1
|
Asghari A, Khoshnood S, Mousavi Z, Heidari H, Falak FP, Dadgar F, Rahdar HA, Kazemian H. Case report: an infant with late-onset meningitis caused by Escherichia coli. GMS HYGIENE AND INFECTION CONTROL 2024; 19:Doc67. [PMID: 39810804 PMCID: PMC11730437 DOI: 10.3205/dgkh000522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Background Meningitis is highly prevalent in infant because their immune system is immature and they have less resistance to diseases. Among bacterial agents, Escherichia coli is recognized as one of the most important causes of meningitis in infants. Case presentation Herein, we report a case of late-onset meningitis, caused by E. coli (Patient:17-day-old female infant). The patient's body temperature was 39°C, and the initial diagnosis was sepsis. At the doctor's request, the patient underwent the basic tests and was hospitalized in the Neonatal Intensive Care Unit (NICU). In this case, blood culture and CSF culture were negative and positive, respectively. Echogenic particles were observed inside the bladder, indicating possible cystitis. The results of the antibiotic susceptibility tests showed that the meningitis-causing strain of E. coli was susceptible only to amikacin. Conclusion Conducting LP and CSF culture seems to be the most important strategy for diagnosing meningitis. It is also recommended to perform LP before taking antibiotics. For identifying the infection, some factors such as fever, CRP test results, CSF parameters (leukocyte count, glucose level, and CSF culture results) should be considered to prevent misdiagnosis.
Collapse
Affiliation(s)
- Aria Asghari
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Students Research Committee, Ilam University of Medical Sciences, Ilam, Iran
| | - Zahra Mousavi
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Heidari
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farzaneh Peik Falak
- Department of Internal Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Farhad Dadgar
- Department of Rheumatology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Hossein Ali Rahdar
- Department of Microbiology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Hossein Kazemian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
2
|
Saleh T, Kamau E, Rathe JA. New and old lessons from a devastating case of neonatal E coli meningitis. BMC Pediatr 2024; 24:339. [PMID: 38755556 PMCID: PMC11097427 DOI: 10.1186/s12887-024-04787-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Neonatal Escherichia coli (E coli) meningitis results in significant morbidity and mortality. We present a case of a premature infant with extensive central nervous system (CNS) injury from recurrent E coli infection and the non-traditional methods necessary to identify and clear the infection. CASE PRESENTATION The infant was transferred to our institution's pediatric intensive care unit (PICU) after recurrence of E coli CNS infection requiring neurosurgical intervention. He had been treated for early onset sepsis (EOS) with ampicillin and gentamicin for 10 days followed by rapid development of ampicillin-resistant E coli septic shock and meningitis after discontinuation of antibiotics. Sterility of the CNS was not confirmed at the end of 21 days of cefepime therapy and was subsequently followed by recurrent ampicillin-resistant E coli septic shock and CNS infection. Despite 6 weeks of appropriate therapy with sterility of CSF by traditional methods, he suffered from intractable seizures with worsening hydrocephalus. Transferred to our institution, he underwent endoscopic 3rd ventriculostomy with cyst fenestration revealing purulent fluid and significant pleocytosis. An additional 3 weeks of systemic and intraventricular antibiotics with cefepime and tobramycin were given but a significant CNS neutrophil-predominant pleocytosis persisted (average of ∼ 21,000 cells/mm3). Repeated gram stains, cultures, polymerase chain reaction (PCR) testing, and metagenomic next generation sequencing (NGS) testing of CSF were negative for pathogens but acridine orange stain (AO) revealed numerous intact rod-shaped bacteria. After the addition of ciprofloxacin, sterility and resolution of CSF pleocytosis was finally achieved. CONCLUSION Neonatal E coli meningitis is a well-known entity but unlike other bacterial infections, it has not proven amenable to shorter, more narrow-spectrum antibiotic courses or limiting invasive procedures such as lumbar punctures. Further, microbiologic techniques to determine CSF sterility suffer from poorly understood limitations leading to premature discontinuation of antibiotics risking further neurologic damage in vulnerable hosts.
