1
|
Zhao Y, Liang W, Liu Z, Chen X, Lin C. Impact of SDF-1 and AMD3100 on Hair Follicle Dynamics in a Chronic Stress Model. Biomolecules 2024; 14:1206. [PMID: 39456139 PMCID: PMC11505668 DOI: 10.3390/biom14101206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 10/28/2024] Open
Abstract
Chronic stress is a common cause of hair loss, involving inflammatory responses and changes in cellular signaling pathways. This study explores the mechanism of action of the SDF-1/CXCR4 signaling axis in chronic stress-induced hair loss. The research indicates that SDF-1 promotes hair follicle growth through the PI3K/Akt and JAK/STAT signaling pathways. Transcriptome sequencing analysis was conducted to identify differentially expressed genes in the skin of normal and stressed mice, with key genes SDF-1/CXCR4 selected through machine learning and a protein-protein interaction network established. A chronic stress mouse model was created, with injections of SDF-1 and AMD3100 administered to observe hair growth, weight changes, and behavioral alterations and validate hair follicle activity. Skin SDF-1 concentrations were measured, differentially expressed genes were screened, and pathways were enriched. Activation of the PI3K/Akt and JAK/STAT signaling pathways was assessed, and siRNA technology was used in vitro to inhibit the expression of SDF-1 or CXCR4. SDF-1 promoted hair follicle activity, with the combined injection of SDF-1 and AMD3100 weakening this effect. The activation of the PI3K/Akt and JAK/STAT signaling pathways was observed in the SDF-1 injection group, confirmed by Western blot and immunofluorescence. Silencing SDF-1 through siRNA-mediated inhibition reduced cell proliferation and migration abilities. SDF-1 promotes hair growth in chronic stress mice by activating the PI3K/Akt and JAK/STAT pathways, an effect reversible by AMD3100. The SDF-1/CXCR4 axis may serve as a potential therapeutic target for stress-induced hair loss.
Collapse
Affiliation(s)
- Yinglin Zhao
- Department of Psychosomatic Medicine, Shantou University Mental Health Center, Wanji Industrial Zone, Taishan North Road, Shantou 515041, China;
| | - Wenzi Liang
- Department of Histology and Embryology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (W.L.); (Z.L.); (X.C.)
| | - Zhehui Liu
- Department of Histology and Embryology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (W.L.); (Z.L.); (X.C.)
| | - Xiuwen Chen
- Department of Histology and Embryology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (W.L.); (Z.L.); (X.C.)
| | - Changmin Lin
- Department of Histology and Embryology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (W.L.); (Z.L.); (X.C.)
| |
Collapse
|
2
|
Zhang H, Qing R, Li W, Yuan Y, Pan Y, Tang N, Huang Q, Wang B, Hao S. Rational Design of Human Hair Keratin-Driven Proteins for Hair Growth Promotion. Adv Healthc Mater 2024:e2401378. [PMID: 39132773 DOI: 10.1002/adhm.202401378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Keratins, the most abundant proteins in human hair, are excellent hair nutrients for growth. However, the complex components of keratin extract hinder their mechanism investigation, and the pure recombinant keratin with poor solubility limited its hair growth promotion efficiency. Here, the water-soluble recombinant keratins (RKs) of K31 and K81 are rationally designed through QTY Code methodology, which are then used to fabricate the microneedles to study the effect of keratin on hair growth. Interestingly, it is discovered that more than 40% of the hair follicles (HFs) in the RK81QTY group entered the anagen on day 12 and the diameter of new hair is 15.10 ± 2.45 µm, which significantly promoted growth and development of HFs and improved new hair quality compared to RK31QTY. Water-soluble RKs significantly enhanced HFs activity and de novo regeneration of robust hairs compared to extract and minoxidil by upregulating the PI3K/AKT/Nf-κB signaling axis. These findings highlight the potential of designing solubilized recombinant keratins with distinct properties to improve therapeutical effects and open new avenues to designing keratin-based proteins.
Collapse
Affiliation(s)
- Haojie Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Rui Qing
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenfeng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Yuhan Yuan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Yinping Pan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Ni Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Qiulan Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| |
Collapse
|
3
|
Benedetto N, Mangieri C, De Biasio F, Carvalho RF, Milella L, Russo D. Malus pumila Mill. cv Annurca apple extract might be therapeutically useful against oxidative stress and patterned hair loss. FEBS Open Bio 2024; 14:955-967. [PMID: 38711215 PMCID: PMC11148120 DOI: 10.1002/2211-5463.13805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/17/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
Patterned hair loss (PHL) or androgenetic alopecia is a condition affecting about 50% of people worldwide. Several pharmacological medications have been developed over the years, but few studies have investigated their effectiveness. Therefore, new, safer and more effective strategies are required. Recent investigations showed that Annurca apple extract application could induce keratin production and promote hair growth thanks to the high amount of procyanidin B2 contained in. Hence, this study aimed to investigate the role of an Annurca apple extract in preventing PHL by testing it on human follicle dermal papilla cells (HFDPCs) for the first time. Treatment of HFDPCs with Annurca apple extract counteracted intracellular reactive oxygen species accumulation by increasing the activity of antioxidant enzymes such as superoxide dismutase 2 and catalase. Furthermore, treatment with Annurca apple extract increased β-catenin and fibroblast growth factor 2, which are involved in hair growth stimulation. These data suggest that Annurca apple extract may be a potential therapeutically useful nutraceutical product for preventing or treating hair loss by reducing oxidative stress and inducing the expression of hair growth-related factors.
Collapse
Affiliation(s)
| | | | | | | | - Luigi Milella
- Department of ScienceUniversity of BasilicataPotenzaItaly
| | - Daniela Russo
- Department of ScienceUniversity of BasilicataPotenzaItaly
- Spinoff Bioactiplant S.r.l.PotenzaItaly
| |
Collapse
|
4
|
Wu S, Kou X, Niu Y, Liu Y, Zheng B, Ma J, Liu M, Xue Z. Progress on the mechanism of natural products alleviating androgenetic alopecia. Eur J Med Chem 2024; 264:116022. [PMID: 38086191 DOI: 10.1016/j.ejmech.2023.116022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023]
Abstract
Androgenetic alopecia (AGA) has become a widespread problem that leads to considerable impairment of the psyche and daily life. The currently approved medications for the treatment of AGA are associated with significant adverse effects, high costs, and prolonged treatment duration. Therefore, natural products are being considered as possible complementary or alternative treatments. This review aims to enhance comprehension of the mechanisms by which natural products treat AGA. To achieve this, pertinent studies were gathered and subjected to analysis. In addition, the therapeutic mechanisms associated with these natural products were organized and summarized. These include the direct modulation of signaling pathways such as the Wnt/β-catenin pathway, the PI3K/AKT pathway, and the BMP pathway. Additionally, they exert effects on cytokine secretion, anti-inflammatory, and antioxidant capabilities, as well as apoptosis and autophagy. Furthermore, the review briefly discusses the relationship between signaling pathways and autophagy and apoptosis in the context of AGA, systematically presents the mechanisms of action of existing natural products, and analyzes the potential therapeutic targets based on the active components of these products. The aim is to provide a theoretical basis for the development of pharmaceuticals, nutraceuticals, or dietary supplements.
Collapse
Affiliation(s)
- Shuqi Wu
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Yujia Niu
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Yazhou Liu
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Bowen Zheng
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Juan Ma
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Mengyi Liu
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China.
| |
Collapse
|