patients who abandoned treatment after diagnosis were excluded from analysis, but their clinical characteristics were provided in the supplementary material. RESULTS Forty-two patients abandoned treatment, whereas 93 patients underwent liver resection and were included for statistical analysis. Thirty-six, 23, 3, and 31 patients had PRETEXT stages II, III, IV, and unspecified tumours, respectively. Seven patients had ruptured tumour; 9 had lung metastasis (one patient had portal vein thrombosis concurrently). Sixteen patients underwent primary liver resection; 22, 25, and 30 patients received cisplatin-based neoadjuvant chemotherapy and delayed surgery, preoperative transarterial chemoembolization (TACE) and delayed surgery, and a combination of cisplatin-based neoadjuvant chemotherapy, TACE, and delayed surgery, respectively. Forty patients had both PRETEXT and POST-TEXT information available for analysis. Twelve patients were down-staged after preoperative treatment, including 2, 8, and 2 patients from stages IV to III, III to II, and II to I, respectively. Ten patients with unspecified PRETEXT stage were confirmed to have POST-TEXT stages II (n = 8) and I (n = 2) tumours. Seven tumours were associated with positive surgical margins, and 12 patients had microvascular involvement. During a median follow-up period of 30.5 months, 84 patients survived without relapse, 9 experienced tumour recurrence, and 4 died. The 2-year event-free survival (EFS) and overall survival (OS) rates were 89.4 ± 3.4%, and 95.2 ± 2.4%, respectively; they were significantly better among patients without metastasis (no metastasis vs metastasis: EFS, 93.5 ± 3.7% vs 46.7 ± 19.0%, adjusted p = 0.002. OS, 97.6 ± 2.4% vs 61.0 ± 18.1%, adjusted p = 0.005), and similar among patients treated with different preoperative strategies (chemotherapy only vs TACE only vs Both: EFS, 94.7 ± 5.1% vs 91.7 ± 5.6% vs 85.6 ± 6.7%, p = 0.542. OS, 94.1 ± 5.7% vs 95.7 ± 4.3% vs 96.7 ± 3.3%, p = 0.845). CONCLUSION The OS for patients with hepatoblastoma who underwent liver resection was satisfactory. Neoadjuvant chemotherapy and TACE seemed to have a similar effect on OS. However, the abandonment of treatment by patients with hepatoblastoma was common, and may have biased our results.
Collapse
Affiliation(s)
- Jiahao Li
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Huixian Li
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Huiying Wu
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Huilin Niu
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Haibo Li
- Department of Interventional Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jing Pan
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Jiliang Yang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Tianbao Tan
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Chao Hu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Tao Xu
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xiaohong Zhang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Manna Zheng
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Kuanrong Li
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yan Zou
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| | - Tianyou Yang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
35
|
Tan J, Xu W, Lei L, Liu H, Wang H, Cao X, Xu M. Inhibition of Aurora Kinase A by Alisertib Reduces Cell Proliferation and Induces Apoptosis and Autophagy in HuH-6 Human Hepatoblastoma Cells. Onco Targets Ther 2020; 13:3953-3963. [PMID: 32440158 PMCID: PMC7217307 DOI: 10.2147/ott.s228656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 03/24/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose Aurora kinase A (AURKA), which belongs to the serine/threonine protein kinase family, has been identified as a key driver of the genesis and progression of diverse tumors. The aim of this study was to determine the clinical significance of AURKA in patients with hepatoblastoma (HB) and the effect of inhibiting AURKA in the HB cell line HuH-6. Methods The expression of AURKA in HB tissue and adjacent normal liver tissue was detected by immunohistochemistry. Then, statistical analysis was performed to evaluate the association between AURKA expression and the clinicopathological characteristics of HB. The effect of AURKA knockdown on cell viability was assessed by CCK-8 assay. EdU and CCK-8 assays, Western blotting, flow cytometry, and transmission electron microscopy (TEM) were used to examine the effect of alisertib (ALS), a selective AURKA small-molecule inhibitor, on the cell cycle, proliferation, apoptosis, and autophagy in HuH-6 human hepatoblastoma cells. Results The expression of AURKA was significantly higher in HB tissue than in adjacent normal tissue. Furthermore, high AURKA expression was associated with advanced Children’s Oncology Group (COG) stage and tumor metastasis of HB. In vitro, AURKA knockdown significantly reduced the viability of HuH-6 cells, while ALS treatment significantly suppressed HuH-6 cell proliferation and induced G1-phase cell cycle arrest by reducing cyclin-D1 expression. Moreover, ALS promoted apoptosis and autophagy by decreasing the activity of p38 MAPK in HuH-6 cells. Conclusion High expression of AURKA is a potential predictor of poor prognosis in HB patients. AURKA knockdown reduced the viability of HuH-6 cells, and ALS treatment inhibited cell proliferation and induced apoptosis and autophagy via the p38 MAPK signaling pathway. Our results suggest that AURKA may be a novel therapeutic target and ALS a potential therapeutic drug for the treatment of HB.