Collapse
Affiliation(s)
- Tawny Saleh
- Department of Pediatrics, Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Edwin Kamau
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Present address: Department of Pathology and Area Laboratory Services, Tripler Army Medical Center, Honolulu, HI, USA
| | - Jennifer A Rathe
- Department of Pediatrics, Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Nhu NTK, Phan MD, Hancock SJ, Peters KM, Alvarez-Fraga L, Forde BM, Andersen SB, Miliya T, Harris PNA, Beatson SA, Schlebusch S, Bergh H, Turner P, Brauner A, Westerlund-Wikström B, Irwin AD, Schembri MA. High-risk Escherichia coli clones that cause neonatal meningitis and association with recrudescent infection. eLife 2024; 12:RP91853. [PMID: 38622998 PMCID: PMC11021048 DOI: 10.7554/elife.91853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Neonatal meningitis is a devastating disease associated with high mortality and neurological sequelae. Escherichia coli is the second most common cause of neonatal meningitis in full-term infants (herein NMEC) and the most common cause of meningitis in preterm neonates. Here, we investigated the genomic relatedness of a collection of 58 NMEC isolates spanning 1974-2020 and isolated from seven different geographic regions. We show NMEC are comprised of diverse sequence types (STs), with ST95 (34.5%) and ST1193 (15.5%) the most common. No single virulence gene profile was conserved in all isolates; however, genes encoding fimbrial adhesins, iron acquisition systems, the K1 capsule, and O antigen types O18, O75, and O2 were most prevalent. Antibiotic resistance genes occurred infrequently in our collection. We also monitored the infection dynamics in three patients that suffered recrudescent invasive infection caused by the original infecting isolate despite appropriate antibiotic treatment based on antibiogram profile and resistance genotype. These patients exhibited severe gut dysbiosis. In one patient, the causative NMEC isolate was also detected in the fecal flora at the time of the second infection episode and after treatment. Thus, although antibiotics are the standard of care for NMEC treatment, our data suggest that failure to eliminate the causative NMEC that resides intestinally can lead to the existence of a refractory reservoir that may seed recrudescent infection.
Collapse
Affiliation(s)
- Nguyen Thi Khanh Nhu
- Institute for Molecular Bioscience (IMB), The University of QueenslandBrisbaneAustralia
- School of Chemistry and Molecular Biosciences, The University of QueenslandBrisbaneAustralia
- Australian Infectious Diseases Research Centre, The University of QueenslandBrisbaneAustralia
| | - Minh-Duy Phan
- Institute for Molecular Bioscience (IMB), The University of QueenslandBrisbaneAustralia
- School of Chemistry and Molecular Biosciences, The University of QueenslandBrisbaneAustralia
- Australian Infectious Diseases Research Centre, The University of QueenslandBrisbaneAustralia
| | - Steven J Hancock
- School of Chemistry and Molecular Biosciences, The University of QueenslandBrisbaneAustralia
- Australian Infectious Diseases Research Centre, The University of QueenslandBrisbaneAustralia
| | - Kate M Peters
- Institute for Molecular Bioscience (IMB), The University of QueenslandBrisbaneAustralia
- School of Chemistry and Molecular Biosciences, The University of QueenslandBrisbaneAustralia
- Australian Infectious Diseases Research Centre, The University of QueenslandBrisbaneAustralia
| | - Laura Alvarez-Fraga
- School of Chemistry and Molecular Biosciences, The University of QueenslandBrisbaneAustralia
- Australian Infectious Diseases Research Centre, The University of QueenslandBrisbaneAustralia
| | - Brian M Forde
- Australian Infectious Diseases Research Centre, The University of QueenslandBrisbaneAustralia
- University of Queensland Centre for Clinical Research, The University of QueenslandBrisbaneAustralia
| | - Stacey B Andersen
- Genome Innovation Hub, The University of QueenslandBrisbaneAustralia
