1
|
Prajjwal P, M.D.M. M, Natarajan B, Inban P, Gadam S, Sowndarya D, John J, Abbas R, Vaja H, A.D.M. M, Amir Hussin O. Juvenile multiple sclerosis: addressing epidemiology, diagnosis, therapeutic, and prognostic updates along with cognitive dysfunction and quality of life. Ann Med Surg (Lond) 2023; 85:4433-4441. [PMID: 37663711 PMCID: PMC10473341 DOI: 10.1097/ms9.0000000000000930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 09/05/2023] Open
Abstract
Juvenile multiple sclerosis (JMS) is a rare but significant subtype of multiple sclerosis (MS) that affects a small percentage of patients under the age of 10 and 3-5% of all MS patients. Despite its rarity, JMS poses unique challenges in terms of diagnosis, treatment, and management, as it can significantly impact a child or adolescent's physical, cognitive, and emotional development. JMS presents with a varying spectrum of signs and symptoms such as coordination difficulties and permanent cognitive dysfunctions and may include atypical clinical features such as seizures, acute disseminated encephalomyelitis, and optic neuritis, making diagnostic evaluations challenging. Whilst the biology of JMS shares similarities with adult-onset MS, there exist notable distinctions in disease progression, clinical manifestations, and ultimate prognoses. The International Pediatric MS Study Group (IPMSSG) was founded in 2005 to improve understanding of JMS, but there remains a lack of knowledge and guidelines on the management of this condition. This review summarizes the current knowledge on JMS, including its epidemiology, clinical presentations, diagnostic challenges, current treatment options, and outcomes. Current treatment options for JMS include disease-modifying therapies, but JMS can also result in impaired quality of life and psychiatric comorbidity, highlighting the need for comprehensive care for affected children. Through gathering and analyzing scattered studies and recent updates on JMS, the authors aim to address the gaps in current knowledge on JMS and provide an improved understanding of appropriate care for affected children. By doing so, this review hopes to contribute to improving the quality of life and outcomes for JMS patients.
Collapse
Affiliation(s)
| | - Marsool M.D.M.
- University of Baghdad, Al-Kindy College of Medicine, Baghdad, Iraq
| | - Balaganesh Natarajan
- St. George’s University School of Medicine, University Centre Grenada, West Indies
| | - Pugazhendi Inban
- Internal Medicine, Government Medical College, Omandurar, Chennai
| | - Srikanth Gadam
- Internal Medicine, Postdoctoral Research Fellow, Mayo Clinic, USA
| | | | - Jobby John
- Somervell Memorial CSI Medical College and Hospital, Karakonam, Trivandrum
| | - Rahim Abbas
- Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - HariOm Vaja
- Internal Medicine, BJ Medical College, Ahmedabad, India
| | - Marsool A.D.M.
- University of Baghdad, Al-Kindy College of Medicine, Baghdad, Iraq
| | | |
Collapse
|
2
|
Adabanya U, Awosika A, Khan A, Oluka E, Adeniyi M. Pediatric multiple sclerosis: an integrated outlook at the interplay between genetics, environment and brain-gut dysbiosis. AIMS Neurosci 2023; 10:232-251. [PMID: 37841344 PMCID: PMC10567585 DOI: 10.3934/neuroscience.2023018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 10/17/2023] Open
Abstract
Multiple sclerosis (MS) is a debilitating autoimmune condition caused by demyelination, neurodegeneration and persistent inflammation of the central nervous system. Pediatric multiple sclerosis (PMS) is a relatively rare form of the disease that affects a significant number of individuals with MS. Environmental exposures, such as viral infections and smoking, can interact with MS-associated human leukocyte antigens (HLA) risk alleles and influence the immune response. Upregulation of immune response results in the disruption of immune balance leading to cascade of inflammatory events. It has also been established that gut microbiome dysbiosis poses a higher risk for pro-inflammation, and it is essentially argued to be the greatest environmental risk factor for MS. Dysbiosis can cause an unusual response from the adaptive immune system and significantly contribute to the development of disease in the host by activating pro-inflammatory pathways that cause immune-mediated disorders such as PMS, rendering the body more vulnerable to foreign attacks due to a weakened immune response. All these dynamic interactions between biological, environmental and genetic factors based on epigenetic study has further revealed that upregulation or downregulation of some genes/enzyme in the central nervous system white matter of MS patients produces a less stable form of myelin basic protein and ultimately leads to the loss of immune tolerance. The diagnostic criteria and treatment options for PMS are constantly evolving, making it crucial to have a better understanding of the disease burden on a global and regional scale. The findings from this review will aid in deepening the understanding of the interplay between genetic and environmental risk factors, as well as the role of the gut microbiome in the development of pediatric multiple sclerosis. As a result, healthcare professionals will be kept abreast of the early diagnostic criteria, accurately delineating other conditions that can mimic pediatric MS and to provide comprehensive care to individuals with PMS based on the knowledge gained from this research.