Collapse
Affiliation(s)
- Jingyi Tan
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Wenfeng Xu
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lei Lei
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Hui Liu
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Hong Wang
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xian Cao
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Man Xu
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| |
Collapse
|
36
|
Overman RE, Kartal TT, Cunningham AJ, Fialkowski EA, Naik-Mathuria BJ, Vasudevan SA, Malek MM, Kalsi R, Le HD, Stafford LC, Lautz TB, Many BT, Jones RE, Bütter A, Davidson J, Williams A, Dasgupta R, Lewis J, Troutt M, Aldrink JH, Mansfield SA, Lal DR, Xiao J, Meyers RL, Short SS, Newman EA. Optimization of percutaneous biopsy for diagnosis and pretreatment risk assessment of neuroblastoma. Pediatr Blood Cancer 2020; 67:e28153. [PMID: 32072730 DOI: 10.1002/pbc.28153] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Image-guided percutaneous core needle biopsy (PCNB) is increasingly utilized to diagnose solid tumors. The objective of this study is to determine whether PCNB is adequate for modern biologic characterization of neuroblastoma. PROCEDURE A multi-institutional retrospective study was performed by the Pediatric Surgical Oncology Research Collaborative on children with neuroblastoma at 12 institutions over a 3-year period. Data collected included demographics, clinical details, biopsy technique, complications, and adequacy of biopsies for cytogenetic markers utilized by the Children's Oncology Group for risk stratification. RESULTS A total of 243 children were identified with a diagnosis of neuroblastoma: 79 (32.5%) tumor excision at diagnosis, 94 (38.7%) open incisional biopsy (IB), and 70 (28.8%) PCNB. Compared to IB, there was no significant difference in ability to accurately obtain a primary diagnosis by PCNB (95.7% vs 98.9%, P = .314) or determine MYCN copy number (92.4% vs 97.8%, P = .111). The yield for loss of heterozygosity and tumor ploidy was lower with PCNB versus IB (56.1% vs 90.9%, P < .05; and 58.0% vs. 88.5%, P < .05). Complications did not differ between groups (2.9 % vs 3.3%, P = 1.000), though the PCNB group had fewer blood transfusions and lower opioid usage. Efficacy of PCNB was improved for loss of heterozygosity when a pediatric pathologist evaluated the fresh specimen for adequacy. CONCLUSIONS PCNB is a less invasive alternative to open biopsy for primary diagnosis and MYCN oncogene status in patients with neuroblastoma. Our data suggest that PCNB could be optimized for complete genetic analysis by standardized protocols and real-time pathology assessment of specimen quality.
