1
|
Verbruggen SW, Freeman CL, Freeman FE. Utilizing 3D Models to Unravel the Dynamics of Myeloma Plasma Cells' Escape from the Bone Marrow Microenvironment. Cancers (Basel) 2024; 16:889. [PMID: 38473251 DOI: 10.3390/cancers16050889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Recent therapeutic advancements have markedly increased the survival rates of individuals with multiple myeloma (MM), doubling survival compared to pre-2000 estimates. This progress, driven by highly effective novel agents, suggests a growing population of MM survivors exceeding the 10-year mark post-diagnosis. However, contemporary clinical observations indicate potential trends toward more aggressive relapse phenotypes, characterized by extramedullary disease and dominant proliferative clones, despite these highly effective treatments. To build upon these advances, it is crucial to develop models of MM evolution, particularly focusing on understanding the biological mechanisms behind its development outside the bone marrow. This comprehensive understanding is essential to devising innovative treatment strategies. This review emphasizes the role of 3D models, specifically addressing the bone marrow microenvironment and development of extramedullary sites. It explores the current state-of-the-art in MM modelling, highlighting challenges in replicating the disease's complexity. Recognizing the unique demand for accurate models, the discussion underscores the potential impact of these advanced 3D models on understanding and combating this heterogeneous and still incurable disease.
Collapse
Affiliation(s)
- Stefaan W Verbruggen
- Digital Environment Research Institute, Queen Mary University of London, London E1 4NS, UK
- Center for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK
| | - Ciara L Freeman
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Fiona E Freeman
- School of Mechanical and Materials Engineering, Engineering and Materials Science Centre, University College Dublin, D04 V1W8 Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Department of Mechanical Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| |
Collapse
|
2
|
Tazzyman S, Stewart GR, Yeomans J, Linford A, Lath D, Conner J, Muthana M, Chantry AD, Lawson MA. HSV1716 Prevents Myeloma Cell Regrowth When Combined with Bortezomib In Vitro and Significantly Reduces Systemic Tumor Growth in Mouse Models. Viruses 2023; 15:v15030603. [PMID: 36992311 PMCID: PMC10059747 DOI: 10.3390/v15030603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Multiple myeloma remains largely incurable due to refractory disease; therefore, novel treatment strategies that are safe and well-tolerated are required. Here, we studied the modified herpes simplex virus HSV1716 (SEPREHVIR®), which only replicates in transformed cells. Myeloma cell lines and primary patient cells were infected with HSV1716 and assessed for cell death using propidium iodide (PI) and Annexin-V staining and markers of apoptosis and autophagy by qPCR. Myeloma cell death was associated with dual PI and Annexin-V positivity and increased expression of apoptotic genes, including CASP1, CASP8, CASP9, BAX, BID, and FASL. The combination of HSV1716 and bortezomib treatments prevented myeloma cell regrowth for up to 25 days compared to only transient cell growth suppression with bortezomib treatment. The viral efficacy was tested in a xenograft (JJN-3 cells in NSG mice) and syngeneic (murine 5TGM1 cells in C57BL/KaLwRijHsd mice) systemic models of myeloma. After 6 or 7 days, the post-tumor implantation mice were treated intravenously with the vehicle or HSV1716 (1 × 107 plaque forming units/1 or 2 times per week). Both murine models treated with HSV1716 had significantly lower tumor burden rates compared to the controls. In conclusion, HSV1716 has potent anti-myeloma effects and may represent a novel therapy for multiple myeloma.
Collapse
Affiliation(s)
- Simon Tazzyman
- Sheffield Myeloma Research Team, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Mellanby Centre for Musculoskeletal Research, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Department of Oncology and Metabolism, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Georgia R. Stewart
- Sheffield Myeloma Research Team, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Mellanby Centre for Musculoskeletal Research, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Department of Oncology and Metabolism, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - James Yeomans
- Sheffield Myeloma Research Team, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Mellanby Centre for Musculoskeletal Research, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Department of Oncology and Metabolism, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Adam Linford
- Sheffield Myeloma Research Team, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Mellanby Centre for Musculoskeletal Research, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Department of Oncology and Metabolism, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Darren Lath
- Sheffield Myeloma Research Team, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Mellanby Centre for Musculoskeletal Research, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Department of Oncology and Metabolism, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Joe Conner
- Sorrento Therapeutics, 4955 Directors Place, San Diego, CA 92121, USA
| | - Munitta Muthana
- Department of Oncology and Metabolism, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Andrew D. Chantry
- Sheffield Myeloma Research Team, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Mellanby Centre for Musculoskeletal Research, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Department of Oncology and Metabolism, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Michelle A. Lawson
- Sheffield Myeloma Research Team, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Mellanby Centre for Musculoskeletal Research, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Department of Oncology and Metabolism, University of Sheffield Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Correspondence: ; Tel.: +44-114-2159094
| |
Collapse
|
3
|
Lourenço D, Lopes R, Pestana C, Queirós AC, João C, Carneiro EA. Patient-Derived Multiple Myeloma 3D Models for Personalized Medicine-Are We There Yet? Int J Mol Sci 2022; 23:12888. [PMID: 36361677 PMCID: PMC9657251 DOI: 10.3390/ijms232112888] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 12/03/2023] Open
Abstract
Despite the wide variety of existing therapies, multiple myeloma (MM) remains a disease with dismal prognosis. Choosing the right treatment for each patient remains one of the major challenges. A new approach being explored is the use of ex vivo models for personalized medicine. Two-dimensional culture or animal models often fail to predict clinical outcomes. Three-dimensional ex vivo models using patients' bone marrow (BM) cells may better reproduce the complexity and heterogeneity of the BM microenvironment. Here, we review the strengths and limitations of currently existing patient-derived ex vivo three-dimensional MM models. We analyze their biochemical and biophysical properties, molecular and cellular characteristics, as well as their potential for drug testing and identification of disease biomarkers. Furthermore, we discuss the remaining challenges and give some insight on how to achieve a more biomimetic and accurate MM BM model. Overall, there is still a need for standardized culture methods and refined readout techniques. Including both myeloma and other cells of the BM microenvironment in a simple and reproducible three-dimensional scaffold is the key to faithfully mapping and examining the relationship between these players in MM. This will allow a patient-personalized profile, providing a powerful tool for clinical and research applications.
Collapse
Affiliation(s)
- Diana Lourenço
- Myeloma Lymphoma Research Group—Champalimaud Experimental Clinical Research Programme of Champalimaud Foundation, 1400-038 Lisbon, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Raquel Lopes
- Myeloma Lymphoma Research Group—Champalimaud Experimental Clinical Research Programme of Champalimaud Foundation, 1400-038 Lisbon, Portugal
- Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Carolina Pestana
- Myeloma Lymphoma Research Group—Champalimaud Experimental Clinical Research Programme of Champalimaud Foundation, 1400-038 Lisbon, Portugal
- Centre of Statistics and Its Applications, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Ana C. Queirós
- Myeloma Lymphoma Research Group—Champalimaud Experimental Clinical Research Programme of Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Cristina João
- Myeloma Lymphoma Research Group—Champalimaud Experimental Clinical Research Programme of Champalimaud Foundation, 1400-038 Lisbon, Portugal
- Faculty of Medical Sciences, NOVA Medical School, 1169-056 Lisbon, Portugal
- Hemato-Oncology Department of Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Emilie Arnault Carneiro
- Myeloma Lymphoma Research Group—Champalimaud Experimental Clinical Research Programme of Champalimaud Foundation, 1400-038 Lisbon, Portugal
| |
Collapse
|