1
|
Fernandez-Jalao I, Siles-Sánchez MDLN, Santoyo S, Tamargo A, Relaño de la Guía E, Molinero N, Moreno-Arribas V, Jaime L. Modulation of Gut Microbiota Composition and Microbial Phenolic Catabolism of Phenolic Compounds from Achillea millefolium L. and Origanum majorana L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:478-494. [PMID: 39699532 DOI: 10.1021/acs.jafc.4c07910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The impact of the nonbioaccessible fraction of two phenolic-rich extracts from Achillea millefolium L. (yarrow) and Origanum majorana L. (marjoram) on the modulation of the human gut microbiota was investigated in vitro. Microbial metabolism of the phenolic compounds was also addressed. In general, phenolic acids or O-glycosidic flavones quickly disappeared, in contrast to methoxy- or C-glycosidic flavonoids. This colonic metabolism yielded phloroglucinol, 3,4-dimethoxyphenylacetic acid, 3-(4-hydroxyphenyl)-propionic acid, and 4-hydroxybenzoic acid as the main metabolites of the microbial catabolism of rosmarinic acid or caffeoylquinic acids, among others. The 16S rRNA gene sequencing showed that the most promising modulatory effect was related to the increase in Bifidobacterium spp., Collinsella spp., Romboutsia, and Akkermansia muciniphila for both plant extracts, along with Blautia spp. and Dialister for yarrow extract. This beneficial modulation was accompanied by the increase in butyric acid production, highlighting the potential prebiotic-like effect on the gut microbiota of these two previously unstudied edible plants.
Collapse
Affiliation(s)
- Irene Fernandez-Jalao
- Departmental Section of Food Science, Faculty of Science, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Department of Production and Characterization of Novel Food, Food Science Research Institute (CIAL), CEI UAM+CSIC, Madrid 28049, Spain
| | - María de Las Nieves Siles-Sánchez
- Departmental Section of Food Science, Faculty of Science, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Department of Production and Characterization of Novel Food, Food Science Research Institute (CIAL), CEI UAM+CSIC, Madrid 28049, Spain
| | - Susana Santoyo
- Departmental Section of Food Science, Faculty of Science, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Department of Production and Characterization of Novel Food, Food Science Research Institute (CIAL), CEI UAM+CSIC, Madrid 28049, Spain
| | - Alba Tamargo
- Department of Food Biotechnology and Microbiology, Food Science Research Institute (CIAL), CEI UAM+CSIC, Madrid 28049, Spain
| | - Edgard Relaño de la Guía
- Department of Food Biotechnology and Microbiology, Food Science Research Institute (CIAL), CEI UAM+CSIC, Madrid 28049, Spain
| | - Natalia Molinero
- Department of Food Biotechnology and Microbiology, Food Science Research Institute (CIAL), CEI UAM+CSIC, Madrid 28049, Spain
| | - Victoria Moreno-Arribas
- Department of Food Biotechnology and Microbiology, Food Science Research Institute (CIAL), CEI UAM+CSIC, Madrid 28049, Spain
| | - Laura Jaime
- Departmental Section of Food Science, Faculty of Science, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Department of Production and Characterization of Novel Food, Food Science Research Institute (CIAL), CEI UAM+CSIC, Madrid 28049, Spain
| |
Collapse
|
2
|
Špiljak B, Ozretić P, Andabak Rogulj A, Lončar Brzak B, Brailo V, Škerlj M, Vidović Juras D. Oral Microbiome Research in Biopsy Samples of Oral Potentially Malignant Disorders and Oral Squamous Cell Carcinoma and Its Challenges. APPLIED SCIENCES 2024; 14:11405. [DOI: 10.3390/app142311405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
This study aims to evaluate the potential benefits and challenges of integrating oral microbiome research into the clinical management of oral potentially malignant disorders (OPMD) and oral squamous cell carcinoma (OSCC). The oral microbiome has gained significant attention for its role in the pathogenesis and progression of these conditions, with emerging evidence suggesting its value as a diagnostic and prognostic tool. By critically analyzing current evidence and methodological considerations, this manuscript examines whether microbiome analysis in biopsy samples can aid in the early detection, prognosis, and management of OPMD and OSCC. The complexity and dynamic nature of the oral microbiome require a multifaceted approach to fully understand its clinical utility. Based on this review, we conclude that studying the oral microbiome in this context holds significant promise but also faces notable challenges, including methodological variability and the need for standardization. Ultimately, this manuscript addresses the question, “Should such research be undertaken, given the intricate interactions of various factors and the inherent obstacles involved?”, and also emphasizes the importance of further research to optimize clinical applications and improve patient outcomes.