Collapse
Affiliation(s)
- Richard E Overman
- Division of Pediatric Surgery, Department of Surgery, C. S. Mott Children's Hospital, The University of Michigan, Ann Arbor, Michigan
| | - Tanvi T Kartal
- Division of Pediatric Surgery, Department of Surgery, C. S. Mott Children's Hospital, The University of Michigan, Ann Arbor, Michigan
| | - Aaron J Cunningham
- Department of Surgery, Division of Pediatric Surgery, Oregon Health and Science University, Portland, Oregon
| | - Elizabeth A Fialkowski
- Department of Surgery, Division of Pediatric Surgery, Oregon Health and Science University, Portland, Oregon
| | - Bindi J Naik-Mathuria
- Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Sanjeev A Vasudevan
- Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Marcus M Malek
- Division of Pediatric General and Thoracic Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ranjeet Kalsi
- Division of Pediatric General and Thoracic Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hau D Le
- Division of Pediatric Surgery, American Family Children's Hospital, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Linda Cherney Stafford
- Division of Pediatric Surgery, American Family Children's Hospital, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Timothy B Lautz
- Division of Pediatric Surgery, Ann & Robert H Lurie Children's Hospital of Chicago, Northwestern University, Evanston, Illinois
| | - Benjamin T Many
- Division of Pediatric Surgery, Ann & Robert H Lurie Children's Hospital of Chicago, Northwestern University, Evanston, Illinois
| | - Rachel E Jones
- Division of Pediatric Surgery, Ann & Robert H Lurie Children's Hospital of Chicago, Northwestern University, Evanston, Illinois
| | - Andreana Bütter
- Division of Pediatric Surgery, Children's Hospital, London Health Sciences Centre, Western University, London, Ontario, Canada
| | - Jacob Davidson
- Division of Pediatric Surgery, Children's Hospital, London Health Sciences Centre, Western University, London, Ontario, Canada
| | - Andrew Williams
- Division of Pediatric Surgery, Children's Hospital, London Health Sciences Centre, Western University, London, Ontario, Canada
| | - Roshni Dasgupta
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jana Lewis
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Misty Troutt
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jennifer H Aldrink
- Division of Pediatric Surgery, Department of Surgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio
| | - Sara A Mansfield
- Division of Pediatric Surgery, Department of Surgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio
| | - Dave R Lal
- Division of Pediatric Surgery, Medical College of Wisconsin, Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| | - Jerry Xiao
- Division of Pediatric Surgery, Medical College of Wisconsin, Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| | - Rebecka L Meyers
- Division of Pediatric Surgery, Primary Children's Hospital, University of Utah, Salt Lake City, Utah
| | - Scott S Short
- Division of Pediatric Surgery, Primary Children's Hospital, University of Utah, Salt Lake City, Utah
| | - Erika A Newman
- Division of Pediatric Surgery, Department of Surgery, C. S. Mott Children's Hospital, The University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
37
|
Zhang S, Zhang J, Evert K, Li X, Liu P, Kiss A, Schaff Z, Ament C, Zhang Y, Serra M, Evert M, Chen N, Xu F, Chen X, Tao J, Calvisi DF, Cigliano A. The Hippo Effector Transcriptional Coactivator with PDZ-Binding Motif Cooperates with Oncogenic β-Catenin to Induce Hepatoblastoma Development in Mice and Humans. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1397-1413. [PMID: 32283103 DOI: 10.1016/j.ajpath.2020.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 02/05/2023]
Abstract
Hepatoblastoma (HB) is the most common pediatric liver tumor. Though Wnt/β-catenin and Hippo cascades are implicated in HB development, studies on crosstalk between β-catenin and Hippo downstream effector transcriptional coactivator with PDZ-binding motif (TAZ) in HB are lacking. Expression levels of TAZ and β-catenin in human HB specimens were assessed by immunohistochemistry. Functional interplay between TAZ and β-catenin was determined by overexpression of an activated form of TAZ (TAZS89A), either alone or combined with an oncogenic form of β-catenin (ΔN90-β-catenin), in mouse liver via hydrodynamic transfection. Activation of TAZ often co-occurred with that of β-catenin in clinical specimens. Although the overexpression of TAZS89A alone did not induce hepatocarcinogenesis, concomitant overexpression of TAZS89A and ΔN90-β-catenin triggered the development of HB lesions exhibiting both epithelial and mesenchymal features. Mechanistically, TAZ/β-catenin-driven HB development required TAZ interaction with transcriptional enhanced associate domain factors. Blockade of the Notch cascade did not inhibit TAZ/β-catenin-dependent HB formation in mice but suppressed the mesenchymal phenotype. Neither Yes-associated protein nor heat shock factor 1 depletion affected HB development in TAZ/β-catenin mice. In human HB cell lines, silencing of TAZ resulted in decreased cell growth, which was further reduced when TAZ knockdown was associated with suppression of either β-catenin or Yes-associated protein. Overall, our study identified TAZ as a crucial oncogene in HB development and progression.