| | - Thyl Miliya
- Cambodia Oxford Medical Research Unit, Angkor Hospital for ChildrenSiem ReapCambodia
| | - Patrick NA Harris
- University of Queensland Centre for Clinical Research, The University of QueenslandBrisbaneAustralia
- Pathology Queensland, Queensland HealthBrisbaneAustralia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of QueenslandBrisbaneAustralia
- Australian Infectious Diseases Research Centre, The University of QueenslandBrisbaneAustralia
| | - Sanmarie Schlebusch
- University of Queensland Centre for Clinical Research, The University of QueenslandBrisbaneAustralia
- Pathology Queensland, Queensland HealthBrisbaneAustralia
- Q-PHIRE Genomics and Public Health Microbiology, Forensic and Scientific Services, Coopers PlainsBrisbaneAustralia
| | - Haakon Bergh
- Pathology Queensland, Queensland HealthBrisbaneAustralia
| | - Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for ChildrenSiem ReapCambodia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University HospitalStockholmSweden
| | | | - Adam D Irwin
- Australian Infectious Diseases Research Centre, The University of QueenslandBrisbaneAustralia
- University of Queensland Centre for Clinical Research, The University of QueenslandBrisbaneAustralia
- Infection Management Prevention Service, Queensland Children's HospitalBrisbaneAustralia
| | - Mark A Schembri
- Institute for Molecular Bioscience (IMB), The University of QueenslandBrisbaneAustralia
- School of Chemistry and Molecular Biosciences, The University of QueenslandBrisbaneAustralia
- Australian Infectious Diseases Research Centre, The University of QueenslandBrisbaneAustralia
| |
Collapse
|
4
|
Snoek L, van Kassel MN, Koelman DLH, van der Ende A, van Sorge NM, Brouwer MC, van de Beek D, Bijlsma MW. Recurrent bacterial meningitis in children in the Netherlands: a nationwide surveillance study. BMJ Open 2023; 13:e077887. [PMID: 38159962 PMCID: PMC10759068 DOI: 10.1136/bmjopen-2023-077887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024] Open
Abstract
OBJECTIVES This study aimed to estimate the recurrence rate of culture-positive bacterial meningitis in children in the Netherlands. DESIGN Nationwide surveillance study, using the database of the Netherlands Reference Laboratory for Bacterial Meningitis to identify patients with culture-positive bacterial meningitis during childhood. SETTING The study was based in the Netherlands. PARTICIPANTS A total of 9731 children with a first bacterial meningitis episode between 1 July 1987 and 30 June 2019 were identified. PRIMARY AND SECONDARY OUTCOME MEASURES Recurrence was defined as a subsequent episode >28 days, or caused by a different pathogen. Annual incidence and incidence rate ratios (IRRs) comparing the periods 1988-2003 and 2004-2019 were calculated. Predictors of recurrent meningitis were assessed using Cox proportional hazards regression. RESULTS Sixty-three (0.6%) of the 9731 children with a first bacterial meningitis episode contracted recurrent meningitis. Neisseria meningitidis was the leading pathogen for first meningitis episodes (52%) and Streptococcus pneumoniae for recurrent episodes (52%). The median annual incidence of first episodes per 100 000 children decreased from 11.81 (IQR 11.26-17.60) in 1988-2003 to 2.60 (IQR 2.37-4.07) in 2004-2019 (IRR 0.25, 95% CI 0.23 to 0.26). The incidence of recurrences did not change: 0.06 (IQR 0.02-0.11) in 1988-2003 to 0.03 (IQR 0.00-0.06) in 2004-2019 (IRR 0.65, 95% CI 0.39 to 1.1). Age above 5 years (OR 3.6 (95% CI 1.5 to 8.3)) and a first episode due to Escherichia coli (OR 25.7 (95% CI 7.2 to 92.0)) were associated with higher risks of recurrence. CONCLUSION The recurrence rate of childhood bacterial meningitis in the Netherlands was 0.6%. While the incidence rate of first episodes decreased substantially, this was not the case for recurrent episodes. Older age and a first episode due to E. coli were associated with higher recurrence risks.