Collapse
Affiliation(s)
- Bruno Špiljak
- Department of Oral Medicine, University of Zagreb School of Dental Medicine, 10000 Zagreb, Croatia
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ana Andabak Rogulj
- Department of Oral Medicine, University of Zagreb School of Dental Medicine, 10000 Zagreb, Croatia
- Clinical Department of Oral Diseases, Dental Clinic, University Hospital Centre (UHC) Zagreb, 10000 Zagreb, Croatia
| | - Božana Lončar Brzak
- Department of Oral Medicine, University of Zagreb School of Dental Medicine, 10000 Zagreb, Croatia
| | - Vlaho Brailo
- Department of Oral Medicine, University of Zagreb School of Dental Medicine, 10000 Zagreb, Croatia
- Clinical Department of Oral Diseases, Dental Clinic, University Hospital Centre (UHC) Zagreb, 10000 Zagreb, Croatia
| | - Marija Škerlj
- Oncological Cytology Department, Ljudevit Jurak Clinical Department of Pathology and Cytology, Sestre Milosrdnice University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Danica Vidović Juras
- Department of Oral Medicine, University of Zagreb School of Dental Medicine, 10000 Zagreb, Croatia
- Clinical Department of Oral Diseases, Dental Clinic, University Hospital Centre (UHC) Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Konovalovas A, Armalytė J, Klimkaitė L, Liveikis T, Jonaitytė B, Danila E, Bironaitė D, Mieliauskaitė D, Bagdonas E, Aldonytė R. Insights into respiratory microbiome composition and systemic inflammatory biomarkers of bronchiectasis patients. Microbiol Spectr 2024; 12:e0414423. [PMID: 39535197 PMCID: PMC11619244 DOI: 10.1128/spectrum.04144-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/17/2024] [Indexed: 11/16/2024] Open
Abstract
The human microbiomes, including the ones present in the respiratory tract, are described and characterized in an increasing number of studies. However, the composition and the impact of the healthy and/or impaired microbiome on pulmonary health and its interaction with the host tissues remain enigmatic. In chronic airway diseases, bronchiectasis stands out as a progressive condition characterized by microbial colonization and infection. In this study, we aimed to investigate the microbiome of the lower airways and lungs of bronchiectasis patients together with their serum cytokine and chemokine content, and gain novel insights into the pathogenesis of bronchiectasis. The microbiome of 47 patients was analyzed by sequencing of full-length 16S rRNA gene using amplicon sequencing Oxford Nanopore technologies. Their serum inflammatory mediators content was quantified in parallel. Several divergently composed microbiome groups were identified and characterized, the majority of patients displayed one dominant bacterial species, whereas others had a more diverse microbiome. The analysis of systemic immune biomarkers revealed two distinct inflammatory response groups, i.e., low and high response groups, each associated with a specific array of clinical symptoms, microbial composition, and diversity. Moreover, we have identified some microbiome compositions associated with high inflammatory response, i.e., high levels of pro- and anti-inflammatory cytokines, whereas other microbiomes were in correlation with low inflammatory responses. Although bronchiectasis pathogenetic mechanisms remain to be elucidated, it is clear that addressing microbiome composition in the airways is a valuable resource not only for diagnosis but also for personalized disease management. IMPORTANCE The population of microorganisms on/in the human body resides in distinct local microbiomes, including the respiratory microbiome. It remains unclear what defines a healthy and a diseased respiratory microbiome. We investigated the respiratory microbiome in chronic pulmonary infectious disease, i.e., bronchiectasis, and researched correlations between microbiome composition, systemic inflammatory biomarkers, and disease characteristics. The bronchoalveolar microbiome of 47 patients was sequenced, and their serum inflammatory mediators were quantified. The microbiomes were grouped based on their content and diversity. In addition, patients were also grouped into low- and high-response groups according to their inflammatory biomarkers' levels. Certain microbiome compositions, mainly single-species dominated, were associated with high levels of inflammatory cytokines, whereas others correlated with low inflammatory response and remained diverse. We conclude that respiratory microbiome composition is a valuable resource for the diagnostics and personalized management of bronchiectasis, which may include preserving microbiome diversity and introducing possible probiotics.