Collapse
Affiliation(s)
- Shu Zhang
- Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China; Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, California
| | - Jie Zhang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, California; Department of Thoracic Oncology II, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital and Institute, Beijing, PR China
| | - Katja Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Xiaolei Li
- Department of Thyroid and Breast Surgery, The 960th Hospital of the PLA, Jinan, PR China
| | - Pin Liu
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Andras Kiss
- Second Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Zsuzsa Schaff
- Second Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Cindy Ament
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Yi Zhang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, California; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Monica Serra
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Nianyong Chen
- Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Feng Xu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, California
| | - Junyan Tao
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Diego F Calvisi
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Sassari, Italy.
| | - Antonio Cigliano
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
38
|
Sindhi R, Rohan V, Bukowinski A, Tadros S, de Ville de Goyet J, Rapkin L, Ranganathan S. Liver Transplantation for Pediatric Liver Cancer. Cancers (Basel) 2020; 12:cancers12030720. [PMID: 32204368 PMCID: PMC7140094 DOI: 10.3390/cancers12030720] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Unresectable hepatocellular carcinoma (HCC) was first removed successfully with total hepatectomy and liver transplantation (LT) in a child over five decades ago. Since then, children with unresectable liver cancer have benefitted greatly from LT and a confluence of several equally important endeavors. Regional and trans-continental collaborations have accelerated the development and standardization of chemotherapy regimens, which provide disease control to enable LT, and also serve as a test of unresectability. In the process, tumor histology, imaging protocols, and tumor staging have also matured to better assess response and LT candidacy. Significant trends include a steady increase in the incidence of and use of LT for hepatoblastoma, and a significant improvement in survival after LT for HCC with each decade. Although LT is curative for most unresectable primary liver sarcomas, such as embryonal sarcoma, the malignant rhabdoid tumor appears relapse-prone despite chemotherapy and LT. Pediatric liver tumors remain rare, and diagnostic uncertainty in some settings can potentially delay treatment or lead to the selection of less effective chemotherapy. We review the current knowledge relevant to diagnosis, LT candidacy, and post-transplant outcomes for these tumors, emphasizing recent observations made from large registries or larger series.
Collapse
Affiliation(s)
- Rakesh Sindhi
- Hillman Center for Pediatric Transplantation, UPMC-Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; (A.B.); (S.T.)
- Correspondence: ; Tel.: +1-412-692-7123
| | - Vinayak Rohan
- Medical University of South Carolina, Charleston, SC 29403, USA;
| | - Andrew Bukowinski
- Hillman Center for Pediatric Transplantation, UPMC-Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; (A.B.); (S.T.)
| | - Sameh Tadros
- Hillman Center for Pediatric Transplantation, UPMC-Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; (A.B.); (S.T.)