Collapse
Affiliation(s)
- Linde Snoek
- Department of Neurology, Amsterdam University Medical Centre location AMC, University of Amsterdam, Amsterdam, Netherlands
- Neuroinfection and Inflammation, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Merel N van Kassel
- Department of Neurology, Amsterdam University Medical Centre location AMC, University of Amsterdam, Amsterdam, Netherlands
- Neuroinfection and Inflammation, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Diederik L H Koelman
- Department of Neurology, Amsterdam University Medical Centre location AMC, University of Amsterdam, Amsterdam, Netherlands
- Neuroinfection and Inflammation, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Arie van der Ende
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands
- Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam University Medical Centre location AMC, Amsterdam, Netherlands
| | - Nina M van Sorge
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands
- Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam University Medical Centre location AMC, Amsterdam, Netherlands
| | - Matthijs C Brouwer
- Department of Neurology, Amsterdam University Medical Centre location AMC, University of Amsterdam, Amsterdam, Netherlands
- Neuroinfection and Inflammation, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Diederik van de Beek
- Department of Neurology, Amsterdam University Medical Centre location AMC, University of Amsterdam, Amsterdam, Netherlands
- Neuroinfection and Inflammation, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Merijn W Bijlsma
- Neuroinfection and Inflammation, Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Paediatrics, Amsterdam University Medical Centre location AMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
5
|
Zuo S, Jiang G, Zheng Y, Zhang X, Qin Z, Chen L, Ren T, Zhang XB, Yuan L. Family of hNQO1 Activatable Near-Infrared Fluoro-Photoacoustic Probes for Diagnosis of Wound Infection and Ulcerative Colitis. Anal Chem 2023; 95:898-906. [PMID: 36604944 DOI: 10.1021/acs.analchem.2c03436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bacterial infections can easily occur when patients mishandle wounds or eat moldy food. The prompt diagnosis of a bacterial infection could effectively reduce the risk of possible anatomical damage. However, non-invasive early detection of bacterial infections is difficult to achieve due to the lack of favorable tools. Here, we designed two hNQO1 fluorescent probes (RX2 and RX3) to visualize bacterial infection after deep learning on the pathogenesis of bacterial infection. RX2 and RX3 enable early detection of bacterial infection and are verified to be, respectively, suitable for fluorescence imaging (FLI) and photoacoustic imaging (PAI) by comparing the signal-to-background ratio of both probes in a mouse model of myositis caused by Escherichia coli infection. In view of the difference in penetration depth between the two imaging modalities, we further applied RX2 for FLI of E. coli-infected wounds and RX3 for PAI of E. coli-infected inflammatory bowel disease, suggesting the great potential of both probes for early diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Shan Zuo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Gangwei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Yingxin Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xingxing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Zuojia Qin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Lanlan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Tianbing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
6
|
Abstract
Escherichia coli arbitrarily encompasses facultative anaerobic, rod-shaped bacteria with defined respiratory and fermentative types of metabolism. The species diversification has been further advanced by atypical strains whose features deviate from the essential species-specific morphological and metabolic cutoff. The morphological cutoff is exemplified by bacterial filamentation. E. coli filamentation has been studied from two different perspectives: the first considers filamentation as a result of adaptive strategies and response to stress, while the second is based on findings from the cell division of E. coli's conditional mutants. Another cutoff is represented by E. coli's inability to use citrate as a sole carbon and energy source. In this study, we compared two atypical E. coli strains that belong to the same neuroinvasive ecovar but exhibit either of the two phenotypes that deviate from the species' features. While E. coli RS218 exists in the form of filaments incapable of growth on citrate, strain IHE3034 is represented as normal-sized bacteria able to ferment citrate under oxic conditions in the presence of glucose; in this paper, we show that these two phenotypes result from a bona fide trade-off. With the help of comparative proteomics and metabolomics, we discovered the proteome required for the upkeep of these phenotypes. The metabolic profiles of both strains reveal that under aerobic conditions, RS218 undergoes oxidative metabolism, while IHE3034 undergoes anaerobic respiration. Finally, we show that the use of citrate and filament formation are both linked in a trade-off occurring via a c-di-GMP-dependent phase variation event. IMPORTANCE Aerobic use of citrate and filamentous growth are arbitrary cutoffs for the Escherichia coli species. The strains that exhibit them as stable phenotypes are called atypical. In this study, we compare two atypical neuroinvasive E. coli strains, which alternatively display either of these phenotypes. We present the proteome and metabolome required for the maintenance of filamentous growth and show that anaerobic nitrate respiration is the main requirement for the use of citrate. The fact that the two phenotypes are differentially expressed by each strain prompted us to check if they are part of a trade-off. Indeed, these atypical characters are reversible and result from a c-di-GMP phase variation event. Thus, we revealed hidden links between stable morphological and metabolic phenotypes and provided information about alternative evolutionary pathways for the survival of E. coli strains in various host niches.