Collapse
Affiliation(s)
- Uzochukwu Adabanya
- Anatomical Sciences, Edward Via College of Osteopathic Medicine, Monroe, USA
| | - Ayoola Awosika
- College of Medicine, University of Illinois, Chicago, USA
| | - Anosh Khan
- Emergency Medicine, Trinity health Livonia Hospital, Livonia USA
| | - Ejike Oluka
- Department of pathophysiology, St. George's University School of Medicine, Grenada
| | - Mayowa Adeniyi
- Department of Physiology, Federal University of Health Sciences Otukpo, Benue State, Nigeria
| |
Collapse
|
3
|
Teleanu RI, Niculescu AG, Vladacenco OA, Roza E, Perjoc RS, Teleanu DM. The State of the Art of Pediatric Multiple Sclerosis. Int J Mol Sci 2023; 24:ijms24098251. [PMID: 37175954 PMCID: PMC10179691 DOI: 10.3390/ijms24098251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Multiple sclerosis (MS) represents a chronic immune-mediated neurodegenerative disease of the central nervous system that generally debuts around the age of 20-30 years. Still, in recent years, MS has been increasingly recognized among the pediatric population, being characterized by several peculiar features compared to adult-onset disease. Unfortunately, the etiology and disease mechanisms are poorly understood, rendering the already limited MS treatment options with uncertain efficacy and safety in pediatric patients. Thus, this review aims to shed some light on the progress in MS therapeutic strategies specifically addressed to children and adolescents. In this regard, the present paper briefly discusses the etiology, risk factors, comorbidities, and diagnosis possibilities for pediatric-onset MS (POMS), further moving to a detailed presentation of current treatment strategies, recent clinical trials, and emerging alternatives. Particularly, promising care solutions are indicated, including new treatment formulations, stem cell therapies, and cognitive training methods.