| | - Jean de Ville de Goyet
- Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), 90127 Palermo, Italy;
| | - Louis Rapkin
- Department of Hematology/Oncology, UPMC-Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
| | - Sarangarajan Ranganathan
- Department of Pathology, Children’s Hospital Medical Center of Cincinnati, Cincinnati, OH 45229, USA;
| |
Collapse
|
39
|
Yang T, Wen Y, Li J, Tan T, Yang J, Pan J, Hu C, Yao Y, Zhang J, Li S, Xia H, He J, Zou Y. Association of CMYC polymorphisms with hepatoblastoma risk. Transl Cancer Res 2020; 9:849-855. [PMID: 35117430 PMCID: PMC8798278 DOI: 10.21037/tcr.2019.12.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/26/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Single-nucleotide polymorphisms (SNPs) in genes may affect gene expression and contribute to cancer susceptibility. This study aimed to explore the association between CMYC gene polymorphisms and hepatoblastoma risk. METHODS Hepatoblastoma patients and cancer-free controls were recruited and matched by age and sex. Genotypes were determined by TaqMan, and the strength of the association of interest was determined by calculating odds ratios (ORs) and 95% confidence intervals (CIs). The distributions of various CMYC genotypes among subjects were recorded, followed by analyses of associations between CMYC polymorphisms and hepatoblastoma risk. RESULTS A total of 213 hepatoblastoma patients and 958 cancer-free controls were enrolled. No significant associations between the CMYC rs4645943 and rs2070583 polymorphisms and hepatoblastoma risk were found (all P>0.05). In stratification analysis based on age, sex, and clinical stage, the CMYC rs4645943 and rs2070583 polymorphisms were not associated with hepatoblastoma susceptibility (all P>0.05). CONCLUSIONS Thus, the CMYC rs4645943 and rs2070583 polymorphisms were not associated with hepatoblastoma risk in the study cohort.
Collapse
Affiliation(s)
- Tianyou Yang
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yang Wen
- First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiahao Li
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Tianbao Tan
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Jiliang Yang
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Jing Pan
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Chao Hu
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yuxiao Yao
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan 030002, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yan Zou
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| |
Collapse
|
40
|
Whitlock RS, Yang T, Vasudevan SA, Woodfield SE. Animal Modeling of Pediatric Liver Cancer. Cancers (Basel) 2020; 12:cancers12020273. [PMID: 31979130 PMCID: PMC7072332 DOI: 10.3390/cancers12020273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/19/2020] [Accepted: 01/19/2020] [Indexed: 01/09/2023] Open
Abstract
Hepatoblastoma (HB) is the most common pediatric liver malignancy. Management of HB requires multidisciplinary efforts. The 5-year overall survival of this disease is about 80% in developed countries. Despite advances in the care of these patients, survival in recurrent or treatment-refractory disease is lower than 50%. This is due to more complex tumor biology, including hepatocellular carcinoma (HCC)-like mutations and expression of aggressive gene signatures leading to chemoresistance, vascular invasion, and metastatic spread. The current treatment protocols for pediatric liver cancer do not incorporate targeted therapies, and the ability to test these therapies is limited due to the inaccessibility of cell lines and mouse models. In this review, we discuss the current status of preclinical animal modeling in pediatric liver cancer, primarily HB. Although HB is a rare cancer, the research community has worked together to develop a range of interesting and relevant mouse models for diverse preclinical studies.
Collapse
Affiliation(s)
- Richard S. Whitlock
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children’s Surgical Oncology Program, Texas Children’s Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; (R.S.W.); (S.A.V.)
| | - Tianyou Yang
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Sanjeev A. Vasudevan
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children’s Surgical Oncology Program, Texas Children’s Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; (R.S.W.); (S.A.V.)
| | - Sarah E. Woodfield
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children’s Surgical Oncology Program, Texas Children’s Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; (R.S.W.); (S.A.V.)