Collapse
Affiliation(s)
- Aleksandras Konovalovas
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Julija Armalytė
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Laurita Klimkaitė
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Tomas Liveikis
- Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Brigita Jonaitytė
- Clinic of Chest Diseases, Immunology, and Allergology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Edvardas Danila
- Clinic of Chest Diseases, Immunology, and Allergology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Centre of Pulmonology and Allergology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Daiva Bironaitė
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | | | - Edvardas Bagdonas
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Rūta Aldonytė
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| |
Collapse
|
4
|
Conde‐Pérez K, Buetas E, Aja‐Macaya P, Martin‐De Arribas E, Iglesias‐Corrás I, Trigo‐Tasende N, Nasser‐Ali M, Estévez LS, Rumbo‐Feal S, Otero‐Alén B, Noguera JF, Concha Á, Pardiñas‐López S, Carda‐Diéguez M, Gómez‐Randulfe I, Martínez‐Lago N, Ladra S, Aparicio LA, Bou G, Mira A, Vallejo JA, Poza M. Parvimonas micra can translocate from the subgingival sulcus of the human oral cavity to colorectal adenocarcinoma. Mol Oncol 2024; 18:1143-1173. [PMID: 37558206 PMCID: PMC11076991 DOI: 10.1002/1878-0261.13506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/01/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023] Open
Abstract
Oral and intestinal samples from a cohort of 93 colorectal cancer (CRC) patients and 30 healthy controls (non-CRC) were collected for microbiome analysis. Saliva (28 non-CRC and 94 CRC), feces (30 non-CRC and 97 CRC), subgingival fluid (20 CRC), and tumor tissue samples (20 CRC) were used for 16S metabarcoding and/or RNA sequencing (RNAseq) approaches. A differential analysis of the abundance, performed with the ANCOM-BC package, adjusting the P-values by the Holm-Bonferroni method, revealed that Parvimonas was significantly over-represented in feces from CRC patients (P-value < 0.001) compared to healthy controls. A total of 11 Parvimonas micra isolates were obtained from the oral cavity and adenocarcinoma of CRC patients. Genome analysis identified a pair of isolates from the same patient that shared 99.2% identity, demonstrating that P. micra can translocate from the subgingival cavity to the gut. The data suggest that P. micra could migrate in a synergistic consortium with other periodontal bacteria. Metatranscriptomics confirmed that oral bacteria were more active in tumor than in non-neoplastic tissues. We suggest that P. micra could be considered as a CRC biomarker detected in non-invasive samples such as feces.
Collapse
Affiliation(s)
- Kelly Conde‐Pérez
- meiGAbiome, Microbiology Research Group, Servicio de MicrobiologíaCenter for Advanced Scientific Research (CICA), Institute of Biomedical Research (INIBIC), University Hospital of A Coruña (HUAC), University of A Coruña (UDC), CIBER of Infectious Diseases (CIBERINFEC‐ISCIII), Hospital UniversitarioSpain
| | - Elena Buetas
- Genomic and Health DepartmentFISABIO Foundation, Center for Advanced Research in Public HealthValenciaSpain
| | - Pablo Aja‐Macaya
- meiGAbiome, Microbiology Research Group, Servicio de MicrobiologíaCenter for Advanced Scientific Research (CICA), Institute of Biomedical Research (INIBIC), University Hospital of A Coruña (HUAC), University of A Coruña (UDC), CIBER of Infectious Diseases (CIBERINFEC‐ISCIII), Hospital UniversitarioSpain
| | - Elsa Martin‐De Arribas
- Database LaboratoryResearch Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de ElviñaSpain
| | - Iago Iglesias‐Corrás
- Database LaboratoryResearch Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de ElviñaSpain
| | - Noelia Trigo‐Tasende
- meiGAbiome, Microbiology Research Group, Servicio de MicrobiologíaCenter for Advanced Scientific Research (CICA), Institute of Biomedical Research (INIBIC), University Hospital of A Coruña (HUAC), University of A Coruña (UDC), CIBER of Infectious Diseases (CIBERINFEC‐ISCIII), Hospital UniversitarioSpain
| | - Mohammed Nasser‐Ali
- meiGAbiome, Microbiology Research Group, Servicio de MicrobiologíaCenter for Advanced Scientific Research (CICA), Institute of Biomedical Research (INIBIC), University Hospital of A Coruña (HUAC), University of A Coruña (UDC), CIBER of Infectious Diseases (CIBERINFEC‐ISCIII), Hospital UniversitarioSpain
| | - Lara S. Estévez