Collapse
Affiliation(s)
- Raluca Ioana Teleanu
- "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Pediatric Neurology, "Dr. Victor Gomoiu" Children's Hospital, 022102 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Oana Aurelia Vladacenco
- "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Pediatric Neurology, "Dr. Victor Gomoiu" Children's Hospital, 022102 Bucharest, Romania
| | - Eugenia Roza
- "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Pediatric Neurology, "Dr. Victor Gomoiu" Children's Hospital, 022102 Bucharest, Romania
| | - Radu-Stefan Perjoc
- "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Pediatric Neurology, "Dr. Victor Gomoiu" Children's Hospital, 022102 Bucharest, Romania
| | - Daniel Mihai Teleanu
- "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Neurosurgery, Emergency University Hospital, 050098 Bucharest, Romania
| |
Collapse
|
4
|
Florenzo B, Brenton JN. Socioeconomic, Clinical, and Laboratory Parameters Differentiating Pediatric Patients With MOG Antibody-Associated Disease and Multiple Sclerosis. J Child Neurol 2023; 38:178-185. [PMID: 37122175 DOI: 10.1177/08830738231170290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Studies indicate differences in the clinical phenotypes and neuroimaging of children with myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) compared to multiple sclerosis; however, there are limited data assessing the socioeconomic and paraclinical differences between these distinct disorders. This retrospective study identified patients aged <18 years at time of diagnosis with MOGAD or multiple sclerosis. Demographics, birth history, socioeconomic factors (insurance type, median income, parental education level), and paraclinical features (clinical manifestations, laboratory evaluation) were recorded for eligible participants. Seventy-eight patients (28 MOGAD, 50 multiple sclerosis) met inclusion criteria. Mothers of MOGAD children were more likely to have attended college compared to the mothers of children with multiple sclerosis (80% vs 49%; P = .02). Though MOGAD patients had greater rates of day care attendance (81% vs 57%), lower rates of birth complications (7% vs 21%), and higher rates of being breastfed (65% vs 46%), these findings did not meet predefined statistical significance. Clinically, children with MOGAD exhibited a lower body mass index percentile at presentation (58th ± 27th percentile vs 83rd ± 20th percentile; P = .0001) and were younger (7.6 ± 4.1 vs 14.8 ± 1.6 years; P < .0001) and more likely to exhibit an infectious prodrome (57% vs 10%; P < .0001). MOGAD patients were less likely to have evidence of remote Epstein-Barr virus infection (29% vs 100%; P < .0001) and less likely to have ≥3 unique oligoclonal bands in the cerebrospinal fluid (5% vs 87%; P < .001). Compared with multiple sclerosis, children with MOGAD exhibit lower body mass index percentiles at presentation, are more likely to have mothers with higher education levels, and are less likely to have had prior Epstein-Barr virus infection. Our data confirm that MOGAD patients are younger, more likely to exhibit infectious prodrome, and are less likely to exhibit intrathecal synthesis of oligoclonal bands. These features provide new insights into the differentiating pathobiology of MOGAD and may be helpful in differentiating these children from multiple sclerosis early in the diagnostic evaluation.
Collapse
Affiliation(s)
- Brian Florenzo
- University of Virginia School of Medicine, Charlottesville, VA, USA
| | - J Nicholas Brenton
- Department of Neurology, Division of Pediatric Neurology, University of Virginia Medical Center, Charlottesville, VA USA
| |
Collapse
|
5
|
Current Advances in Pediatric Onset Multiple Sclerosis. Biomedicines 2020; 8:biomedicines8040071. [PMID: 32231060 PMCID: PMC7235875 DOI: 10.3390/biomedicines8040071] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/01/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disease affecting the central nervous system leading to demyelination. MS in the pediatric population is rare, but has been shown to lead to significant disability over the duration of the disease. As we have learned more about pediatric MS, there has been a development of improved diagnostic criteria leading to earlier diagnosis, earlier initiation of disease-modifying therapies (DMT), and an increasing number of DMT used in the treatment of pediatric MS. Over time, treatment with DMT has trended towards the initiation of higher efficacy treatment at time of diagnosis to help prevent further disease progression and accrual of disability over time, and there is evidence in current literature that supports this change in treatment patterns. In this review, we discuss the current knowledge in diagnosis, treatment, and clinical outcomes in pediatric MS.
Collapse
|
6
|
Shaw GA, Dupree JL, Neigh GN. Adolescent maturation of the prefrontal cortex: Role of stress and sex in shaping adult risk for compromise. GENES BRAIN AND BEHAVIOR 2019; 19:e12626. [DOI: 10.1111/gbb.12626] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Gladys A. Shaw
- Department of Anatomy and NeurobiologyVirginia Commonwealth University Richmond Virginia
| | - Jeffrey L. Dupree
- Department of Anatomy and NeurobiologyVirginia Commonwealth University Richmond Virginia
- Research ServiceHunter Holmes McGuire VA Medical Center Richmond Virginia
| | - Gretchen N. Neigh
- Department of Anatomy and NeurobiologyVirginia Commonwealth University Richmond Virginia
| |
Collapse
|