- Correspondence: ; Tel.: +1-832-824-4591
| |
Collapse
|
41
|
Yang Z, Deng Y, Zhang K, Bai Y, Zhu J, Zhang J, Xin Y, Li L, He J, Wang W. LIN28B gene polymorphisms modify hepatoblastoma susceptibility in Chinese children. J Cancer 2020; 11:3512-3518. [PMID: 32284747 PMCID: PMC7150445 DOI: 10.7150/jca.42798] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatoblastoma is one of the malignant liver tumors in children. However, genetic mechanisms underpinning the initiation of hepatoblastoma remain largely unclear. The previous study showed that lin-28 homolog B (LIN28B) might play a role in the development of hepatoblastoma. To detect the association between LIN28B gene polymorphisms and hepatoblastoma risk in Chinese children, we conducted a five-center case-control study of 275 hepatoblastoma patients and 1018 cancer-free controls. Four potentially functional polymorphisms were genotyped using the Taqman method. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the strength of the associations. We found that the rs314276 C>A polymorphism (AA vs. CC: adjusted OR=2.05, 95% CI=1.36-3.10, P=0.0006; AA vs. CA/CC: adjusted OR=2.11, 95% CI=1.43-3.12, P=0.0002) and rs9404590 T>G (GG vs. TT: adjusted OR=1.89, 95% CI=1.20-3.00, P=0.007; GG vs. TT/TG: adjusted OR=1.87, 95% CI=1.20-2.92, P=0.006) were associated with increased hepatoblastoma risk. Combination analysis of risk genotypes showed that patients with four risk genotypes had a higher chance of developing hepatoblastoma than carriers of 1 to 3 risk genotypes. Stratification analysis showed the significant association between the rs314276 AA genotype and hepatoblastoma risk in both age and sex groups, as well as clinical stages III+IV cases. The rs9404590 GG genotype was associated with hepatoblastoma risk in participants' ≥17 months, in females, and for those with clinical stages III+IV disease. Furthermore, four risk genotypes confer higher hepatoblastoma susceptibility in both age and sex groups, as well as groups with clinical stages III+IV disease. Genotype-based gene expression analysis confirmed that the rs9404590 T>G polymorphism was significantly associated with altered LIN28B gene expression. We further validated our findings using false-positive probability analysis. This finding suggested that LIN28B gene polymorphisms may be associated with an increased predisposition to hepatoblastoma.
Collapse
Affiliation(s)
- Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Yuyao Deng
- Department of Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Keren Zhang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Yuzuo Bai
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yijuan Xin
- Clinical Laboratory Medicine Center of PLA, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- ✉ Corresponding authors: Weilin Wang, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, China. E-mail: ; or Jing He, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China. E-mail: or
| | - Weilin Wang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
- ✉ Corresponding authors: Weilin Wang, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, China. E-mail: ; or Jing He, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China. E-mail: or
| |
Collapse
|
42
|
Surgical Management of Hepatoblastoma and Recent Advances. Cancers (Basel) 2019; 11:cancers11121944. [PMID: 31817219 PMCID: PMC6966548 DOI: 10.3390/cancers11121944] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/18/2019] [Accepted: 11/29/2019] [Indexed: 12/29/2022] Open
Abstract
Hepatoblastoma is the most common childhood liver malignancy. The management of hepatoblastoma requires multidisciplinary efforts. The five-year overall survival is approximately 80% in developed countries. Surgery remains the mainstay of treatment for hepatoblastoma, and meticulous techniques must be employed to ensure safe and effective local control surgeries. Additionally, there have been several advances from both pediatric and adult literature in the way liver tumor surgery is performed. In this review, we highlight important aspects of liver surgery for hepatoblastoma, the management of metastatic disease, and the most current technical advances in performing these procedures in a safe and effective manner.
Collapse
|
43
|
Angelico R, Grimaldi C, Gazia C, Saffioti MC, Manzia TM, Castellano A, Spada M. How Do Synchronous Lung Metastases Influence the Surgical Management of Children with Hepatoblastoma? An Update and Systematic Review of the Literature. Cancers (Basel) 2019; 11:E1693. [PMID: 31683629 PMCID: PMC6895839 DOI: 10.3390/cancers11111693] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
Approximately 20% of children with hepatoblastoma (HB) have metastatic disease at diagnosis, most frequently in the lungs. In children with HB, lung metastatic disease is associated with poorer prognosis. Its treatment has been approached with a variety of methods that integrate chemotherapy and surgical resection. The timing and feasibility of complete extirpation of lung metastases, by chemotherapy and/or metastasectomy, is crucial for the surgical treatment of the primary liver tumor, which can vary from major hepatic resections to liver transplantation (LT). In children with unresectable HB, which can be surgically treated only by LT, the persistence of unresectable metastases after neoadjuvant chemotherapy excludes the possibility of recurring to LT with consequent negative impact on patients' outcomes. Due to limited evidence and experience, there is no consensus amongst oncologists and surgeons across institutions regarding the surgical treatment for HB with synchronous metastatic lung disease. This narrative review aimed to update the current management of pulmonary metastasis in children with HB and to define its role in the decision-making strategy for the surgical approach to primary liver tumours.