- Pathological Anatomy Service and BiobankUniversity Hospital of A Coruña (HUAC), Institute of Biomedical Research (INIBIC), Hospital UniversitarioSpain
| | - Soraya Rumbo‐Feal
- meiGAbiome, Microbiology Research Group, Servicio de MicrobiologíaCenter for Advanced Scientific Research (CICA), Institute of Biomedical Research (INIBIC), University Hospital of A Coruña (HUAC), University of A Coruña (UDC), CIBER of Infectious Diseases (CIBERINFEC‐ISCIII), Hospital UniversitarioSpain
| | - Begoña Otero‐Alén
- Pathological Anatomy Service and BiobankUniversity Hospital of A Coruña (HUAC), Institute of Biomedical Research (INIBIC), Hospital UniversitarioSpain
| | - Jose F. Noguera
- General and Digestive Surgery ServiceUniversity Hospital of A Coruña (HUAC), Hospital UniversitarioSpain
| | - Ángel Concha
- Pathological Anatomy Service and BiobankUniversity Hospital of A Coruña (HUAC), Institute of Biomedical Research (INIBIC), Hospital UniversitarioSpain
| | - Simón Pardiñas‐López
- Periodontology and Oral SurgeryPardiñas Medical Dental Clinic, Cell Therapy and Regenerative Medicine Group, Institute of Biomedical Research (INIBIC)A CoruñaSpain
| | - Miguel Carda‐Diéguez
- Genomic and Health DepartmentFISABIO Foundation, Center for Advanced Research in Public HealthValenciaSpain
| | - Igor Gómez‐Randulfe
- Medical Oncology DepartmentUniversity Hospital of A Coruña (HUAC), Maternal and Child HospitalSpain
| | - Nieves Martínez‐Lago
- Medical Oncology DepartmentUniversity Hospital of A Coruña (HUAC), Maternal and Child HospitalSpain
| | - Susana Ladra
- Database LaboratoryResearch Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de ElviñaSpain
| | - Luis A. Aparicio
- Medical Oncology DepartmentUniversity Hospital of A Coruña (HUAC), Maternal and Child HospitalSpain
| | - Germán Bou
- meiGAbiome, Microbiology Research Group, Servicio de MicrobiologíaCenter for Advanced Scientific Research (CICA), Institute of Biomedical Research (INIBIC), University Hospital of A Coruña (HUAC), University of A Coruña (UDC), CIBER of Infectious Diseases (CIBERINFEC‐ISCIII), Hospital UniversitarioSpain
| | - Alex Mira
- Genomic and Health DepartmentFISABIO Foundation, Center for Advanced Research in Public HealthValenciaSpain
| | - Juan A. Vallejo
- meiGAbiome, Microbiology Research Group, Servicio de MicrobiologíaCenter for Advanced Scientific Research (CICA), Institute of Biomedical Research (INIBIC), University Hospital of A Coruña (HUAC), University of A Coruña (UDC), CIBER of Infectious Diseases (CIBERINFEC‐ISCIII), Hospital UniversitarioSpain
| | - Margarita Poza
- meiGAbiome, Microbiology Research Group, Servicio de MicrobiologíaCenter for Advanced Scientific Research (CICA), Institute of Biomedical Research (INIBIC), University Hospital of A Coruña (HUAC), University of A Coruña (UDC), CIBER of Infectious Diseases (CIBERINFEC‐ISCIII), Hospital UniversitarioSpain
- Microbiome and Health Group, Faculty of SciencesUniversity of A Coruña (UDC), Campus da ZapateiraSpain
| |
Collapse
|
5
|
Hernández-Cabanyero C, Vonaesch P. Ectopic colonization by oral bacteria as an emerging theme in health and disease. FEMS Microbiol Rev 2024; 48:fuae012. [PMID: 38650052 PMCID: PMC11065354 DOI: 10.1093/femsre/fuae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/23/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
The number of research papers published on the involvement of the oral microbiota in systemic diseases has grown exponentially over the last 4 years clearly demonstrating the growing interest in this field. Indeed, accumulating evidence highlights the central role of ectopic colonization by oral bacteria in numerous noncommunicable diseases including inflammatory bowel diseases (IBDs), undernutrition, preterm birth, neurological diseases, liver diseases, lung diseases, heart diseases, or colonic cancer. There is thus much interest in understanding the molecular mechanisms that lead to the colonization and maintenance of ectopic oral bacteria. The aim of this review is to summarize and conceptualize the current knowledge about ectopic colonization by oral bacteria, highlight wherever possible the underlying molecular mechanisms and describe its implication in health and disease. The focus lies on the newly discovered molecular mechanisms, showcasing shared pathophysiological mechanisms across different body sites and syndromes and highlighting open questions in the field regarding the pathway from oral microbiota dysbiosis to noncommunicable diseases.
