La Rosa S, Quinzi V, Palazzo G, Ronsivalle V, Lo Giudice A. The Implications of Artificial Intelligence in Pedodontics: A Scoping Review of Evidence-Based Literature.
Healthcare (Basel) 2024;
12:1311. [PMID:
38998846 PMCID:
PMC11240988 DOI:
10.3390/healthcare12131311]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND
Artificial intelligence (AI) has emerged as a revolutionary technology with several applications across different dental fields, including pedodontics. This systematic review has the objective to catalog and explore the various uses of artificial intelligence in pediatric dentistry.
METHODS
A thorough exploration of scientific databases was carried out to identify studies addressing the usage of AI in pediatric dentistry until December 2023 in the Embase, Scopus, PubMed, and Web of Science databases by two researchers, S.L.R. and A.L.G.
RESULTS
From a pool of 1301 articles, only 64 met the predefined criteria and were considered for inclusion in this review. From the data retrieved, it was possible to provide a narrative discussion of the potential implications of AI in the specialized area of pediatric dentistry. The use of AI algorithms and machine learning techniques has shown promising results in several applications of daily dental pediatric practice, including the following: (1) assisting the diagnostic and recognizing processes of early signs of dental pathologies, (2) enhancing orthodontic diagnosis by automating cephalometric tracing and estimating growth and development, (3) assisting and educating children to develop appropriate behavior for dental hygiene.
CONCLUSION
AI holds significant potential in transforming clinical practice, improving patient outcomes, and elevating the standards of care in pediatric patients. Future directions may involve developing cloud-based platforms for data integration and sharing, leveraging large datasets for improved predictive results, and expanding AI applications for the pediatric population.
Collapse