Collapse
Affiliation(s)
- Roberta Angelico
- Division of Abdominal Transplantation and Hepatobiliopancreatic Surgery, Bambino Gesù Children's Hospital IRCCS, 00165 Rome, Italy.
| | - Chiara Grimaldi
- Division of Abdominal Transplantation and Hepatobiliopancreatic Surgery, Bambino Gesù Children's Hospital IRCCS, 00165 Rome, Italy.
| | - Carlo Gazia
- Department of Surgery Science, HPB and Transplantation Unit, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Maria Cristina Saffioti
- Division of Abdominal Transplantation and Hepatobiliopancreatic Surgery, Bambino Gesù Children's Hospital IRCCS, 00165 Rome, Italy.
| | - Tommaso Maria Manzia
- Department of Surgery Science, HPB and Transplantation Unit, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Aurora Castellano
- Division of Oncohematology, Bambino Gesù Children's Hospital IRCCS, 00165 Rome, Italy.
| | - Marco Spada
- Division of Abdominal Transplantation and Hepatobiliopancreatic Surgery, Bambino Gesù Children's Hospital IRCCS, 00165 Rome, Italy.
| |
Collapse
|
44
|
Feng J, He Y, Wei L, Chen D, Yang H, Tan R, Chen Z. Assessment of Survival of Pediatric Patients With Hepatoblastoma Who Received Chemotherapy Following Liver Transplant or Liver Resection. JAMA Netw Open 2019; 2:e1912676. [PMID: 31584686 PMCID: PMC6784752 DOI: 10.1001/jamanetworkopen.2019.12676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
IMPORTANCE The incidence of hepatoblastoma is increasing, and liver transplant (LT) provides a potential cure for pediatric patients with unresectable hepatoblastoma; however, the use of LT for hepatoblastoma has not been examined in a modern cohort. Moreover, data are lacking on the association between the type of surgical management received and overall risk of death among pediatric patients with hepatoblastoma. OBJECTIVES To examine the receipt of LT among pediatric patients with hepatoblastoma and to assess overall survival of pediatric patients with hepatoblastoma who were treated with chemotherapy after LT or liver resection (LR) using data from a national cancer registry. DESIGN, SETTING, AND PARTICIPANTS This cohort study used data for 443 pediatric patients with histologically confirmed hepatoblastoma who received chemotherapy and surgical therapies, as documented in the Surveillance, Epidemiology, and End Results database of the National Cancer Institute, from 2004 to 2016, with follow-up through December 31, 2018. Multivariable logistic regression was used to determine factors associated with the use of LT. Cox proportional hazards models were used to assess factors associated with overall survival. Data analysis was performed from April 18, 2019, to July 25, 2019. MAIN OUTCOMES AND MEASURES Overall survival. RESULTS Among 443 patients receiving chemotherapy (mean [SD] age, 1.8 [2.6] years; 167 [37.7%] female), 350 (79%) underwent LR and 93 (21%) underwent LT. Multivariable analysis showed that patients with multiple lesions were more likely to undergo LT than LR (31% vs 13%; P < .001) and that patients with higher stage tumors were more likely to undergo LT than LR (local disease, 20% vs 58%; regional disease, 58% vs 24%; distant disease, 22% vs 18%; P < .001). There was a statistically significant 19% increase in the receipt of LT from 8% in 1998 to 27% 2016 (trend test, P = .02). Overall survival at 10 years was not significantly different for the 2 surgical management strategies (87.2% [95% CI, 78.3%-97.1%] for patients undergoing LT vs 87.8% [95% CI, 83.5%-92.4%] for those undergoing LR; P = .92). The overall risk of death was not significantly different for LT compared with LR (hazard ratio, 0.716; 95% CI, 0.309-1.657; P = .44). CONCLUSIONS AND RELEVANCE The use of LT for the management of hepatoblastoma has increased significantly over time. Among pediatric patients with hepatoblastoma receiving chemotherapy, LT was not associated with improved overall survival compared with LR. There was no significant different between treatments with regard to the outcome variable, but this finding cannot be interpreted as indicating equivalence or lack of superiority.