Collapse
Affiliation(s)
- Carla Hernández-Cabanyero
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Pascale Vonaesch
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, UNIL-Sorge, 1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Elzayat H, Mesto G, Al-Marzooq F. Unraveling the Impact of Gut and Oral Microbiome on Gut Health in Inflammatory Bowel Diseases. Nutrients 2023; 15:3377. [PMID: 37571313 PMCID: PMC10421146 DOI: 10.3390/nu15153377] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex disorder characterized by chronic inflammation of the gastrointestinal tract (GIT). IBD mainly includes two distinct diseases, namely Crohn's disease and ulcerative colitis. To date, the precise etiology of these conditions is not fully elucidated. Recent research has shed light on the significant role of the oral and gut microbiome in the development and progression of IBD and its collective influence on gut health. This review aims to investigate the connection between the oral and gut microbiome in the context of IBD, exploring the intricate interplay between these microbial communities and their impact on overall gut health. Recent advances in microbiome research have revealed a compelling link between the oral and gut microbiome, highlighting their pivotal role in maintaining overall health. The oral cavity and GIT are two interconnected ecosystems that harbor complex microbial communities implicated in IBD pathogenesis in several ways. Reduction in diversity and abundance of beneficial bacterial species with the colonization of opportunistic pathogens can induce gut inflammation. Some of these pathogens can arise from oral origin, especially in patients with oral diseases such as periodontitis. It is essential to discern the mechanisms of microbial transmission, the impact of oral health on the gut microbiome, and the potential role of dysbiosis in disease development. By elucidating this relationship, we can enhance our understanding of IBD pathogenesis and identify potential therapeutic avenues for managing the disease. Furthermore, innovative strategies for modulating the oral and gut microbiome can promote health and prevent disease occurrence and progression.
Collapse
Affiliation(s)
- Hala Elzayat
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Ghaidaa Mesto
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Farah Al-Marzooq
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
7
|
Kang SB, Kim H, Kim S, Kim J, Park SK, Lee CW, Kim KO, Seo GS, Kim MS, Cha JM, Koo JS, Park DI. Potential Oral Microbial Markers for Differential Diagnosis of Crohn's Disease and Ulcerative Colitis Using Machine Learning Models. Microorganisms 2023; 11:1665. [PMID: 37512838 PMCID: PMC10385744 DOI: 10.3390/microorganisms11071665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Although gut microbiome dysbiosis has been associated with inflammatory bowel disease (IBD), the relationship between the oral microbiota and IBD remains poorly understood. This study aimed to identify unique microbiome patterns in saliva from IBD patients and explore potential oral microbial markers for differentiating Crohn's disease (CD) and ulcerative colitis (UC). A prospective cohort study recruited IBD patients (UC: n = 175, CD: n = 127) and healthy controls (HC: n = 100) to analyze their oral microbiota using 16S rRNA gene sequencing. Machine learning models (sparse partial least squares discriminant analysis (sPLS-DA)) were trained with the sequencing data to classify CD and UC. Taxonomic classification resulted in 4041 phylotypes using Kraken2 and the SILVA reference database. After quality filtering, 398 samples (UC: n = 175, CD: n = 124, HC: n = 99) and 2711 phylotypes were included. Alpha diversity analysis revealed significantly reduced richness in the microbiome of IBD patients compared to healthy controls. The sPLS-DA model achieved high accuracy (mean accuracy: 0.908, and AUC: 0.966) in distinguishing IBD vs. HC, as well as good accuracy (0.846) and AUC (0.923) in differentiating CD vs. UC. These findings highlight distinct oral microbiome patterns in IBD and provide insights into potential diagnostic markers.