Collapse
|
7
|
Xiao H, Xiao H, Zhang Y, Guo L, Dou Z, Liu L, Zhu L, Feng W, Liu B, Hu B, Chen T, Liu G, Wen T. High-throughput sequencing unravels the cell heterogeneity of cerebrospinal fluid in the bacterial meningitis of children. Front Immunol 2022; 13:872832. [PMID: 36119025 PMCID: PMC9478118 DOI: 10.3389/fimmu.2022.872832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial meningitis (BM) is a common life-threatening infection in children that occurs in the central nervous system (CNS). The cytologic examination of cerebrospinal fluid (CSF) is a key parameter in the diagnosis of BM, but the heterogeneity of cells in the CSF has not been elucidated, which limits the current understanding of BM neuroinflammation. In this study, CSF samples were collected from a number of BM patients who were in different stages of disease progression. Single-cell RNA-sequencing (scRNA-seq), with additional bulk transcriptome sequencing, was conducted to decipher the characteristics of CSF cells in BM progression. A total of 18 immune cell clusters in CSF were identified, including two neutrophils, two monocytes, one macrophage, four myeloid dendritic cells, five T cells, one natural killer cell, one B cell, one plasmacytoid dendritic cell, and one plasma cell subtype. Their population profiles and dynamics in the initial onset, remission, and recovery stages during BM progression were also characterized, which showed decreased proportions of myeloid cells and increased proportions of lymphoid cells with disease progression. One novel neutrophil subtype, FFAR2+TNFAIP6+ neutrophils, and one novel monocyte subtype, THBS1+IL1B+ monocytes, were discovered, and their quantity changes positively correlated with the intensity of the inflammatory response in the CSF during BM. In addition, the CSF of BM patients with unsatisfactory therapeutic responses presented with different cell heterogeneity compared to the CSF of BM patients with satisfactory therapeutic responses, and their CSF featured altered intercellular communications and increased proportions of type II myeloid dendritic cells and plasmacytoid dendritic cells. Moreover, the bulk transcriptome profiles of autologous CSF cells and peripheral blood leukocytes of BM patients showed that the immune cells in these two physiological compartments exhibited distinct immune responses under different onset conditions. In particular, the CSF cells showed a high expression of macrophage characteristic genes and a low expression of platelet characteristic genes compared with peripheral blood leukocytes. Our study conducted an in-depth exploration of the characteristics of CSF cells in BM progression, which provided novel insights into immune cell engagement in acute CNS infection.
Collapse
Affiliation(s)
- Haihan Xiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haijuan Xiao
- Department of Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Yun Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lingyun Guo
- Department of Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Zhenzhen Dou
- Department of Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Linlin Liu
- Department of Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Liang Zhu
- Department of Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Wenya Feng
- Department of Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Bing Liu
- Department of Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Bing Hu
- Department of Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Tianming Chen
- Department of Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Gang Liu
- Department of Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- *Correspondence: Tingyi Wen, ; Gang Liu,
| | - Tingyi Wen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Tingyi Wen, ; Gang Liu,
| |
Collapse
|
8
|
Gordon SM, O'Connell AE. Inborn Errors of Immunity in the Premature Infant: Challenges in Recognition and Diagnosis. Front Immunol 2022; 12:758373. [PMID: 35003071 PMCID: PMC8738084 DOI: 10.3389/fimmu.2021.758373] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
Due to heightened awareness and advanced genetic tools, inborn errors of immunity (IEI) are increasingly recognized in children. However, diagnosing of IEI in premature infants is challenging and, subsequently, reports of IEI in premature infants remain rare. This review focuses on how common disorders of prematurity, such as sepsis, necrotizing enterocolitis, and bronchopulmonary dysplasia, can clinically overlap with presenting signs of IEI. We present four recent cases from a single neonatal intensive care unit that highlight diagnostic dilemmas facing neonatologists and clinical immunologists when considering IEI in preterm infants. Finally, we present a conceptual framework for when to consider IEI in premature infants and a guide to initial workup of premature infants suspected of having IEI.
Collapse
Affiliation(s)
- Scott M Gordon
- Division of Neonatology, Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Amy E O'Connell
- Division of Newborn Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|