Collapse
Affiliation(s)
- Jincheng Feng
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Surgery, University of Heidelberg, Heidelberg, Germany
| | - Ying He
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huifang Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rumeng Tan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
45
|
Yoon HM, Hwang J, Kim KW, Namgoong JM, Kim DY, Koh KN, Kim H, Cho YA. Prognostic Factors for Event-Free Survival in Pediatric Patients with Hepatoblastoma Based on the 2017 PRETEXT and CHIC-HS Systems. Cancers (Basel) 2019; 11:cancers11091387. [PMID: 31540387 PMCID: PMC6769992 DOI: 10.3390/cancers11091387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 11/16/2022] Open
Abstract
This study aimed to evaluate the prognostic value of variables used in the 2017 PRE-Treatment EXTent of tumor (PRETEXT) system and the Children's Hepatic tumors International Collaboration-Hepatoblastoma Stratification (CHIC-HS) system in pediatric patients with hepatoblastoma. A retrospective analysis of data from the pediatric hepatoblastoma registry of a tertiary referral center was conducted to evaluate the clinical and imaging variables (annotation factors) of the PRETEXT staging system. The primary outcome was event-free survival (EFS). Data from 84 patients (mean age: 2.9 ± 3.5 years) identified between 1998 and 2017 were included. Univariable Cox proportional hazards analysis revealed that PRETEXT annotation factors P (portal vein involvement), F (multifocality of tumor), and M (distant metastasis) showed a significant negative association with EFS. Multivariable Cox proportional hazard analysis showed that factor F was the strongest predictor (HR (hazard ratio), 2.908; 95% CI (confidence interval), 1.061-7.972; p = 0.038), whereas factor M showed borderline significance (HR, 2.416; 95% CI, 0.918-6.354; p = 0.074). The prediction model based on F and M (F + M) showed good performance to predict EFS (C-statistic, 0.734; 95% CI, 0.612-0.854). In conclusion, the PRETEXT annotation factor F was the strongest predictor of EFS, and the F + M model showed good performance to predict EFS in pediatric patients with hepatoblastoma.
Collapse
Affiliation(s)
- Hee Mang Yoon
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Jisun Hwang
- Department of Radiology, Dongtan Sacred Heart Hospital, Hallym University Medical Center, Hwaseong 18450, Korea.
| | - Kyung Won Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Jung-Man Namgoong
- Department of Pediatric Surgery, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Dae Yeon Kim
- Department of Pediatric Surgery, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Kyung-Nam Koh
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Hyery Kim
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Young Ah Cho
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.
| |
Collapse
|
46
|
The Role of MicroRNAs in Hepatoblastoma Tumors. Cancers (Basel) 2019; 11:cancers11030409. [PMID: 30909459 PMCID: PMC6468899 DOI: 10.3390/cancers11030409] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022] Open
Abstract
Hepatoblastoma is the most common hepatic malignancy during childhood. However, little is still known about the molecular mechanisms that govern the development of this disease. This review is focused on the recent advances regarding the study of microRNAs in hepatoblastoma and their substantial contribution to improv our knowledge of the pathogenesis of this disease. We show here that miRNAs represent valuable tools to identify signaling pathways involved in hepatoblastoma progression as well as useful biomarkers and novel molecular targets to develop alternative therapeutic strategies in this disease.
Collapse
|