1
|
Zou J, Yu Z, He F, Luo S, Ke L, Gu H, Coreta-Gomes FM, Wall P. Spatial distribution of antioxidant activity in baguette and its modulation of proinflammatory cytokines in RAW264.7 macrophages. NPJ Sci Food 2024; 8:63. [PMID: 39261480 PMCID: PMC11390739 DOI: 10.1038/s41538-024-00302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
Baguette is a globally acclaimed bakery staple, composed by a crispy crust and soft crumb, both containing Maillard reaction products (MRPs) with potential bioactivities. However, MRPs' impacts on the nutritional and health attributes of baguette, particularly in terms of cellular and biological functions, are yet to be clearly elucidated. This study chemically characterizes the crust and crumb of baguettes and investigates the influence of the Maillard reaction on baguette's nutritional profile, especially in the antioxidant and anti-inflammatory effects. The findings indicate an increase in browning intensity and advanced glycation end products (AGEs) from the baguette's interior to its exterior, alongside a significant rise in the antioxidant capacity of the crust, suggesting the Maillard reaction's role in boosting antioxidative properties. Both the crust and crumb demonstrated strong cytocompatibility with immune cells, capable of reducing cellular oxidative stress and regulating intracellular free radical levels. The crust effectively countered peroxyl radical-induced cell membrane hyperpolarization by 91% and completely neutralized the suppression of oxygen respiration in mitochondria, displaying higher efficacy than the crumb. In contrast, crumb extracts were more potent in inhibiting lipopolysaccharide-induced expression of proinflammatory cytokines, such as interleukins-1β (IL-1β) and IL-6, in macrophages. It could provide the fundamental data and cell-based approach for investigating the biological impacts of bread on immune responses, contributing to the refinement and supplementation of nutritional recommendations.
Collapse
Affiliation(s)
- Jianqiao Zou
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Zhaoshuo Yu
- National Nutrition Surveillance Centre, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland
| | - Fangzhou He
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Sihao Luo
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Lijing Ke
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China.
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK.
| | - Huaiyu Gu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Filipe M Coreta-Gomes
- LAQV-REQUIMTE Research Unit, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal
- Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Patrick Wall
- National Nutrition Surveillance Centre, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|