Collapse
Affiliation(s)
- Sang-Bum Kang
- Department of Internal Medicine, College of Medicine, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon 34943, Republic of Korea
| | - Hyeonwoo Kim
- Department of Bioinformatics, Soongsil University, Seoul 06978, Republic of Korea
| | - Sangsoo Kim
- Department of Bioinformatics, Soongsil University, Seoul 06978, Republic of Korea
| | - Jiwon Kim
- Department of Bioinformatics, Soongsil University, Seoul 06978, Republic of Korea
| | - Soo-Kyung Park
- Division of Gastroenterology, Department of Internal Medicine and Inflammatory Bowel Disease Center, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, Seoul 03181, Republic of Korea
- Medical Research Institute, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, Seoul 03181, Republic of Korea
| | - Chil-Woo Lee
- Medical Research Institute, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, Seoul 03181, Republic of Korea
| | - Kyeong Ok Kim
- Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| | - Geom-Seog Seo
- Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Min Suk Kim
- Department of Human Intelligence and Robot Engineering, Sangmyung University, Cheonan-si 31066, Republic of Korea
| | - Jae Myung Cha
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea
| | - Ja Seol Koo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea
| | - Dong-Il Park
- Division of Gastroenterology, Department of Internal Medicine and Inflammatory Bowel Disease Center, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, Seoul 03181, Republic of Korea
- Medical Research Institute, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, Seoul 03181, Republic of Korea
| |
Collapse
|
8
|
Molinero N, Antón-Fernández A, Hernández F, Ávila J, Bartolomé B, Moreno-Arribas MV. Gut Microbiota, an Additional Hallmark of Human Aging and Neurodegeneration. Neuroscience 2023; 518:141-161. [PMID: 36893982 DOI: 10.1016/j.neuroscience.2023.02.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 03/09/2023]
Abstract
Gut microbiota represents a diverse and dynamic population of microorganisms harbouring the gastrointestinal tract, which influences host health and disease. Bacterial colonization of the gastrointestinal tract begins at birth and changes throughout life, with age being one of the conditioning factors for its vitality. Aging is also a primary risk factor for most neurodegenerative diseases. Among them, Alzheimeŕs disease (AD) is probably the one where its association with a state of dysbiosis of the gut microbiota has been most studied. In particular, intestinal microbial-derived metabolites have been associated with β-amyloid formation and brain amyloid deposition, tau phosphorylation, as well as neuroinflammation in AD patients. Moreover, it has been suggested that some oral bacteria increase the risk of developing AD. However, the causal connections among microbiome, amyloid-tau interaction, and neurodegeneration need to be addressed. This paper summarizes the emerging evidence in the literature regarding the link between the oral and gut microbiome and neurodegeneration with a focus on AD. Taxonomic features of bacteria as well as microbial functional alterations associated with AD biomarkers are the main points reviewed. Data from clinical studies as well as the link between microbiome and clinical determinants of AD are particularly emphasized. Further, relationships between gut microbiota and age-dependent epigenetic changes and other neurological disorders are also described. Together, all this evidence suggests that, in some sense, gut microbiota can be seen as an additional hallmark of human aging and neurodegeneration.
Collapse
Affiliation(s)
- Natalia Molinero
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM. c/ Nicolás Cabrera, 9. 28049 Madrid, Spain
| | - Alejandro Antón-Fernández
- Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC-UAM. c/ Nicolás Cabrera, 1. 28049 Madrid, Spain
| | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC-UAM. c/ Nicolás Cabrera, 1. 28049 Madrid, Spain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC-UAM. c/ Nicolás Cabrera, 1. 28049 Madrid, Spain
| | - Begoña Bartolomé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM. c/ Nicolás Cabrera, 9. 28049 Madrid, Spain
| | - M Victoria Moreno-Arribas
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM. c/ Nicolás Cabrera, 9. 28049 Madrid, Spain.
| |
Collapse
|
9
|
Taladrid D, Zorraquín‐Peña I, Molinero N, Silva M, Manceñido N, Pajares R, Bartolomé B, Moreno‐Arribas MV. Polyphenols and Ulcerative Colitis: An Exploratory Study of the Effects of Red Wine Consumption on Gut and Oral Microbiome in Active-Phase Patients. Mol Nutr Food Res 2022; 66:e2101073. [PMID: 35633101 PMCID: PMC9787944 DOI: 10.1002/mnfr.202101073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/09/2022] [Indexed: 12/30/2022]
Abstract
SCOPE This paper explores the effects of moderate red wine consumption on the clinical status and symptomatology of patients with ulcerative colitis (UC), including the study of the oral and intestinal microbiome. METHODS AND RESULTS A case control intervention study in UC patients is designed. Intervention patients (n = 5) consume red wine (250 mL day-1 ) for 4 weeks whereas control patients (n = 5) do not. Moderate wine consumption significantly (p < 0.05) improves some clinical parameters related to serum iron, and alleviates intestinal symptoms as evaluated by the IBDQ-32 questionnaire. 16S rRNA gene sequencing indicate a non-significant (p > 0.05) increase in bacterial alpha diversity after wine intervention in both saliva and fecal microbiota. Additional comparison of taxonomic data between UC patients (n = 10) and healthy subjects (n = 8) confirm intestinal dysbiosis for the UC patients. Finally, analysis of fecal metabolites (i.e., phenolic acids and SCFAs) indicates a non-significant increase (p > 0.05) for the UC patients that consumed wine. CONCLUSIONS Moderate and regular red wine intake seems to improve the clinical status and symptoms of UC patients in the active phase of the disease. However, studies with a greater sample size are required to achieve conclusive results.
Collapse
Affiliation(s)
- Diego Taladrid
- Institute of Food Science Research (CIAL)CSIC‐UAM, c/Nicolás Cabrera 9Madrid28049Spain
| | - Irene Zorraquín‐Peña
- Institute of Food Science Research (CIAL)CSIC‐UAM, c/Nicolás Cabrera 9Madrid28049Spain
| | - Natalia Molinero
- Institute of Food Science Research (CIAL)CSIC‐UAM, c/Nicolás Cabrera 9Madrid28049Spain
| | - Mariana Silva
- Institute of Food Science Research (CIAL)CSIC‐UAM, c/Nicolás Cabrera 9Madrid28049Spain
| | - Noemi Manceñido
- Hospital Universitario “Infanta Sofia”, P.° de Europa34, 28703 San Sebastián de los ReyesMadridSpain
| | - Ramón Pajares
- Hospital Universitario “Infanta Sofia”, P.° de Europa34, 28703 San Sebastián de los ReyesMadridSpain
| | - Begoña Bartolomé
- Institute of Food Science Research (CIAL)CSIC‐UAM, c/Nicolás Cabrera 9Madrid28049Spain
| | | |
Collapse
|
10
|
Li C, Wu Y, Xie Y, Zhang Y, Jiang S, Wang J, Luo X, Chen Q. Oral manifestations serve as potential signs of ulcerative colitis: A review. Front Immunol 2022; 13:1013900. [PMID: 36248861 PMCID: PMC9559187 DOI: 10.3389/fimmu.2022.1013900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
As an immune dysregulation-related disease, although ulcerative colitis (UC) primarily affects the intestinal tract, extraintestinal manifestations of the disease are evident, particularly in the oral cavity. Herein, we have reviewed the various oral presentations, potential pathogenesis, and treatment of oral lesions related to UC. The oral manifestations of UC include specific and nonspecific manifestations, with the former including pyostomatitis vegetans and the latter encompassing recurrent aphthous ulcers, atrophic glossitis, burning mouth syndrome, angular cheilitis, dry mouth, taste change, halitosis, and periodontitis. Although the aetiology of UC has not been fully determined, the factors leading to its development include immune system dysregulation, dysbiosis, and malnutrition. The principle of treating oral lesions in UC is to relieve pain, accelerate the healing of lesions, and prevent secondary infection, and the primary procedure is to control intestinal diseases. Systemic corticosteroids are the preferred treatment options, besides, topical and systemic administration combined with dietary guidance can also be applied. Oral manifestations of UC might accompany or precede the diagnosis of UC, albeit with the absence of intestinal symptoms; therefore, oral lesions, especially pyostomatitis vegetans, recurrent aphthous ulcer and periodontitis, could be used as good mucocutaneous signs to judge the occurrence and severity of UC, thus facilitating the early diagnosis and treatment of UC and avoiding severe consequences, such as colon cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaobo Luo
- *Correspondence: Qianming Chen, ; Xiaobo Luo,
| | | |
Collapse
|